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Accuracy and reliability are two terms that are vital in a biometric system, which must also tolerate the fuzziness of 
the biometric characteristics to a certain degree. In this paper, we propose and implement fingerprint image 
enhancement as a preliminary stage to increase the accuracy and reliability of minutiae extraction process for fuzzy 
vault implementation. In this pre-processing stage, we attempt to recover and enhance the corrupted and noisy region 
by employing filtering technique. The enhanced image is finally transformed to its skeleton equivalent, preserving the 
ridges and valleys connectivity for minutiae extraction process. Rutovitz Crossing Number (CN) algorithm is then 
applied to extract the candidate minutiae which will then undergo a series of minutiae filtering processes to determine 
the validity of the extracted raw minutiae as true minutia. The implementations of the minutiae filtering processes are 
able to identify and eliminate the predefined spurious minutiae. As we are focusing on extracting accurate minutiae 
for the purpose of fuzzy vault implementation, we also take into consideration the quantization of the minutiae, which 
is an important factor in fuzzy vault locking and unlocking procedures. We then perform the fingerprint fuzzy vault 
cryptography processes based on the extracted minutiae, where a secret key is generated, encoded and then decoded. 
Experiments have been conducted for the fingerprint image processing stage and fuzzy vault implementation stage. 
We obtained a Goodness Index (GI) of 0.55 for the image processing stage, which indicates that our implementation 
is performing well comparing to other methods. As for the fuzzy vault implementation, we managed to achieve 
promising False Acceptance Rate (FAR) and False Rejection Rate (FRR) for polynomial degrees ranging from 8 to 
13.   

Key words: Biometrics, fingerprint, image processing, minutiae extraction, minutiae filtering, fuzzy 
vault 
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1 Introduction  

Biometrics is the utilization of physiological or behavioural characteristics in establishing identity [1]. 
It is undoubtedly one of the most reliable and robust methods of identifying and authenticating an 
individual, while also ensuring non-repudiation. With the advancement of technology, biometrics has 
been widely adopted in many areas, ranging from governmental surveillance systems to interactive 
authentication protocols implemented on personal gadgets. The effectiveness of biometrics systems are 
based upon the universality, uniqueness, permanence, collectability, performance, acceptability and 
circumvention of the characteristics used [1]. Research has been widely conducted in efficiently 
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combining biometrics and cryptography, where the uniqueness in biometric templates can replace the 
function of vulnerable tokens, or analogically, replacing “something one knows” with “something one 
is”, offering a higher level of authentication certainty. 

Among the many available biometric options, fingerprint can be considered as one of the most 
widely adopted methods in our society. Some of the benefits that fingerprint biometrics offers include 
its distinguishable uniqueness and collectability. It is also considered as one of the most reliable 
personal identification methods [2, 3]. However, the efficiency of such systems is highly dependent on 
the ability of the implemented algorithms to accurately extract the features that can be used for 
authentication. It is commonly encountered that fingerprint images captured tends to be corrupted with 
different levels of noise and their qualities often differ due to a wide variety of reasons [4]. As the 
quality of a fingerprint image remains the major factor in influencing the accuracy of the features 
extraction process, it is important to employ methods which can filter and recover from the existing 
noise and corruption, while maintaining the integrity of the fingerprint characteristics and structure. 
These methods are usually referred to as fingerprint image enhancement or pre-processing stage [4].  

On the other hand, it can be deemed almost impossible to obtain identical fingerprint images, even 
from the same finger when variables such as pressure, orientation, age, skin conditions, etc. would 
adversely affect the ability of the system to consistently extract the exact identical set of unique 
features [4]. Therefore, authentication based on exact identical set of fingerprint features data would be 
unrealistic and impractical. Realizing this fact, research and algorithms have been developed where the 
fuzziness of fingerprint features data can be tolerated while preserving the integrity of the 
authentication system. Such fuzziness tolerable system is commonly known as the fuzzy vault [5, 6, 7].  

Fuzzy vault is a system that fully utilizes the features information in a fingerprint, which is usually 
the location of the minutiae in terms of their coordinates and orientation. The logic behind the fuzzy 
vault scheme is that two fingerprints images can be authenticated if a considerable large amount of 
their extracted minutiae overlaps, rather than matches exactly in a domain [6]. One of the challenges in 
implementing fuzzy vault is the ability and effectiveness of the system to establish the valid minutiae 
from the minutiae extraction and filtering process.  

In this paper, we have implemented fingerprint image enhancement algorithm as a pre-processing 
step to ensure the robustness of the minutiae extraction algorithm with respect to the quality of the 
fingerprint images. We have also implemented the minutiae extraction algorithm that discovers all the 
possible minutiae points in the image by employing Rutovitz Crossing Number (CN) concept [4, 8]. 
Next, we implemented post-processing stages that filters the spurious minutiae detected in the 
extraction algorithm by employing heuristic rules [9]. Then we quantized the extracted minutiae data 
with reference to a predefined quantization factor to account for slight variations in minutiae data due 
to nonlinear distortion, and hence offer standardized minutiae applicable for the fuzzy vault [6]. 
Finally, we performed the cryptography processes which include encoding and decoding of the secret 
key based on the extracted minutiae.  

