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The cyclic entropy of a real virtual friendship network provides an insight on the degree of
its robustness. Cyclic entropy depends on counting the number of cycles of different sizes

in the network, in which a probability distribution function is resulted. Counting the
number of cycles in the network is an NP problem. In this work we used a polynomial

time approximation algorithm to count the number of cycles in an undirected graph

that is based on regression and on a statistical mechanics approach. We used this
approximation algorithm to analysis the dynamicity of a virtual social network, E-mail

Messages Exchange Network (EMEN) where nodes and edges appear and disappear

through time. We analyze the exact and approximated cyclic entropy variation with
time as a function of the number of nodes and edges in the network. We further compare

the cyclic entropy variation of the network to the traditional degree entropy variation.

The purpose is to establish the robustness of the network. In addition, we study the
effect of weighed links (number of interactions between users) on the analysis of such

graphs. An actual friendship network is found to have cyclic entropy bounded between

random and small-world networks models.
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1 Introduction

The communication field is one of the largest fields in engineering, and it is growing faster
than any other field [1]. Telephones, mobiles, LANs, E-mail [2], chatting [3], peer-to-peer
networks and even friends websites [4]. All these facilities and many others were created to
facilitate the communications between two or more users and appease the users’ sociality [5].
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244 Robustness of Dynamic Social Networks

Sociality is the most uniqueness of the human being. Humans usually strive to create relations
with others by sharing their thoughts, emotions, and even their actions. Sometimes, it is not
necessary even to be a direct interaction between actors to say that there is a social relation
between them. It is enough that one of them is acting under the assumption that the others
shared the same meanings that cause him to act.

Sociology is the branch of social sciences that considers investigating empirically the social
activities of the human being. Its concerns include both micro and macro levels of the human-
to-human interactions. In other words, it considers both the face-to-face human interaction
and the overall society behavior [6, 7]. After the technological advancement in the commu-
nication field and the creation of the Internet and mobiles, the ability to provide insight has
grown tremendously. Fortunately, the ability to study the human society and answer the
questions mentioned has grown. Thanks to the facilities mentioned above that usually store
information that is enough to be used for modeling these communications. By utilizing this
information, it becomes possible to answer this question in accuracy that makes it worthy
to be considered. This stored information acquired the researchers’ interests and attracted
them to use it in their researches. And that is what created a new term called “Social Net-
work,” a graph that represents each actor in the community as a vertex, and the relations
between actors as an edge. Social networks are how any community is modeled. The social
network model helps the study of the community behavior and thus leveraging social network
to researchers’ demands [8, 4, 9].

Numerous applications of social networks modeling are found in the literature. Some
researchers tried to use email inbox as a source to develop a social network and use it to fight
spam messages [10]. Others tried to use data stored in banks, phone records, vehicle sales,
surveillance reports and registration records to create a social network and to analyze this
network for the purpose of fighting criminal organizations [11]. Some other researches tried
to use social networks to represent web-communities to analyze the World Wide Web. Other
applications include data model, compression methods, indexing and query operators were
suggested in [8], [12], and [13] respectively to analyze social networks. With the increasing
population of the world, the importance of modeling social networks and analyzing their
robustness increases.

An essential characteristic of any network is its resilience to failures or attacks, or what
is known as the robustness of a network [8]. The definition of a robust network is rather
debatable. One interpretation of a robust network assumes that social links connecting people
together can experience dynamic changes, as is the case with many friendship networks such as
Facebook, Hi5, etc. Individuals can easily delete a friend or add a new one, with and without
constraints. Other networks, however, have rigid links that are not allowed to experience
changes with time such in strong family network. Entropy of a network is proven to be a
quantitative measure of its robustness. Therefore, the maximization of a network’s entropy
is equivalent to the optimization of its robustness. Albert et al. [8] describe the effect of
a network’s heterogeneity on its degree of tolerance against either random node failures or
intentional attacks. The three models of social networks are analyzed and compared: Scale-
free (SF), Random Networks (RN) and Small-World (SW). Scale-free networks, which include
social networks, were found to display a high degree of robustness against random failures but
great vulnerability against targeted attacks. Many researchers, who mostly used percolation



Maytham Safar, Hisham Farahat, and Khaled Mahdi 245

theory to study the resilience of different complex network topologies, further investigated the
study and analysis of resilience in complex networks. Methods based on Percolation Theory
focus on analyzing a threshold value, which represents the number of nodes that must be
removed from a network before it disconnects into smaller, separate networks. Conversely, [9]
studied the robustness of scale-free networks to random failures using entropy of the degree
distribution in the network, hence the level of its heterogeneity. An optimal design of a robust
network was achieved through the maximization of its entropy, following a nonlinear mixed
integer programming approach.

