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Estimating perceived quality of video is typically done by gauging the user’s response on an absolute scale of 
ratings (excellent, good, fair, poor and bad). However, the internal representation of these adjectives to the 
stimuli varies significantly in different people. Even though the goal is to make an absolute estimate of the 
perceived quality, these questions reveal merely relative tendencies due the incorporated bias and variability in 
the responses. We present results from quality assessment based on estimates of relative quality distances 
between samples, by asking the question in the form or comparison rather than rating. This, two-alternative 
forced choice method scales the differences in a form of psychometric function, which presents the utility of the 
perceived quality on a measurable objective value. We argue that this relativistic mapping with low variance is 
more useful in video delivery because it offers an accurate way to optimize the resources. 
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1 Introduction  

Delivering the desired quality of multimedia content necessitates the understanding of how video 
quality is perceived by the viewers. Commonly used subjective methods are based on a rating 
procedure that estimates the video quality on an absolute scale from excellent to poor [1]. However, 
people’s internal representation of such scales is intrinsically biased and varies from person to person. 
This bias and variance is propagated to the test output and results in the inefficiency of this type of 
subjective studies. This is not surprising, in fact psychophysicists have argued for a long time that the 
brain perceptual system is more accurate at grasping ‘differences’ rather than giving absolute rating 
values [2]. 
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In this paper we present a method based on difference scaling rather than rating used to quantify 
the degradation of quality in video as a function of the encoding bit-rate. The method uses MLDS 
(maximum likelihood difference scaling) [3], a two-alternative-forced-choice (2AFC) procedure from 
the domain of psychophysics. This procedure utilizes the mechanisms of direct comparison rather than 
rating that are significantly less biased and with low variance. Because of their characteristics the 
2AFC methods offer more accuracy with less testing [2]. 

To explain the mechanics of difference scaling we present an example of our MLDS analysis in 
Figure 1. We analyzed a video for degradation of quality due to H.264 encoding with constant bit-rate. 
The bit-rate values range from 2Mbps to 64kbps. The figure represents the normalized relative 
difference between the 2Mbps video and the rest of the videos. The higher the value, the bigger the 
difference in quality. The MLDS does not provide direct estimates of quality such as ‘good’ or ‘poor’, 
rather it only provides for relative differences between the samples. However, these relative differences 
offers significant understanding of how the impairment affects the perceived quality. For example in 
the figure it is evident that the relative distance between the quality of the 2Mbps sample and the 
512kbps video is almost zero. This leads to the conclusion that the benefit of increasing the bit-rate 
from 512kbps to 2Mps is close to none. Further we can make observations as: the distance between the 
256kbps and 128kbps is almost the same as the 128kbps and 64kbps. This means that the gain of 
increasing the bit-rate from 64kbps to 128kbps is the same as increasing it from 128kbps to 256kbps. 
In turn, we can estimate the utility of the first increase would be double than the second, assuming that 
the price per bit is constant. 

 

Figure 1. Differences in quality MLDS results 

 Understanding how a resource affects the perceived quality allows for estimating the utility of that 
resource. In the given example, the utility halves from the first to the second increment, and fully 
diminish above 512kbps. Having a grasp of the resource utility in video delivery allows for optimizing 
the service by providing ‘constant quality’ instead of ‘constant resources’ to the viewers. This is 
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achievable without the need to exactly know if the video quality was perceived as ‘good’ or ‘poor’, but 
only by understanding the relative distances in quality. 

In this paper we present the details of the MLDS method and we demonstrate its applicability and 
advantages by executing a subjective video quality study and elaborating on the results. 

2 Background 

Objective and subjective video quality methods have varied levels of success in delivering accurate 
estimations. The objective methods are considered more practical, because they do not necessitate 
human testing. Nevertheless, they are less accurate mainly because they do not consider all the factors 
that affect the quality and disregard the viewers’ expectations [4]. The subjective methods are regarded 
as more accurate and are usually used as a benchmark for the objective methods.  