The remaining of this paper is structured as follows. Section 2 presents the image enhancement 
methods or pre-processing stages. Section 3 implements the minutiae extraction whereas Section 4 
demonstrates the filtering methods to establish the valid minutiae, which are then being quantized for 
variation tolerance of fuzzy vault. Finally in Section 5, the fuzzy vault encoding and decoding 
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processes were carried out. Experimental results of our implemented algorithms and conclusions are 
provided in Section 6 and Section 7 respectively in this paper. 

2  Image Pre-processing 

The image pre-processing stages that we implemented performed enhancement while transforming the 
original grey-scale fingerprint image into its corresponding skeleton binary image. The enhancement 
stages are outlined as shown in Figure 1. 

 

 
Figure 1 Fingerprint image enhancement process. 

2.1  Segmentation 

Segmentation is a process to differentiate between the foreground and background regions of a 
fingerprint image. As foreground regions are usually comprised of alternating ridge and valley 
structures where useful fingerprint features are present and can be extracted, background regions often 
carry useless or noisy data. It is important to identify and separate these foreground and background 
regions in order to avoid extracting features from the background, which could compromise the 
accuracy of the system, while also induce unnecessary processing time and resources. 

We have implemented the segmentation process by comparing the pixel values of the grey-scale 
fingerprint image with a variance threshold that is pre-specified as follows [10]: 

Step 1: The grey-scale image is divided and processed in blocks of size W x W (W = 16). 

Step 2: Mean of each block, M(k) is computed using equation (1). 

 
Step 3: With the corresponding mean values, the variance of each block, V(k) is computed as 

in equation (2), where I(i, j) is the pixel value at position (i ,j) in the grey-scale 
image. 
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Step 4: The variance of each block is then compared with a threshold value Vthresh, which is 

decided empirically for each different image. If V(k) is higher than Vthresh, block k is 
assigned as foreground; otherwise, it is assigned as background. 

Step 5: A relative mask of the image is generated by setting the position of foreground pixels 
with value 1 and background pixels with value 0. 

 

     
 

Figure 2 Image segmentation: (a) Grey-scale fingerprint image, (b) Variance image, (c) Segmented fingerprint image. 

2.2  Normalization 

Normalization is a pixel-wise operation which has no contribution in altering the ridge structure or 
enhancing the ridge connectivity [4, 11]. Nevertheless, it has the effect of reducing the grey-scale 
intensity levels and enhancing the contrast between the ridge and valley of the fingerprint image, 
which remains an important preliminary step for subsequent enhancement stages. The new intensity 
value for each pixel in the image is redefined based on its previous value and some global parameters 
as given in equation (3), where I(i, j) and N(i, j) denotes the original and normalized new intensity or 
grey-scale value at pixel (i, j) respectively. M and V denotes the estimated mean and variance of the 
image, whereas Mo and Vo are the desired mean and desired variance respectively.  

 
In our paper, we empirically observed that a Mo value of 0 and Vo value of 1 provides a reasonably 

finest result, with least impact of false ridge disconnection, which is illustrated in Figure 3.  

 

(a) (b) (c) 
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Figure 3 Image normalization: (a) Grey-scale fingerprint image, (b) Normalized image with Mo =0, Vo = 1, (c) Normalized 
image with Mo = 0, Vo = 100, (d) Normalized image with Mo = 10, Vo = 100. 

2.3  Local Ridge Orientation Estimation 

Ridge orientation image is one of the two important data sets required in subsequent filtering process. 
The local ridge orientation at pixel (i, j) is defined as the angle that the ridge crossing through a small 
neighbourhood forms with the horizontal axis [8]. We employed the least mean square orientation 
estimation algorithm developed by Hong, Wan and Jain [11], with major steps briefly summarized as 
follows: 

Step 1: Normalized image, N is firstly divided into blocks of size W x W (W = 16). 

Step 2: Horizontal and vertical gradient of each pixel is computed using horizontal and 
vertical Sobel operators respectively.  

Step 3: Using the computed gradient and the least mean square estimation method, local 
orientation of each block is estimated. 

Step 4: The orientation image is converted into a continuous vector field. 

Step 5: A two dimensional Gaussian low pass filter is applied to the vector field of the 
orientation image to correct and smoothen the local ridge orientation image 
corrupted by noise. 

Step 6: Finally, the smoothed local ridge orientation estimation at position (i, j) can be 
computed as shown in equation (4), where O(i, j) is the ridge orientation image, 

 and  are the results from the low pass filtering [9]. 

 
 

2.4 Local Ridge Frequency Estimation 

Together with the local ridge orientation image, local ridge frequency is another required data set for 
the filtering process. The ridge frequency is estimated based on the sinusoidal waveform properties 

(a) (b) (c) (d) 
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that the ridge and valley in the fingerprint image form. In order to obtain the frequency estimation data, 
we have implemented the steps provided in [4, 11], which is again briefly summarized as follows: 

Step 1: Normalized image, N is firstly divided into blocks of size W x W (W = 16). 

Step 2: An oriented window of size L x W (L = 32, W = 16) is constructed for each block 
centred at pixel (i, j), where oriented means that the window is rotated to have the 
local ridge orientation of the block aligned with the y-axis. 