Entropy is a very important characteristic that has been used to determine the degree
of robustness in social networks [14, 15, 16, 17]. Entropy of a network is related to the
probability of finding the network in a given state. For a system of moving molecules, the
state is obviously the positions and the momentum of each molecule at a given instant. For
a system of magnets, the state is defined through the magnets directed north or south. The
entropy of a specific network shape was investigated before in [18], where the entropy of a
Lattice network was studied. While this Lattice was a theoritcal one, our work studies the
entropy of actual social networks .

Most of the previous mentioned studies characterize social networks using degree distribu-
tion, clustering coefficient, average length and average degree [19], or assume that the social
network is static. In our work, social networks evolve over time, driven by the exchanged data
between its members and the appearance/disappearance of the members from the network
and we analyze cycles instead of degrees. Recently in [3, 14] we proposed a model to compute
a statistical mechanical property, the cyclic entropy of the network as a measure of the degree
of network robustness. Such property was based on counting the number of cycles (circuits) of
certain length existing in the network. The problem of finding and counting circuits in large
graphs has been of interest to researchers lately due to its challenging complexity; has been
known to be an NP-Complete problem. Exhaustive enumeration, even by smart algorithms
proposed in earlier research, is restricted to small graphs as the number of circuits grows
exponentially with the size of the graph [3, 20]. Therefore, it is believed that it is unlikely to
find a precise and efficient algorithm for counting circuits. Finding a method of approxima-
tion to this problem is the alternative. In this work we illustrate a method of approximation
that has been suggested to estimate, in polynomial time, the number of circuits in a graph
as a function of their length. The algorithm is based on a work done by [21]. In this work,
we extend our previous study in [2] by analyzing the behavior of a social network created
by email exchange, however, we looked at a longer period of time and compared it to the
traditional degree distribution analysis. We study the behavior of the social networks when
taking into consideration the weights of links between the nodes. Those weights represent the
degreenumber of email messages exchanged between users in the social network.

2 Related Work and Background

With the increasing population of the world, the importance of modeling social networks in-
creases. Numerous applications of social networks modeling exists in the literature. In [22]
they tried to use data stored in banks, phone records, vehicle sales, surveillance reports and
registration records to create a social network and to analyze this network to fight criminal or-
ganizations. Some other researches tried to use social network to represent web-communities
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to analyze the World Wide Web. Other applications include data model, compression meth-
ods, indexing and query operators were suggested in [8, 12, 13] respectively to analyze social
network.

Work in [23] use graphs derived from e-mail to define the organizational structure of a
corporation. Another work in [24] detected telephone fraud by comparing the social behavior
of new telephone accounts to that of previously tagged fraudulent accounts. In [10] they
tried to use a mail inbox as a source to develop a social network and asses the network with
the objective of fighting spam messages. In [25] a study was conducted about the spread of
computer viruses via e-mail messages. The address books form a directed social network of
connections between individuals over which the virus spreads. They investigated the structure
of this network and discussed its implications for the prevention of computer virus epidemics.

The research in [26] addressed the problem of correctly relating aliases that belong to the
same entity. Their network was constructed from email data mined from the Internet. Links
in the network represent web pages on which two email addresses are collocated. The work in
[27] analyzed e-mail social network analysis for the detection of security policy violations on
computer systems. They assume that the properties of social networks are computationally
feasible to evaluate, and in fact can be determined in linear time. In addition, the authors
were not able to predict a universal social structure which can be exploited for finding all the
violations. The study in [28] analyzed a dynamic social network in which interactions between
individuals are inferred from time-stamped e-mail headers recorded over one year. They dis-
covered that the evolution of such a network is related to both the network topology and the
application area in which the network is embedded. However, they assumed that global per-
turbations of such networks are absence, and they used average network properties. Another
work in [29] automatically extracted social hierarchies from Enron corporations e-mail data
to analyze and catalog patterns of communications between entities to rank relationships. It
assumes that the organization is dynamic and its structure changes over time.