One such study by Seshadrinathan et al. [5] analyzes the different objective video quality 
assessment algorithms by correlating their output with the differential mean opinion score (DMOS) of 
a subjective study they executed. In the subjective study they implemented complex procedures to deal 
with contextual and memory affects as well as unreliable (biased) subjects.  

This type of undertaking is costly, time consuming and necessitates considerable amount of tests to 
achieve statistical significance. The bias and the variability of subjective testing arise from the fact that 
subjective tests rely in rating as the estimation procedure. Rating is inheritably biased due to the 
variance in the internal representation of the rating scale by the subjects [6][7][8][9][10].   

Research done is psychophysics, a discipline that quantifies the effect on stimuli on internal 
perception, has established the m-AFC testing as a primary estimation procedure [11] for quantifying 
intensity of stimuli. The 2AFC methods present the person with a choice of two stimuli and ask him to 
discriminate between the intensity of the two. These types of tests have less bias and variability 
because the procedure is more natural and direct to a person; no internal mapping is necessary.   

The MLDS method in the literature has been utilized for estimation of quality differences for 
images. Charrier et al. in [12] present quality difference scaling of compressed images with a lossy 
image compression techniques. They implement a comparison of image compression in two different 
color spaces, and conclude that in the CIE 1976 L*a*b* color space the images can be compressed by 
32% more, without additional loss in quality. Their results and discussion clearly show the 
applicability of MLDS and the ease of collecting data with it. 

In this paper we use MLDS to estimate the quality scale for a range of videos with different spatial 
and temporal characteristics. The results presented demonstrate that MLDS can be used for estimating 
quality of video with higher accuracy and significantly lower testing costs than subjective rating.  

3    Maximum likelihood difference scaling 

The goal of the MLDS method is to map the objectively measurable scale of video quality to the 
internal psychological scale of the viewers. The output is a quantitative model for this relationship 
based on a psychometric function [11] as depicted in Figure 2. 
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Figure 2. Psychometric function 

The horizontal axis of the Figure 2 represents the physical intensity of the stimuli – in our study 
this will be the video bit-rate. The vertical axis represents the psychological scale of perceived 
difference in signal strength – for our purpose the difference in video quality. The perceptual intensity 
of the first (or reference) sample ψ1 is 0 and the last sample perceptual difference ψ10 is fixed to 1 
without the loss in generality [13]. The MLDS produced model is an estimate of the rest of the 
parameters of the viewers’ internal quality scale. 

The 2AFC test is designed in the following manner. Two pairs of videos are presented to the 
viewers (ψi, ψj and ψk, ψl). The intensity of the physical stimuli is always in the following manner i < j 
and k < l. The method needs to compare sizes of distances between the qualities of videos so that the 
results can directly let us build a model of the quality distance between all of the presented videos.  

The viewer needs to select the pair of videos that have bigger difference in quality between them. 
In other words if the expression |ψj - ψi |-|ψl - ψk |>0 is true the viewer selects the first pair, otherwise 
he or she will choose the second.  

Because the stimuli are ordered as i < j and k < l we can assume that in the psychological domain 
also ψj≥ψi and ψl≥ψk and we drop the absolute values. 

The decision variable used by the observer is the following: 

  (1) 

where ε is the error or noise produced by the viewers visual and cognitive processing. As defined 
in (1) the observer will select the first pair when Δ(i,j,k,l)>0 or the second when Δ(i,j,k,l)<0. 

In order to use the maximum likelihood method to determine the Ψ=(ψ1,...,ψ10) parameters we 
need to define the likelihood (probability given the parameters) that the viewer will find the first pair 
with larger difference than the second pair. For this the method models the perceived distances using 
signal detection theory (SDT) [14]. 

  j, , ,     i l ki j k l          
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The equal variance Gaussian model from the SDT is used to model the process of selection that the 
user is executing for each presented pair. This model assumes that the signal is contaminated with ε, a 
Gaussian noise with zero mean and standard deviation of σ (Figure 3). Each time the observer is 
presented with a pairs of videos, the perceived difference is a value of the random variable X drawn 
from the distribution given in Figure 3. The distribution in Figure 3 is with arbitrary signal strength of 
1. 