Step 3: The x-signature of the ridges and valleys, X[k] within the oriented window is 
computed for each block centred at pixel (i, j) using equations (5), (6), and (7). 

 
where, 

 

 
The x-signature forms a sinusoidal wave which has the same frequency as that of the 
ridge and valleys in the oriented window if no singular point or minutia appears in 
that window. Thus the frequency of the ridges and valleys can be estimated from the 
x-signature. For such estimation, we first establish the average number of pixels 
between two consecutive peaks in the x-signature. Then the frequency F(i, j) can be 
computed as the inverse of average distance between two consecutive peaks of the x-
signature. Any window without consecutive peaks in its x-signature will be defined as 
invalid field for frequency and assigned a value of -1. 

Step 4: For the corrupted blocks or blocks where minutiae or singular point(s) is present, a 
well-defined sinusoidal wave will not be formed. In this case, interpolations from 
frequency of neighbouring blocks are required and carried out as in [12]. 

 

 
 (a) (b) (c) 

Figure 4 Local ridge orientation and frequency estimation: (a) Grey-scale fingerprint image, (b) Orientation estimation 
image, (c) Frequency estimation image. 
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2.5 Filtering 

It is common that fingerprint images are corrupted with different levels of noise. Based on the 
orientation and frequency data computed in previous stages, we defined any data that do not 
correspond to the relative orientation and frequency as noise. By utilizing the orientation and 
frequency data, we employed a band pass filter to eliminate the undesired noise, particularly Gabor 
filter in this paper . The even symmetric Gabor filter can be constructed as follows [4, 11, 13]: 

 
where,  

 

 
and f denotes the frequency of the sinusoidal plane wave from the cosine term in equation (8), σx and 
σy represent the standard deviations of the Gaussian envelope along the  x and y axes respectively. 
Among the parameters that are required to be specified in the construction of Gabor filter include θ, f, 
σx and σy. While θ and f are determined by the orientation and frequency estimation previously 
computed, the Gaussian envelope, σx and σy are both set to 4.0 [11]. 

As it is computationally inefficient to construct a separate Gabor filter for each of the orientation 
and frequency data during the filtering process, we can first create and store a bank of filters with equal 
angle increment from 0 degree to 180 degrees, with each bank for several reasonable frequencies. In 
this paper, we have constructed and stores 60 filters per bank, each filter with an angle increment of 3 
degrees, ranging from 0 degree to 180 degrees, with each bank for the frequencies of 1/5, 1/7, 1/9. 
Each pixel (i, j) of the image is then convolved with the corresponding filter in such a way that the 
discrete angle and frequency of the selected Gabor filter from the bank is closest to that of the pixel. 
The enhanced value of the pixel (i, j), E(i, j) is obtained by the convolution as follows: 

 
where G = G(u, v; O(i, j), F(i, j)), and Wg is the size of the filter. 

2.6 Image Binarization 

Although direct minutiae extraction from grey-scale image is possible [14], we implemented image 
binarization as a preliminary process for minutiae extraction in this paper. It is a stage where the grey-
scale values in the enhanced image is transformed and represented in only two levels, which are 0 and 
1. The value of 0 and 1, which is usually decided based on threshold comparison, represents a black 
and white pixel in the binarized image respectively. Several binarization algorithms developed in the 
past have employed the threshold comparison technique, either locally or globally where the threshold 



 

 

Nandita Bhattacharjee and Chien Eao Lee      321 

values are determined based on parameters such as orientation, intensity, and others [15]. However, 
with the application of contextual filtering in the previous sub-section where the local characteristics 
have been taken into consideration, we can achieve satisfactory binarization outcome B(i, j) by 
comparing the enhanced image E(i, j) with a global threshold of 0, which is the DC component of the 
Gabor filter as follows: 

 

2.7 Morphological Operation 

Instead of utilizing the ridge structure of the fingerprint image for minutiae extraction, we are using the 
valley image, which is established to be less prone to spurious minutiae [9].  Morphological thinning is 
an operation that transforms the binarized valley structure of the fingerprint image into a pixel wide, 
without altering the connectivity of the ridges and valleys provided in the binary image. We applied 
the mathematical morphology operation developed by Gonzales and Woods [16] to reach the final one-
pixel wide version of the fingerprint image. Besides the morphological ‘thin’ operator, we have also 
adopted the ‘open’ and ‘fill’ operator where the spikes and holes resulting from the intermediate 
thinning stage are eliminated. These steps are determined empirically to finally obtain a satisfactory 
outcome. 

 
 

 

3    Minutiae Extraction 

Minutiae points are categorized as level 2 ridge details which correspond to the various ways that 
ridges can become discontinuous [4]. Several common types of minutiae include ridge ending, 
bifurcation, island, crossover, etc. In most cases, and also in this paper, we are only interested in 
considering endings and bifurcations as valid minutiae. Ending is defined as the point where 
fingerprint ridge abruptly comes to an end, whereas bifurcation is the point where a ridge divides into 
two ridges [4]. 

(a) (b) (c) 

Figure 5 Filtering, binarization and morphological thinning operations: (a) Grey-scale fingerprint image, (b) Filtered and 
binarized fingerprint image, (c) Thinned skeleton fingerprint image. 
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3.1 Rutovitz Crossing Number (CN) 

Rutovitz Crossing Number is particularly effective in detecting 4 minutiae types and the continuous 
ridge pixels in a skeleton fingerprint image [8]. The raw minutiae detection or extraction algorithm 
using CN can be carried out as follows: 

Step 1: A 3 x 3 block is constructed for each pixel (i, j) that has a value of 1 (skeleton valley) 
in the skeleton image, where P = P(i, j). 