Network robustness is also a vital property that was considered in many literatures [19,
30, 17]. A dynamic system is said to be robust if it is resilient to attacks and random failures.
There are several types of threats that a robust network must be secured from. Random
vertex removal, an intentional attack to vertices, a network fragmentation and any other
event that causes a reduction in the network information-carrying ability can be considered
as a threat. In [31] they experimentally found that a scale-free network shows a good resilience
to random failures. The heterogeneity of the network degree distribution dictates the chance
of randomly attacking a crucial vertex. Depending on this remark, criteria to characterize
the complex networks robustness by measuring its heterogeneity were suggested in [17]. They
tried to use the principle of entropy to calculate how much the network degree distribution is
unbalanced and thus the network heterogeneity. However, this method is considering only the
random failures. It was proven also that unbalanced degree distribution causes in contrast
very low intentional attack survivability [31]. Removing the small partial of vertices that have
the most connections will cause total network destruction. In principle, entropy is roughly
related to the degree of disorder in the system and how much it is stable. The entropy is
not known to be strongly related to the heterogeneity. Calculating it statistically suggests
defining the microstates that define the system configuration. And this deludes that there
is a strong relation between the entropy and heterogeneity. This argument motivates us to
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suggest a new technique to evaluate social network robustness. It is true that the robustness
measurement can be done by calculating its entropy.

The study in [31] describe the effect of a network’s heterogeneity on its degree of toler-
ance against either random node failures or intentional attacks. The three models of social
networks are analyzed and compared: Scale-free (SF), Random Networks (RN) and Small-
World (SW). Scale-free networks, which include social networks, were found to display a high
degree of robustness against random failures but great vulnerability against targeted attacks.
The study and analysis of resilience in complex networks was further investigated by many
researchers, who mostly used percolation theory to study the resilience of different complex
network topologies. Methods based on Percolation Theory focus on analyzing the threshold
value pc, which represents the number of nodes that must be removed from a network be-
fore it disconnects into smaller, separate networks. Conversely, [17] studied the robustness
of scale-free networks to random failures using entropy of the degree distribution in the net-
work, hence the level of its heterogeneity. An optimal design of a robust network was achieved
through the maximization of its entropy, following a nonlinear mixed integer programming
approach. The authors in [14] propose a universal distribution function form based the degree
of loops or cycles existing in the network instead of the degree of links in the network. The
network configuration state was thus defined as the degree of cycles within the network rather
than the common definition of the network state as the degree of links associated with the
actors in the social network. This new distribution form was found applicable to all types of
social networks (scale-free, small world, and random networks). The same definition of the
system state was used in [15] on a fully connected social network for the purpose of finding
the maximum entropy value, hence identifying the equilibrium state of the social network,
the state of maximum entropy. In other words, finding the point where the system is most
stable.

3 E-mail Messages Exchange Networks (EMEN)

Email messages exchanging is one of the most common way of communication between peo-
ple. It is one of the easiest ways to exchange information between distant individuals in a
very fast way and with minimum setup cost. Most organizations consider the email as a
formal communication between the employees and other organizations. E-mail messages are
exchanged on a daily basis between individuals, corporate and educational departments. The
E-mail logs over a period of time of a user can generate predictable patterns in the social
network that can be quantified using graph theory.

The scope of the current work is to analysis a dynamic social network, that is a network
with no restrictions in changing the relations between the actors. In other words, nodes
and edges appear and disappear through time. An example of such a network is a popular
virtual social network in the Internet known as Email Messages Exchange Network (EMEN).
Based on social networks definition, EMEN is considered as a social network where its actors
are individuals and relations are email messages exchanged between them. The action of
exchanging emails between two individuals is considered as a relation between them.

