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Smart Homes (SH) have emerged as a realistically viable solution capable of providing
technology-driven assistive living for the elderly and disabled. Nevertheless, it still re-

mains a challenge to provide situation-aware cognitive assistance for those in need in

their Activity of Daily Living (ADL). This paper introduces a systematic approach to
providing situation-aware ADL assistances in a smart home environment. The approach

makes use of semantic technologies for sensor data modeling, fusion and management,
thus creating machine understandable and processable situational data. It exploits intel-

ligent agents for interpreting and reasoning semantic situational (meta)data to enhance

situation-aware decision support for cognitive assistance. We analyze the nature and is-
sues of SH-based healthcare for cognitively deficient inhabitants. We discuss the ways in

which semantic technologies enhance situation comprehension. We describe a cognitive

agent for realizing high-level cognitive capabilities such as prediction and explanation.
We outline the implementation of a prototype assistive system and illustrate the pro-

posed approach through simulated and real-time ADL assistance scenarios in the context

of situation aware assistive living.

Keywords: Ontologies, situation awareness, assistive agent, smart homes, cognitive as-

sistance
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1 Introduction

With the advance and prevalence of low-cost low-power sensors, computing devices and wire-

less communication networks, pervasive computing [1] has evolved from a vision to a realis-

tically achievable and deployable computing paradigm. Research is now being conducted in

all related areas, ranging from low-level data collection, intermediate-level information pro-

cessing, to high-level applications and service delivery. It is becoming increasingly evident

that the prevalence of intelligent environments to work and live within which flexible multi-

modal interactions, proactive service provisioning, and situation aware personalized activity

assistance, will be commonplace.

As the ever growing ageing population increasingly over-stretches limited healthcare re-

sources, the provision of healthcare is undergoing a fundamental shift towards the exploitation

of pervasive computing technologies to support independent living. SH has emerged as one of

the mainstream approaches to providing ADL assistances for the elderly, in particular those

suffering from cognitive deficiencies such as Alzheimer’s disease [2, 3]. A SH is an augmented
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environment equipped with sensors, actuators, devices and information processing compo-

nents, inhabited by the elderly or disabled. The rationale is that assistive systems, e.g., an

assistive agent, can monitor environmental events and user’s behavior through sensors, pro-

cess and respond timely through actuators or health services, e.g., audio/video outputs or

care professionals, to advise the inhabitant the most suitable actions based on the dynamic

situation and the inhabitant’s ADL profiles.

Existing research has currently concentrated on sensor networks, data collection and com-

munication, and low-level ad hoc responsive assistances based on the simple processing of

low-level raw sensor data. For example, if a room temperature is lower than a specific value,

the air conditioner will start. Even though existing SH technologies are able to generate mas-

sive amounts of data from sensors and mobile devices around the people and entities, it still

remains a challenge to provide just-in-time behavioral and cognitive assistance for cognitively

deficient inhabitants such as dementia patients who often get lost during their ADL due to

bad memory and/or cognitive problems. For instance, to remind a dementia patient to add

milk to a cup after a tea bag and hot water have been added. To achieve this, assistive

systems have to be able to observe, interpret and reason the dynamic situations in a SH, both

temporally and spatially. In other words, assistive systems should have cognitive capabilities

to compensate the loss of the inhabitants’ cognition capabilities and to guide the inhabitant’s

behaviour as normal care providers can do. This further requires that the situational data of

a smart home be interpretable and processable by assistive systems.

We contend that semantic technologies hold the key to enhanced situation awareness and

the potential of SHs can only be fully realized when sensor data are imbued with rich metadata

and well-defined meaning. In this paper we propose a semantic-enabled agent-based approach

to situation-aware cognitive ADL assistance in a SH. The approach uses semantic technologies

for sensor data modeling, fusion and management that generate machine understandable and

processable situational data. Semantic data facilitate not only data interoperability, sharing

and integration but also high-level automation and advanced processing capabilities. This

allows assistive systems (such as software agents) to carry out automated interpretation and

reasoning by exploiting semantic situational (meta)data, thus realizing situation-aware ADL

assistances.

The paper is organised as follows: Section 2 discusses related work. Section 3 introduces

situation awareness and a system architecture for the proposed approach. Section 4 describes

semantic data management for enhanced situation awareness. Section 5 presents a cognitive

assistive agent for situation interpretation and reasoning. Section 6 outlines a prototype

assistive system and illustrates our approach in a real world use scenario. We conclude the

paper and point out future work in Section 7.