 

Figure 3. Signal of 1 unit superimposed over noise with 0 mean and standard deviation of 1 

The probability that Δ(i,j,k,l)>0 is given by the surface under the Gaussian from zero to plus 
infinity (Figure 4). 

For reasons of mathematical simplicity it is better to represent the surface under the curve with a 
cumulative Gaussian function. The inverse portion of the surface (Figure 5) is as (2). 

  (2) 

 

Looking at the inverse part of the surface under the Gaussian the probability of detecting the signal 
would be:  
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where μs is the mean or the intensity of the signal, σ is the standard deviation of the noise and R is 1 
when the first pair is selected and 0 when the second pair is selected.  

The likelihood for the whole set of responses in a test is the product of all of the individual 
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Figure 4. Probability that the signal is positive 

 

Figure 5. Probability that the signal is negative 

The Maximum Likelihood method estimates the parameters, such that the given likelihood is 
maximized.  

For example, if we have instances drawn from some probability density 
family p(x│θ) defined up to parameters θ (3). 

( | )tx p x                                                                              (3) 

If the xt samples are independent, the likelihood parameter θ given a sample set x is the product of 
the likelihood of individual points (4). 

 (4) 
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There is no closed form for such a solution, so a direct numerical optimization method needs to be 
used to compute the estimates (5). 

ˆ argmax ( | )l x           (5) 

4    Experimental setup 

The experimental setup consists of a web application that displays the two pairs of videos to the viewer 
in the layout given in Figure 6. The user response is recorded in the application database. The web 
application is developed using the java server pages technology [15]. The videos are displayed using 
the JW player [16], which is a Flash 5 player that is capable of displaying H.264 encoded videos.  

The videos are encoded using the X264 library [17] and saved in mp4 file format. The raw videos are 
the unimpaired samples of the Live video database [5][18] used for subjective studies of video quality.  

 
Figure 6. Four video displayed 

The ten different videos (Table 2, Figure 7) are encoded with constant bit-rate of ten different values 
ranging from 2Mbps to 64kbps. The videos have 25 frames per second frame-rate and a spatial 
resolution of 768 by 432 pixels 
The video player is configured to pre-buffer the full content before playing, so additional impairments 
such as freezes during the playback are avoided.  

                                                                         Table 2. List of the video descriptions 

bs Blue Sky Circular camera motion showing a blue sky and some trees 

rb River Bed Still camera, shows a river bed containing some pebbles in the water 

pa Pedestrian Area Still camera, shows some people walking about in a street intersection 

tr Tractor Camera pan, shows a tractor moving across some fields 

sf Sunflower Still camera, shows a bee moving over a sun-flower in close-up 

rh Rush hour Still camera, shows rush hour traffic on a street 

st Station Still camera, shows railway track, a train and some people walking across the track 

sh Shields Camera pans at first, then becomes still and zooms in; shows a person walking across a
display pointing at it 

mc Mobile & 
Calendar 

Camera pan, tor train moving horizontally with a calendar moving vertically in the
background 

pr Park run Camera pan, a person running across a park 

The results are collected in a database in the format:  
bit-rate 1  bit-rate 2 bit-rate 3 bit-rate 4 R (index bigger pair) 
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Figure 7. Snapshots of the mc, rb, sh and pr video 

We used the MLDS implementation [13] in R [19] to calculate the Ψ=(ψ1,...,ψ10) values. The output ψ 
values are fitted to a psychometric curve using a probit regression fit with variable upper/lower 
asymptotes using the ‘psyphy’ package in R [20].  

The results of the subjective study are μ and σ of a cumulative Gaussian curve for each type of video 
that models the relationship between the video bit-rate and perceived quality for each type of video.   