In this paper, we detail the use of e-mail analysis for the detection of cycles and computing
the cyclic entropy of such a network. We construct the network from data obtained from E-
mail account of a user, where the nodes are considered as the users in the To:, From:, CC:,
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and BCC: fields of an email message. The links are weighted links that represent the number
of email messages exchanged between two different users. Then, we analyze the cyclic entropy
variation with time with the aim of studying the robustness of such a network. Techniques
similar to those discussed in this paper can be applied to spam filtering, computer virus spread
prediction, and e-mail manageability.

4 Entropy of Cycles (Loops)

Loops were one of the major concerns in social network field. In [32], they mentioned that
the loops (cycles) can be considered as the major aspect that can separate the graph to sub-
graphs or components. Other researches (e.g., [33] and [34]) proved that there is a strong
relation between the structural balance of a social network and the loops in the network. Our
previous works presented in [3, 14, 20] define the relation between network robustness and the
entropy. They defined the entropy as ”the degree of disorder in the system”. From statistical
mechanics, the entropy can be calculated from a given probability distribution P (k) of the
system in state k:

S = −
∑

k

P (k)lnP (k). (1)

We stated that a robust network (unconstrained and dynamic network) has low entropy, and a
static rigid network has large entropy. We proposed a new concept of computing the entropy,
the network cycles’ distribution is used instead of the well known degree based entropy. The
cyclic entropy characterizes the network more accurately than the degree entropy.

Based on the definition of entropy in Eq.(1), we need to evaluate from real data the
distribution function that characterizes EMEN social network. As stated earlier, entropy of a
network is related to the probability of finding the network in a given state. In social network,
there are several choices that define the state of the network; one is the number of social links
associated with a social actor, known as degree. This definition is commonly used by almost
all researchers. In [3, 20] we showed that the characterization of social networks through the
degree leads to different non-universal forms of distribution, and that there is no universality
class reported. Here we propose a universal distribution form that is applicable for all social
networks by using a different definition of the state of network. We define the state as the
degree of loops or cycles exiting the social network. Then we find the distribution function
of such loops. We analyze the probability of an actor receiving the same E-mail message
dispatched by him/her again?

5 Network Modeling

5.1 Social network graph representation

The analysis of a network system needs the network to be modeled mathematically as a
graph [35]. The graph theory has been used to analyze and compute the robustness of the
EMEN social network. Here we proposed three models that generate three undirected graphs.
The graphs are different in what the edge will represent. In the first model (Directional
Binary Email Exchange DBEE) , there will be an undirected edge between two individuals if
either one sends an email to the other. In the second model (Compulsory(Mandatory) Email
Exchange CEE), an undirected edge between two individuals means that both individuals
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have sent an email to the other. While in the third model (Weighted Email Exchange WEE),
the edge has another property which is the weight of the edge.

5.1.1 Directional Binary Email Exchange (DBEE)

Let G(V,E) be an undirected graph representation of the network, where V is the set of email
addresses (individuals) that have sent exist in the EMEN. And E is the set of edges, where
e represented as the tuple (u, v, c) which means that u and v have communicated by email
(either u sent an email to v or vice versa) , c times in a window of time. To illustrate how
the EMEN can be modeled as a graph, assume the situation stated in Table 1.

Table 1. Example of small data gathered from the log file.

ID From To CC BCC
Email1 1 2 5 -
Email2 1 2 3 4
Email3 2 3 - 5
Email4 4 5 - 3
Email5 5 2 - 1
Email6 2 1 - -

An example of DBEE model is shown in Figure 1, where the nodes represent the the email
accounts. The labels on the edges represent the number of email messages. An example of a
cycle is < 1, 5, 4, 3, 1 >, which has a length of 4.

Fig. 1. DBEE model Example.

5.1.2 Compulsory(Mandatory) Email Exchange (CEE)

Let G(V,E) be an undirected graph, where V is the same set as DBEE model. And E is the
set of edges, where e represented as the tuple (u, v, c) where there exist two(or more) email
messages, at least one from u to v and one from v to u, and

c =
⌊

Total number of emails between u and v

2

⌋
. (2)

An example of CEE model is shown in Figure 2 (un-weighted) , that is based on the
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example in Figure 1. The nodes represent the individuals. The only cycle is < 1, 2, 5, 1 >,
which has a length of 3.