 
   

   

   

Step 2: The CN of each pixel, P(i, j) which is denoted as P in the centre of their 
corresponding 3 x 3 block is calculated as in equation (13), where the value of Pi, (i 
= 1 to 8) is either 0 or 1. 

 
Step 3: The minutiae types are determined based on the CN number of each pixel as shown 

in Table 1. 

Table 1 Crossing number and property 

CN(P) Property Examples 

0 Isolation point 
 

1 Ending point 
 

2 Continuing ridge 
point  

3 Bifurcation point 
 

4 Crossing point 
 

 

Step 4: From the CN that has been computed for each of the valley pixels, which has a value 
of 1 (or white) in the binary skeleton image, we marked and stored the position or 
coordinate of the pixel, P(i, j) which has CN(P) of 1 or 3 as candidate endings and 
candidate bifurcations respectively. These lists of candidate endings and 
bifurcations minutiae are stored for minutiae filtering process. 
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4    Minutiae Filtering 

Rutovitz Crossing Number (CN) is a definite method where all processed pixels with CN value of 1 
and 3 will be considered as listed as endings and bifurcations respectively. While valid minutiae are 
enlisted, many minutiae formed by breaks, spurs, bridges, borders and other forms of corruption are 
also included in the minutiae list. Such minutiae are considered as spurious minutiae and must be 
identified and eliminated from the list.  

As the minutiae extraction and filtering processes that we implemented are focused on the fuzzy 
vault application, it is vital that the minutiae used for locking and unlocking the vault to be as accurate 
as possible. This is because inaccurate minutiae extraction would adversely affect the False Rejection 
Rate (FRR) and inefficiency in filtering the spurious minutiae would induce a high False Acceptance 
Rate (FAR). In this paper, we have implemented algorithms to remove the spurious minutiae at the 
border, minutiae formed by short breaks, spurs and also the minutiae within a reasonably close 
distance to each other. 

4.1 Border Minutiae Removal 

We shall first define the border minutiae as minutiae lying on any of the 4 boundaries of the fingerprint 
images, which are mostly spurious, and also those positioned within a considerably close distance to 
the any of the 4 image boundaries, where the ridges are often corrupted with noise, even though they 
are defined as foreground regions. This is because the regions masking procedure is conducted in 
block-wise manner. The first step in our minutiae filtering process focuses on removing such border 
minutiae, which is performed in two stages. 

4.1.1  Stage 1: Boundaries Minutiae Removal 

The determination and removal of boundaries minutiae is carried out in four directions, which are from 
the top, bottom, left and right of the boundaries of the image. From the list of raw minutiae extracted 
previously, we perform the consideration where, if the minutiae position happen to be the first valley 
pixel (pixel value of 1) from any of the 4 boundaries, it is considered as boundary minutiae and 
eliminated from the candidate minutiae list. 

(a) (b) (c) 

Figure 6 Minutiae extraction using Rutovitz Crossing Number (CN): (a) Skeleton binary fingerprint image, (b) Minutiae 
extracted from the skeleton image, with ‘o’ marks the endings and ‘*’ marks the bifurcations, (c) Minutiae extracted on the 
grey-scale fingerprint image. 
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4.1.2  Stage 2: Near Border Minutiae Removal 

In this stage, we apply the windowing technique [17] and threshold comparison method to identify and 
remove the minutiae that fall into a near-border region as follows: 

Step 1: For each of the minutiae in the candidate minutiae list, a sub-window of size W x W, 
centred at the minutiae is formed. 

Step 2: The threshold for comparison is computed as in equation (14). 

 
Step 3: The sub-window formed in Step 1 is mapped onto the region mask generated 

previously in the image segmentation process, and the sum, S of the sub-window 
values in the mask is computed. 

Step 4: The validity of the candidate minutiae is determined by comparing S and Wthresh. If S 
is equal to Wthresh, the minutiae is deemed as valid and remains in the list for further 
processing, whereas if the value of S is smaller than Wthresh, then the minutiae will be 
deemed as near-border minutiae and eliminated from the candidate minutiae list. 

    
 

 

The windowing with threshold comparison technique in Stage 2 is also effective in removing minutiae 
that lies near the unrecoverable corrupted regions, in which the total mask value of the sub-window 
will be lower than the threshold, Wthresh. 

4.2 Short Breaks Removal 

Short breaks are the false discontinuity of a continuous ridge, which would be considered as two 
endpoints by the CN algorithm. Short breaks often occur due to the low quality of or corruption in the 
fingerprint image. The first attempt to recover from the short breaks or broken ridges was carried out in 
the image enhancement processes, particularly in the filtering phase. However, it is still common that 
the attempt would fail to reconnect the broken ridges, leaving them as endpoints. Therefore, it is 
important to detect such short breaks minutiae in the candidate list, by implementing the following 
algorithm [9]. 

(a) (b) 
Figure 7 Border minutiae elimination: (a) Raw minutiae detected by CN extraction algorithm, (b) Candidate minutiae 
after border minutiae removal. 
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If two endpoints satisfy all of the following conditions, they are regarded as short breaks minutiae 
and will be removed from the candidate list. 