5    Results 

The MLDS experiment with 10 levels of stimuli requires 210 responses to cover all possible 
combinations for a single video. We have done 3 rounds per video sample or 630 tests for each video; 
in total we have collected 6300 responses. The videos are displayed one at the time or in pairs. They 
are 10 seconds long, so to view a single test up to 40 seconds are needed, but in most cases the larger 
difference is evident much sooner to most observers.  

To calculate the standard error we executed a bootstrap [21] fitting procedure with 10,000 rounds. 
The mean values and the standard error are given in Figure 8 and the standard deviation for each point 
in Figure 9. 

The results in Figure 8 show that most of the videos follow a similar trajectory of the difference in 
quality.  There is little perceived difference down to 512kbps and then a rapid rise appears. The 
difference is not zero in the high range, as we can also see from the standard error on the points from 
1536kbps to 512kbps, but it is very low relative to the lower bit-rate samples. This means it is safe to 
say that there is little benefit from increasing the bit-rate above 512kbps. The exception is the ‘rb’ 
video and somewhat the ‘pr’ video. The ‘rb’ video displays a surface of water, which shows 
significantly different compression characteristics than the rest of the videos.  
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Fig. 8. Results of the MLDS experiment by video type 

 

Fig. 9. Standard error of the MLDS results by video type 

To quantitatively analyze the characteristics of each model we fitted a cumulative Gaussian curve 
to each difference model as demonstrated in Figure 10, which represents the psychometric curve [22]. 
There is high goodness of fit to the curve with small residuals. This further demonstrates the success of 
this subjective study to model the quality difference perception with a psychometric curve.  
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                                                 Figure 10. Fitting a cumulative Gaussian on the bs MLDS model  

For each video the μ and σ of the fitted curve are given in Table 2. A plot of each of the fitted 
models is given in Figure 11. The plotted curves model a smooth quality distance for different bit-rates 
from the reference 2Mbps video. 

 

Fig. 11. Fitted psychometric curves from the MLDS results 
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                                               Table 2. The μ and σ of the cumulative Gaussian 

bs mc pa pr rb rh sf sh st tr 
-5.43 -5.07 -5.08 -4.57 -4.09 -5.22 -5.54 -5.13 -5.00 -4.94 
0.24 0.20 0.20 0.15 0.11 0.22 0.25 0.21 0.20 0.19 

 
Observing the parameter values in Table 2 we can make the same conclusions from above in a 

quantitative form. The mean value of the psychometric curve of the ‘rb’ video is noticeably lower than 
the rest of the videos, so the distance increases earlier than in with others. The remaining psychometric 
curves cluster together and confirm that most of these videos difference in quality is negligible to the 
reference down to 512kbps, while the bit-rate between 256 and 128kbps is half way to the perceived 
distance between the reference and the 64kbps video. The results accurately capture the nonlinearity in 
the perceived quality by the viewers. 

6    Conclusions 

In a subjective study we want to estimate how people perceive the quality exactly rather than scaling 
the differences, which makes methods like MLDS seem counter intuitive. However, we have shown 
that relative scaling of the difference can be just as much useful because it produces a utility function 
for the resource that the quality depends on. In addition, MLDS does not suffer from the common 
pitfalls associated with rating procedures, mostly due to the fact that comparison comes more naturally 
to people rather than rating. Consequently, the training of the participants for a MLDS test is simple 
and straight-forward. Moreover, for a significant number of tests the difference in quality is obvious 
and the time to collect the answer is small. Simpler training and shorter tests bring the amount of time 
and costs for the subjective study down. The high confidence in many of the participant responses 
allows for lower standard error and variation over the results and improvement in the goodness of fit 
for the models.  

The method can be also applied to measuring degradation of quality due to other factors like 
transport impairments i.e. bit-error rate or IP packet loss. 

In continuation of this work, we plan to use this method in subjective estimation of different 
compression algorithms. Even though a direct comparison is not possible, using MLDS, the dynamic 
range of compression over bit-rate can be examined and compared. 
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