Fig. 2. CEE model Example.

5.1.3 Weighted Email Exchange (WEE)

This model is a variation of the CEE model. It adds weights to the edges to construct
a weighted undirected graph. Let E is the set of edges, where e represented as the tuple
(u, v, c, w) where u , v and c have the same definition of the CEE model. And

w =
c

Maximum c of all edges
. (3)

In this model the cycle has two properties, length and weight. Based on the previous example
the cycle has a length 3 and a weight of 1

3 + 1
3 + 1

3 = 1, check Figure 3.

Fig. 3. WEE model Example.

6 Cycles Computation

To analyze our social network, we will only consider cycles as the main parameter that
characterizes our graphs. A simple cycle is a sequence of nodes (path) < v0, v1, .., vk > if
k > 3, v0 = vk and v1, v2, .., vk are distinct. Two cycles are distinct if one is not a cyclic
permutation of the other [36].



Maytham Safar, Hisham Farahat, and Khaled Mahdi 251

In [3, 20], we computed the cycles distribution using exact and approximate algorithms
that are based on the works in [36] and [21], respectively. In both algorithms, we assumed
that we have as an input a undirected graph G(V,E) where V is a set of vertices and E is
a set of ordered pairs called edges, which is represented as adjacency list AG. We assume
that those graphs have: 1) No self-loops, i.e. no edges of type (v, v), 2) No multi-edges , i.e.
no two edges has the same source and destination, 3) G is strongly connected graph, 4) The
vertices are numbered with IDs from 1 to n.

6.1 Exact cycles distribution algorithm

With this algorithm we are interested in finding the number of cycles for each possible cycle
length. We developed a java program to find all the simple cycles in a graph that is based
on an algorithm created by Johnson [36]. The algorithm is based on backtracking technique.
It starts with node s which is the vertex with the least ID, and begins to romanlist all cycles
that passes through s. This is done by building a simple path starting from s using a stack to
save the vertices. Whenever s is encountered again a cycle is created and printed. In Addition
to that any vertex is currently in a path (stored in the stack) is being blocked so it cannot
be added again to the stack. When a node is finished (the algorithm passes through all of its
edges), it is being popped from the stack and unblocked for future use. After enumerating
all the cycles with s as common node, the algorithm removes s from the graph G and starts
again the process with the second least vertex. These steps are done until G has two nodes.
Since our graph is undirected, the equation

Cun =
Cdσ − e

2
. (4)

is used to convert from directed cycles to undirected cycles. Where Cdσ is the total number
of cycles in the directed version of the original undirected graph (i.e. replace each undirected
edge with two directed edges in opposite directions). Cun is the total number of cycles in the
undirected graph and e is the total number of edges in the graph.

The pseudo code for this algorithm is shown in Algorithm 1. For extra details on the exact
algorithm, please refer to [3]. The complexity of Johnson’s algorithm is O((n + e)c) where n

is the number of nodes, e is the number of edges and c is the number if circuits in the graph.

6.2 Approximate cycles distribution algorithm

The proposed work depends on the cycle’s distribution of networks. To get the cycles distri-
bution, we need to find the number of cycles for each possible cycle length in the network.
We developed a java program in that is based on the backtracking algorithm [21]. However,
due to the complexity of such computation (NP-Hard) [37], we developed a new approxima-
tion algorithm for counting cycles in a network [20, 38]. The approximation is based on a
statistical mechanics [39] approach designed by [21]. It uses the Belief Propagation equations
[40, 41] and an approximation method to approximate the statistical mechanics model and
find the cycles distribution. Two methods can be used as approximation algorithms, Monte
Carlo simulation and Bethe approximation. Bethe is used here because of the well-known
correspondence between both Bethe and Belief Propagation.

The graphs in this algorithm are represented as adjacency matrices. The input to the
algorithm is an undirected graph, and the output is the cycle’s distribution of the graph



252 Robustness of Dynamic Social Networks

Alg. 1 CircuitFinding(G).