Condition 1: The distance between two endpoints is below a threshold, T1. 

Condition 2: The difference between the orientation angles of the two endpoints, (θA) and (θB) is 
within an interval of [θ1, θ2]. The orientation angle of the endpoint is determined by 
tracing the 8-connected neighbours of the corresponding endpoint. 

Condition 3: The difference between the orientation angle of the line connecting the two 
endpoints, (θC) and either (θA) or (θB) is within an interval of [θ3, θ4]. 

 

 
Figure 8 Short break identification parameters illustration. 

 

   
 (a) (b) 

Figure 9 Short breaks detection and removal: (a) Short breaks marked as 2 endpoints by minutiae extraction 
algorithm, (b) Short breaks minutiae successfully identified and removed. 
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4.3 Spur Removal 

Spur is determined as an endpoint connected to a bifurcation point within a considerably short 
distance. The algorithms we implemented in identifying and removing spur include windowing and 
labelling technique [9], with the stages outlined as follows: 

Step 1: The connected pixels in the skeleton fingerprint image are labelled or represented 
with the same label. 

Step 2: For each of the pixels with identical labels in the image, check for the presence of 
endpoint and bifurcation. If such presence is detected, the distance, (d) between the 
corresponding endpoint and bifurcation having identical label is computed. 

Step 3: The distance, (d) computed is compared with a predefined threshold, T2. If d is 
lower than T2, we construct a sub-window, centred at the corresponding bifurcation 
or endpoint, with the window size of (2d + 1) x (2d + 1). 

Step 4: Within the sub-window created, we perform the labelling process again for the 
connected pixels. If the new label provided for the corresponding bifurcation and 
endpoint are still identical, they are both defined as spur and removed from the 
candidate minutiae list. Otherwise, they are both preserved. 

 

 
 

 

 

4.4 Close Distance Minutiae Removal 

This stage of minutiae filtering removes minutiae that are positioned within a close distance to each 
other. For each of the minutiae in the candidate list, we construct a sub-window centred at the minutiae 
position. The threshold of distance tolerance, T3 would decide on the sub-window size, which is 
computed as ((T3 + 1) x (T3 + 1)). In this paper, we establish the threshold as the distance between two 
parallel and neighbouring valleys, where the minutiae is on. We used the term valley instead of ridge 
because the output of our pre-processing stages is the skeleton of the fingerprint valleys.  Identification 
of close distance minutiae is then carried out in each sub-window generated. If there is more than one 

(a) (b) (c) 
Figure 10 Spur detection and removal: (a) Raw minutiae detected by minutiae extraction algorithm, with endpoints marked as 
‘x’ and bifurcations marked as ‘♦’, (b) Connected pixels are labelled using identical label, (c) 4 minutiae detected due to spur 
are removed by spur removal algorithm, whereas the other 2 remain as candidate minutiae. 
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minutia within the sub-window, all the minutiae in the sub-window would be considered as close 
distance minutiae and eliminated from the candidate minutiae list. This method is also effective in 
eliminating spurious minutiae caused by bridge structure formed between two neighbouring valleys (or 
ridges). After the close distance minutiae removal stage, we considered the minutiae that remain in the 
candidate minutiae list as valid minutiae. We refer to the minutiae list consisting of all the surviving 
minutiae as valid minutiae list, which will be used in the fuzzy vault authentication process. 

4.5 Quantization of Minutiae Position 

Prior to the locking and unlocking process of the fuzzy vault with the minutiae in the valid minutiae 
list, we quantized the values given by each minutiae in terms of their two dimensional coordinate 
position in the fingerprint image. A quantization factor is to be decided, which will be an element in 
deciding the tolerance and sensitivity of the vault. A quantization factor that is too large would 
increase the tolerance, or more specifically, the False Acceptance Rate (FAR), whereas a quantization 
that is too low would have a high sensitivity that might not successfully account for the fuzziness in 
fingerprint, inducing a high False Rejection Rate (FRR) in the authentication process.  

Tessellated blocks of  is formed in the fingerprint image, where  is the selected quantization 
factor. Every minutia that falls within the corresponding tessellated space formed will be quantized as 
follows: 

 

 
where XQ, YQ are the quantized X and Y coordinate of the minutiae whereas XM, YM are the un-
quantized X and Y coordinate as provided in the valid minutiae list respectively. As illustrated in 
Figure 11, every minutiae positioned within a tessellated space quantized with Q = 7 will be 
considered as having the centred position in its specified window, or analogically, we could consider 
only one standardized coordinate for every pixel within each tessellated block. 

 

 
Figure 11 Quantization within tessellated space of quantization factor, Q (Q = 7), where every pixel will be regarded as having 
the centred position as marked. 
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With the quantized valid minutiae list, we have finally constructed a locking minutiae list. A 
similar procedure is also performed for the candidate unlocking minutiae list, which will later undergo 
an alignment process before being evaluated for authentication with the locking list in the fuzzy vault. 

5    Fuzzy Vault 

Key is an object that is often linked with authentication. The utilization of key has enabled many 
encryption and decryption methods to be developed to provide strong cryptography mechanisms. 
Nevertheless, while depending on the secret key, many methods overlooked the importance of key 
protection, which has become the vulnerable point of attack in a cryptosystem. Realizing the 
shortcomings of conventional key protection methods, which often rely on attackable user-selected 
passwords, fuzzy vault implementations where biometric features used as key protection mechanism 
has emerged as a favourable concept in cryptography. 

5.1 Encoding 

Utilizing the secret key and minutiae points extracted, the fuzzy vault encoding can be performed, as 
illustrated in Figure 12. 

 

 
Figure 12 Block diagram for fuzzy vault encoding process. 

5.1.1 Secret Key Generation 

In fuzzy vault implementation, a secret key, denoted as K is firstly generated. K is comprised of fixed 
length random bits generated by the system to be bound with the biometric template presented during 
the encoding or vault locking procedure. For a field of GF(216), the length of K generated is in a 
multiple of 16-bits. Figure 13 depicts an example of 128-bits key randomly generated by the fuzzy 
vault encoding system. 
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Figure 13 An example of 128-bits key generated for fuzzy vault encoding purpose. 

5.1.2 Cyclic Redundancy Check (CRC) Computation 

CRC is an error detecting code commonly employed in noisy communication systems where the 
checksum is computed and appended to the message being transmitted. Reference to the checksum 
enables the receiver to verify the correctness of the received data. In this fuzzy vault implementation, a 
16-bits CRC is generated with regard to the generated secret key, K.  

The 16-bits primitive polynomial, particularly ‘CRC-16’ as provided in equation (17) is employed for 
CRC computation. The generated 16-bits CRC is then appended to K. Thus, for a 128-bits key, a 
stream of 144-bits data, denoted as K|CRC is computed. 

 
 

 

Figure 14 The 128-bits secret key concatenated with the corresponding 16-bits CRC. 

5.1.3 Polynomial Construction 

In order to construct the encoding polynomial, the secret key, K is segmented as represented as 
coefficients. For encoding in GF(216), each coefficient would be comprised of 16-bits in order to be 
represented as an element in the Galois Field. The data stream, K|CRC of 16 (D + 1) bits is partitioned 
into (D + 1) non-overlapping 16-bits coefficients, represented as C0, C1, …, CD. With the coefficients 
computed, the encoding polynomial, P can be constructed as shown in equation (18) where the 
variable u is obtained by concatenating the x and y coordinate of the locking minutia (u = (x|y)).  

 

5.1.4 Polynomial Projection 

Polynomial projection is a process that convolves the constructed polynomial, P with the r minutiae 
used for the locking procedure to conceal the secret key, K. In order to perform that, P is evaluated at 

Secret key, K (128-bits) CRC (16-bits) 
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all of the r selected minutiae points, as  to form the locking set, G where 

 and uj is a 16-bits element representing the two-dimensional position of a 

minutia. 

5.1.5 Chaff Points Generation 

Chaff points are generated in order to hide the genuine template from attackers that happen to gain 
access to the vault. However, the amount and position of chaff points to be introduced into the vault is 
restricted by the variance in the fingerprint capturing and feature extraction algorithm. The distance of 
the chaff points must not be too close in order to account for the quantization procedure. By deciding 
on a distance threshold (d), chaff points can be positioned in any location as long as their distances 
from all genuine points satisfy the threshold. In addition, placing a chaff point within the threshold 
distance from the genuine point would immediately reveal to the attacker that the chaff points are 
indeed not genuine. 

For a chaff set with an amount of s chaff points, a number of s random points, z1, z2, …, zs are 
firstly generated in GF(216), with the constraint that none of the random points overlap with the 
genuine minutia points, u. This relationship can be outlined as zi ≠ uj, where i = 1, 2, …, s and j = 1, 2, 

…, r. Next, another set of s chaff points,  is generated, with the constraint that the 

combination of the pairs , where i = 1, 2, …, s do not fall onto the constructed polynomial, P. 

The chaff set can then be represented as Z, where . 

5.1.6 List Scrambling and Vault Construction 

The list scrambling is firstly carried out as , which is the union of the genuine set, G and the chaff 
set, Z. Then the union list is randomized with the purpose of removing any stray information that may 
cause the discovery and lead to the separation of genuine points from the chaff points. The scrambled 

list then constitutes the vault, which is represented as , where T = r + s, is the total 
number of points in the vault. 

5.2 Decoding 

During unlocking attempts, minutia points from the enquiry fingerprint will be extracted and presented 
for the decoding process, which is illustrated in Figure 15. 

5.2.1 Candidate Points Identification 

Candidate points for unlocking purpose are identified by comparing the points in the vault, V with the 
aligned list of unlocking points submitted. The list of submitted points is denoted as E which consists 

of a number of N minutia points, . The candidate points for vault unlocking purpose are 

selected in such a way that if , (i = 1, 2, …, N) matches with any of the abscissa values of V 

, namely vj, (j = 1, 2, …, T), the corresponding vault point, (vj, wj) is enlisted as the 
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point to be used for the subsequent polynomial reconstruction process. The composed list of points for 

the polynomial reconstruction is denoted as . 

 

 
Figure 15 Block diagram for fuzzy vault decoding process. 