Input: G = (V,E) Graph
Integer List arrays Ak[n], B[n],

Boolean array blocked[n], Integer s
1begin
2 empty stack
3 s← 1
4 while (s < n) do
5 Ak ← adjacency structure of strong component K with least vertex in subgraph

of G induced by {s, s + 1, ..., n}
6 if (Ak 6= φ) then
7 s← least vertex in Vk

8 for (i ∈ Vk) do
9 blocked(i)← false
10 B(i)← φ
11 end
12 dummy ← CIRCUIT (s)
13 s← s + 1
14 else s← n
15 end
16end

Procedure CIRCUIT( Integer v)
1begin
2 f ← false
3 stack v
4 blocked[v]← true
5 for (w ∈ Ak[v]) do
6 if (w = s) then
7 output circuit composed of stack followed by s
8 f ← true
9 end
10 else if !blocked(w) then
11 if CIRCUIT(w) then f ← true
12 end
13 if f then UNBLOCK(v)
14 else for (w ∈ Ak[v]) do
15 if v /∈ B[w] then put v on B[w]
16 unstack v
17 return f
18end

Procedure UNBLOCK( Integer u)
1begin
2 blocked (u)← false
3 for (w ∈ B[u]) do
4 delete w from B[u]
5 if blocked(w) then UNBLOCK(w)
6 end
7end
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(number of cycles as a function of their size). The algorithm starts by reducing the graph.
All leaf nodes (nodes with degree 1 or 0) are removed from the graph. Each edge of the graph
is initialized with a random positive value y(0). Each edge is iterated from its initial value until
convergence reaching to a fixed value of y∗. Convergence is determined according to some
accuracy level. To guarantee the convergence of the algorithm, we restricted |yT+1 − yT | ≤
0.001 to be less than or equal to 0.001. The value y represents the probability that the edge
is present in a cycle c. The y value can be calculated using the following equation:

yT+1
i→j =

u
∑

m∈βi−j

yT
m→i

1 + 0.5u2
∑

m,n∈βi−j m6=n

yT
m→iy

T
n→i

(5)

where u is a positive real value. Then from all y’s two values are calculated; CL and

L =
∑

(i,j)∈E

u y∗i→j y∗j→i

1 + u y∗i→j y∗j→i

(6)

R =
1
N

∑
i∈V

ln

1 + 0.5u2
∑

m,n∈βi−j

m6=n

y∗m→i y∗n→i


− 1

N

∑
(i,j)∈E

ln
(
1 + u y∗i→j y∗j→i

)
− L ln(u)

N
(7)

CL = eRN (8)

where

• βi is the set of neighbors of node i.
• βi−j is the set of neighbors of i except a neighbor j.
• N is the number of nodes in the graph.
• CL is the number of cycles of size L.

Refer to [21] for further details on the above equations.
The procedure explained above is repeated starting from an initial value of u = u0 to

u = umax. Where u0 and umax are greater than 0. At each iteration step, a new distribution
point (L,CL) is produced. The iteration step for u is 0.0001 at the early stages of the
algorithm. This value is not fixed. It will be changed when Lnew − Lold < 0.001 (i.e. the
progress in L is slow). If this condition is satisfied, u will be increased by 10%. As noticed
from the equations above, the output at each step (L,CL) depends on u. At specific stages
of the iteration (when u gets large), many iterations are wasted giving nearly the same point.
To avoid this condition, a jump in u is made.

This algorithm yields a plot of (L, CL) points. To extract the needed distribution points
(3 to n), we use Gaussian formulation based on the work done in [42], the distribution relates
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the number of cycles to cycle length if network parameters (a,b,c) are known or found by
non-linear regression. The equation

y = a · e−( x−b
c )2 (9)

(where x is the cycle length L and y is cycles count CL) models the cycles distributions
of a graph. We used Equation 9 to fit the curve and find the function that represent the
distribution.

The pseudo code for this algorithm is shown in Algorithm 2. This algorithm has a running
time that is growing polynomially with the graph size and logarithmically with the required
accuracy. Since the algorithm uses the adjacency matrix to represent the graph, the space
complexity is O(2n2).

Alg. 2 ApproximateAlgo(G).