5.2.2 Combination Sets Determination 

From the composed list , possible sets are computed for the polynomial reconstruction attempts. In 
order to reconstruct a polynomial of D degrees using polynomial interpolation method, (D + 1) unique 
projections are required. The unlocking process will be cancelled and considered as a failure if the 

number of points in the list  is less than (D + 1). Otherwise, all possible sets, each with different 

combinations of (D + 1) points from  will be used for the polynomial reconstruction attempts. The 

total number of different attempt sets, TotalATP that can be composed for the  with F listed points is 
determined as equation (19). 

 

5.2.3 Lagrange Polynomial Interpolation 

Lagrange polynomial interpolation is a form of numerical analysis where provided with a set of points, 
the polynomial that intersects at every provided point is constructed. For the fuzzy vault unlocking 

purpose, the encoding polynomial for the list , where is 
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reconstructed as shown in equation (20). The resulting polynomial is then represented as in equation 
(21). 

 
 

 

5.2.4 Cyclic Redundancy Check Decoding 

From the polynomial in equation (21), the coefficients are concatenated and mapped back to the form 
of K|CRC where K represents the secret key and CRC is the corresponding checksum for K. In CRC 
decoding process, the polynomial corresponding to K|CRC is then divided with the primitive 
polynomial, GCRC(x) = x16 + x15 + x2 + 1 for the purpose of determining if error has occurred in K that 
is reconstructed from the polynomial. A non-zero remainder division result indicates the presence of 
error where incorrect secret key, K has been decoded, whereas a zero remainder division result verifies 
the decoded K as the actual secret key in the encoding process. 

5.2.5 Secret Key Extraction 

A satisfactory CRC decoding yields a successful authentication procedure where the CRC codes are 
removed from the K|CRC formed during polynomial reconstruction. The resulting sequence is released 
as the secret key, K. 

6    Experimental Evaluations and Results 

In order to evaluate the performance of our implemented algorithms for image processing, we carried 
out a series of experiments using the fingerprint images in database FVC2000, FVC2002 and 
FVC2004. We have performed the evaluation on our minutiae extraction and filtering algorithms after 
out pre-processing stage based on the goodness index (GI) measurement [18]. Specifically, we 
compared the valid extracted minutiae that survived the filtering process and with the ground truth 
minutiae that are identified by human expert. The GI that we computed is based on the formula as 
shown in equation (22), where P represents the total number of paired minutiae and T represents the 
ground truth minutiae in a given fingerprint image. A and B are the missed and spurious minutiae 
respectively whereas U is the total detected minutiae. 

 
In this paper, paired minutiae refer to any extracted minutiae that lies within the 8 x 8 tolerance 

window with its counterpart in the ground truth minutiae marked. Missed minutiae are the ground truth 
minutiae that are not extracted by the minutiae extraction or did not survive the filtering process, 
whereas spurious minutiae refer to the extracted minutiae that are not matched with the ground truth 
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minutiae. A high GI, with a maximum value of 1 indicates a high accuracy of the minutiae extraction 
and filtering algorithm, where most of the minutiae are correctly matched. In our experimental trials, 
we have implemented the threshold values as given in Table 2. We then present the GI values 
computed for a set of 10 fingerprint images obtained from FVC2000, FVC2002 and FVC2004 
database in Table 3. 

 
Table 2 Threshold values used in experiments. 

Threshold Applications Threshold Name Threshold Value 

Border Minutiae Removal  15 

Short Breaks Removal  9 

Short Breaks Removal  125ο 

Short Breaks Removal  225ο 

Short Breaks Removal  -25ο 

Short Breaks Removal  25ο 

Spur Removal  6 

Close Distance Minutiae Removal  Determined by algorithm 

Quantization  7 

 
Table 3 GI values for a set of 10 fingerprint images. 

Fingerprint Image P T A B U GI 

1 11 12 1 1 12 0.75 

2 14 17 3 2 16 0.51 

3 15 19 4 0 15 0.52 

4 21 25 4 2 23 0.58 

5 26 30 4 6 32 0.55 

6 23 28 5 8 31 0.40 

7 30 35 5 6 36 0.55 

8 35 38 3 3 38 0.76 

9 24 27 3 6 30 0.59 

10 17 21 4 9 26 0.31 

 

Based on the results we have obtained by using the GI measurement on 10 random fingerprint 
images in the database, we manage to acquire GI values ranging from 0.31 to 0.75 and average GI of 
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0.55, which shows a promising reliability in extracting the true minutiae from fingerprint images. The 
average GI value obtained is comparable to the corresponding values obtained in [19] and 
outperformed the results presented by several other implementations [9, 11, 20] as shown in Table 4. 

Beside the GI values, we evaluated our overall implementation which include the image 
enhancement, minutiae extraction and filtering in terms of average error rates as provided in Table 5. 
The average error rates are computed in terms of 3 categories, including the missed, false and type 
exchanged minutiae with respect to the detected minutiae. From our evaluation result, it is evident that 
our implementation can achieve better results in terms of false minutiae and total error rates comparing 
to the implementation results of [14, 21, 22] as reported in [9].  

 
Table 4 GI values for different processing methods. 

Methods min(GI) max(GI) Average(GI) 

Ratha et al. [20] -2.38 -1.19 -1.65 

Hong et al. [11] 0.29 0.55 0.39 

Zhao et al. [9] 0.18 0.75 0.50 

Proposed 0.31 0.75 0.55 

Simon-Zorita et al.[19] 0.33 0.76 0.55 

 
Table 5 Average error rates of minutiae extraction. 

Methods Missed (%) False (%) Type-exchanged (%) Total Error 
(%) 

Proposed 13.9 8.1 8.5 30.5 

Maio et al. [14] 6.5 11.8 13.1 31.4 

Cheng et al.[21] 15.9 9.6 10.4 35.9 

Kim et al.[22] 13.8 25.8 6.3 45.9 

 
We also exhibit the outcomes of the minutiae extraction and filtering process after implementation 

of our pre-processing stages graphically. In Figure 16, we present two sets of original fingerprint 
images from the same finger and their thinned images with survived minutiae from the filtering 
processes marked. The original images with minutiae marked accordingly are also illustrated. From the 
2 sets of images, we observe that the surviving minutiae are actually true minutiae that we can 
manually identify in the images.  

Besides minutiae extraction and filtering, we also conducted the experiments of encoding and 
decoding in fuzzy vault implementation using the minutiae extraction results [6]. In this paper, we 
consider a fuzzy vault implementation where a 128-bits key is represented as polynomial coefficients 
and later encoded using the locking minutiae set extracted from our algorithms. In unlocking 
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procedure, another set of minutiae extracted from enquiry fingerprint is passed to the fuzzy vault 
authentication algorithm. 

 

 
 

 
Figure 16 Example of image pre-processing and minutiae extraction result: (a) and (d) Original fingerprint images, (b) and (e) 
Thinned fingerprint images with extracted minutiae marked, (c) and (f) Original fingerprint images with minutiae marked. 

 

With a D degrees polynomial, minimum of (D + 1) unique matching minutiae are required for 
polynomial projection to successfully unlock the vault using Lagrange polynomial interpolation [6]. 
We have performed the evaluation on our fuzzy vault based on FVC2002 fingerprint database. Each 
database consists of 100 sets of fingerprints with 8 imprints from different finger. However, the 
evaluation is carried out by using only 4 out of 8 impressions from each finger, based on the 
considerations determined in [23, 24]. We have also implemented the distance and orientation 
comparison method for minutiae alignment purpose which does not require extra information other 
than the minutiae coordinate [24].  

For our fuzzy vault implementation, 20 genuine points are used as locking set and 200 chaff points 
are added into the vault. Fingerprint images where less than 20 minutiae are extracted will be regarded 
as failure to capture. We have employed Lagrange polynomial interpolation as our polynomial 
reconstruction method, where if at least (D + 1) minutiae can be matched between the locking and 
unlocking minutiae set, the polynomial can be reconstructed. The performance of fuzzy vault is 

(a) (b) (c) 

(d) (e) (f) 
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evaluated in terms of False Rejection Rate (FRR) and False Acceptance Rate (FAR). Another 
important parameter that has been taken into account while performing the fuzzy vault implementation 
evaluation is the degree of the encoding polynomial, which served as a major factor in affecting the 
error rates. 

 

 
The FRR evaluation is carried out where each fingerprint is matched against the remaining sample 

of the same finger during the attempts to unlock the vault and retrieve the key. While one impression is 
used as enrolment fingerprint, the remaining three impressions are used as enquiry fingerprints. For 
FAR evaluation, the first impression of each fingerprint identity is provided as the enrolment 
fingerprint whereas first impression of all remaining fingerprint identities are submitted as enquiry 
fingerprints for vault unlocking attempts. The evaluations are performed for encoding polynomial of 8 
to 13 degrees, each degree with their corresponding key length. We present our experiment results in 
terms of FRR and FAR as given in Table 6. 

Table 6 Experiment results of fuzzy vault authentication. 

FVC2002 DB1  

FAR (%) FRR (%) 

Degree 8 polynomial 0.42 6.25 

Degree 9 polynomial 0.15 10.83 

Degree 10 polynomial 0.09 12.87 

Degree 11 polynomial 0.06 14.95 

Degree 12 polynomial 0.02 18.82 

Degree 13 polynomial 0.01 25.96 

 

The results in Table 6 indicates the practicality of the algorithms in our minutiae extraction and 
filtering algorithm after the implemented pre-processing stages for fuzzy vault employment. The 
outcomes obtained shows that the FRR for the polynomial of degrees 8 to 11 provide better results 
than those presented in [24] after the pre-processing and post-processing stages for minutiae extraction. 

7    Conclusions 

Biometrics authentication method is extremely reliable due to its resistance to forgery of the unique 
characteristics. However, it is also important that such uniqueness can be extracted accurately and 
utilized efficiently. In fingerprint-based authentication system, one of the major requirements is the 
tolerance to fuzziness while maintaining the accuracy. In this paper, we have implemented the 
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proposed image pre-processing steps that are considered as important preliminary stages for accurate 
minutiae extraction. We have also applied the minutiae filtering as post-processing steps to eliminate 
spurious minutiae. The valid minutiae are then quantized as input for fuzzy vault locking and 
unlocking procedures. Finally, we have implemented the fingerprint fuzzy vault utilizing the extracted 
minutiae data. Based on the experimental results, we find that such combination of processes enable us 
to achieve promising results in terms of viability in fingerprint fuzzy vault implementation. 
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