Input: G = (V,E) Undirected graph
Output: A[1..n] Array of size n which contains the cycle count of each length

1 begin
2 A[1]← A[2]← 0
3 Reduce G by removing all leaves nodes
4 U ← 0
5 Points← null set of points
6 while (L < n)
7 begin
8 y ←random number between 0 and 10 ( do for all edges)
9 while (|ynew − y| < 0.0001 for all edges)
10 begin
11 Calculate ynew using equation 5 for all edges twice
12 y ← ynew

13 end
14 L←equation 6
15 CL ← equation 8
16 Add (L,CL) to points
17 u← u + 0.0001
18 if ( |Lnew − Lold| < 0.001)
19 u← u ∗ 1.1
20 end
21 f(x) = doRegrssion(L,C)
22 for (i = 3→ n)
23 begin
24 Ci = f(i)
25 A[i]← Ci

26 end
27 end
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7 Experiments and Results

7.1 Data Extraction

To study and analyze the Email Messages Exchange social network, we have extracted a log
of email account messages during a period of 18 months since the date it started. The log
contains over 354 unique individuals and 2258 email messages. Figure 4 shows a snapshot of
the extracted network at some instant time. The extraction phase was programmed with two
languages:

(i) Visual Basic: To access the Outlook and extract the log.
(ii) Java: To analyze the log and give statistics.

7.2 Experiments

We conducted three sets experiments to characterize Email messages exchange social networks
using cycles. In the experiments we took bi-monthly snapshots of the network to study the
network evolution with time. In all the experiments, we aim to calculate the cyclic entropy
which requires counting the cycles. The approximate algorithm is used in the first experiment.
The exact computation is used in the second and third experiments since the graph sizes are
small. We further compare our cyclic entropy to a more traditional degree entropy that is
used by most works in the literature. We have used a regular Intel Core Duo based laptop
with 2GB of RAM.

Fig. 4. A snapshot of the used network.

7.2.1 Influence of unitary email exchange on entropy

In this set of experiments, we consider two individuals have a relation (edge between them)
if either one sent an email message to the other (i.e., used DBEE model). We first show how
the network evolves with time during the 18 months. Figures 5 and 6 show the number of the
nodes and edges in the network are increasing logarithmically with time. The algorithms that
are being used to compute the number of cycles in a graph have a very high time complexity,
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especially for graphs with large number of nodes, edges and hence cycles which is our case.
DBEE model network is very large to be computed in a finite time. Hence, for this experiment,
the approximate algorithm was used to compute the entropy of the network. Figures 7 and 8
draw the cyclic entropy and degree entropy evolution, respectively, of DBEE model network
during the 18 months; we can notice that the entropy of the network is also logarithmatically
increasing with time as the size of the network increases (especially the number of nodes
and not edges). The figures show that the cyclic entropy is precisely describing the network
behavior as the degree entropy. However, as we proved in our previous works, that the cyclic
entropy can further precisely describe the type of the underlying network.

Fig. 5. DBEE model Number of Nodes vs Time.

Fig. 6. DBEE model, Number of Edges vs Time.

7.2.2 Influence of binary email exchange on entropy

In this experiment we used the same log file and same snapshots used in first set of experiments
to study the network entropy change with time. However, for this experiment we consider
two individuals have a relation (edge between them) if both have sent an email message to
each other (i.e., used CEE model). Figures 9 and 10 show the linear increase in the number
of nodes and edges with time. Since the graph size is small, we applied the exact entropy
algorithm to compute the entropy of this network. Figures 11 and 12 illustrate the cyclic and
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Fig. 7. DBEE model, Cyclic Entropy vs Time.

Fig. 8. DBEE model, Degree Entropy vs Time.

degree entropy evolvement, respectively, of the network, that exhibits a linear increase with
time. It is also clear that this increase is more related to the number of nodes and not the
edges. In Table 2 we show a comparison of both DBEE and CEE models in terms of the
growth rate of the number of nodes, edges, and entropy with time.

7.2.3 Influence of weighted links on entropy

This experiment is conducted to compare CEE and WEE models, which is to compare un-
weighted and weighted graphs. Figure 13 shows the entropy evolution with time for both cases.
It is obvious from the graph that the weights of the edges have no effect on the evolution of
the entropy with time. This means that the increasing number of nodes and edges have an
effect on the entropy, however, the number of interactions between the same users has a lower
(if none) affect on the entropy. Only the connection between those two nodes has an effect
on the entropy, and not the frequency of their interactions.

8 Conclusion

Robustness of a social network implicitly assumes that the network is resilient to random fail-
ures and attacks. Counting cycles in social networks is an NP problem. Hence, in this work
we proposed a polynomial time approximate algorithm to count the number of cycles in an
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Fig. 9. CEE model, Number of Nodes vs Time.

Fig. 10. CEE model, Number of Edges vs Time.

Table 2. Rate of network growth in DBEE and CEE models.

DBEE Model CEE Model
Node 87/n 2.246
Links 699/n 6.356

Entropy 0.326/n 0.0657
Degree Entropy 0.644/n 0.045

Order O(1/n) O(t)

undirected graph that is based on regression. The approximate algorithm is based on a sta-
tistical mechanics approach that uses a Bethe approximation technique and iterations of the
Belief Propagation equations. The approximate algorithm is effective in approximating the
probability distribution of the cycles in a fraction of the time taken by the exact algorithm. It
also achieves order of magnitudes of improvement in running time. Cyclic entropy is used to
characterize the dynamic of EMEN using the probability distribution of the cycles computed
by the approximate algorithm. In addition, we compute degree entropy and compare it to
cyclic entropy. Three cases are examined in this work. The most significant results are of
the first two experiments. Both clearly show no equilibrium can be reached as time passes.
The Email Exchange network will never reach equilibrium, in other words, their entropy are
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Fig. 11. CEE model, Cyclic Entropy vs Time.

Fig. 12. CEE model, Degree Entropy vs Time.

monotonic functions with time. Looking at the influence of optional email exchange, we ob-
serve logarithmic trend of both cyclic and degree entropies with time , O(ln(t)). Whereas,
the influence of compulsory binary email exchange shows a linear trend with time, O(t). The
former case suggests that a slower rate of increase and a slower growth, that slows down as
the number of nodes and links increase. The later case has a constant rate of nodes and links
increase and entropy as well; such a network can be uncontrollable as time passes. The result
of compulsory binary exchange can be utilized to slow down the growth of email exchange
growth simply by forcing binary interactions. At time passes, there is an increase probabil-
ity that more people come and join the email exchange network, hence, the more entropy is
added to the system. If the new members are ignored or less contacted by other and more
binary exchange among the present members exists, the network’s growth should slow down.
These trivial observations are nicely presented with the use of cyclic entropy of the network.
Moreover, the third experiment has shown that having more interactions between two users
in a network does not have an effect on the entropy of the system. While, the number of
the users and the links between them (at least one interaction) that effect the entropy of the
network.
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Fig. 13. CEE model vs WEE model.

In the search for a design of most robust network, we propose the use of cycle distribution
instead of degree distribution for many reasons. Degree distribution is one dimensional hence
it suggests little information on the nature of the network. As for cycles distribution, it is
a two dimensional problem that provides more elaborate information about the network. In
previous work, the authors showed that cycle distribution provide solid and unique evidence
of the type of actual social network through the analysis of its cyclic entropy. In addition,
cycles distribution is found to have one universal mathematical representation where degree
distribution is mathematically specific depending on the type of social network. Such unifor-
mity of cycles distribution allows better characterization of social networks. The calculation
of entropy using the cyclic method will be compared in the future to other methods of cal-
culations. Furthermore, cyclic calculation of entropy is a novel concept that can be explored
in further details by considering several types of social networks. Considering the network
evolution models, nodal attributes models or exponential random graph models is a must due
to their generality and their ability of dynamic network representing. However, applying our
methodology in characterizing the network needs an efficient algorithm to count the cycles for
such dynamic models. As we have shown in this work, the most important part in the cyclic
entropy calculation is counting the cycles. In our future studies, we will study the impact of
the increased triads on the network cyclic entropy. We will investigate how to use the triads’
information to approximate the computation of the cyclic entropy of a network.
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