2 Related Work

Making computer systems adaptable to the changes of their operating environments has been

previously researched in the context of agent technologies [4]. An intelligent agent is a software

system operating in an environment. It senses the changes of the environment, makes a plan

in terms of its goal and domain knowledge and takes actions accordingly. An intelligent agent

can respond to changes of the environment it inhabits in a number of ways, notably reactive,

proactive and adaptive.
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Recently technology advances in pervasive computing and ambient intelligence have pro-

voked considerable interest in context-aware applications [5, 6, 7, 8, 9]. Context awareness in

pervasive computing refers to a general class of software systems that can sense their physical

environments, i.e., their context of use, and adapt their behavior accordingly. Here contex-

tual information mainly consists of location, time, the entities the system interacts with and

the surrounding events and resources. However, context awareness and situation awareness

have different research focuses. The former is mainly concerned with linking changes in the

environments with software systems. The latter rather concentrates on the knowledge and

understanding of the environment that is critical to decision making. Situation awareness

pays particular attention on the mental model and cognitive processes from the system’s

perspective.

Some recent and ongoing work on context aware assistive technologies has adopted an

ontology based approach [10, 11, 12, 13]. Nevertheless, ontologies are primarily treated as data

models for data/service integration, exchange and sharing in these practices. In contrast, our

work uses ontologies as conceptual level knowledge models to support automated situational

data interpretation and reasoning.

The use of semantic technologies for situation awareness has been studied in military op-

erational context [14, 15, 16]. While our research shares consensus with these endeavours in

using ontologies as the situational data models, the fundamental difference is on how such

semantic situational data are used. They have concentrated on semantically enabled data

fusion and retrieval. Our work focuses on the innovative exploitation of semantic situational

data for the provision of high level cognitive capabilities with the purpose of delivering cog-

nitive assistance for SH patients. As such we have introduced an agent based approach to

automated situational data comprehension and reasoning. The synergy of semantically en-

hanced situation awareness with intelligent agents for cognitive ADL assistance has not been

seen so far in related research communities.

3 A Systematic Approach

A situation is often conceptualized as a snapshot of states at a specific time point in a physical

or conceptual environment. Situation awareness has been referred to as ”the perception

of elements in the environment within a volume of time and space, the comprehension of

their meaning, and the projection of their status in the near future” [17, 18]. From this

definition we can figure out that situation awareness is a cognitive process that consists

of three operational functions. Firstly, it involves the sensing and recognition of different

elements in the environment as well as their characteristics and behaviors. Secondly, it needs

the interpretation and comprehension of the significance associated with perceived elements

in the environment. And thirdly it requires the ability to anticipate the actions of elements

and predict future states of the environment. For entities, either human beings or robots

or software systems operating in complex, dynamic and uncertain environments, situation

awareness is the determinant of making informed right decisions at the right time in the right

place.

Human beings with normal cognitive capabilities are situation aware when they make

decisions in performing their activities. Nevertheless, SH inhabitants, in particular those

suffering from cognitive deficiencies such as Alzheimer’s disease, are incapable of doing this.
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As such a basic requirement of assistive systems is that they should be situation aware.

Current SH infrastructure has provided sensor networks for perception, but the interpretation

and understanding of perceived data and the realization of high-level cognitive capabilities

such as prediction, explanation and planning are still missing.

We propose a semantic enabled systematic approach to enhanced situation awareness for

assistive systems, as shown in Figure 1. The approach is grounded on three technological

pillars, corresponding to the realization of the three operational functions for situation aware-

ness respectively. The first technological underpinning is based on sensor, device and actuator

networks that are responsible for monitoring and collecting contextual data. They are mainly

embedded in a SH physical environment - as shown in the Smart Home component in Figure

1. The second pillar is semantic modeling, representation and management for a SH as shown

in the Semantic Management component, which includes sensor data, situations, ADLs and

an inhabitant’s ADL profiles. The use of ontologies for data modeling and representation

serves two purposes: Firstly it provides a formal way to model and represent interrelations

between contextual data from multiple sources, thus facilitating data fusion and construction

of situations. Secondly, it gives data rich metadata and well-defined meaning, thus enabling

automated comprehension of the significance of contextual data. The third technological pillar

is intelligent Assistive Agent that provides high level cognitive capabilities such as prediction,

explanation and planning based on reasoning and manipulation of semantic situational data

and knowledge. Given the considerable existing work on the physical aspects of SH such

as sensors and underlying communication networks, we focus on semantic data management

for enhanced situation awareness and assistive agent for the realization of cognitive activity

assistance, which are described in details below.

Fig. 1. The proposed system architecture

4 A Systematic Approach

Suppose that an actor performs activities and there is a sequence of state changes along the

timeline as shown in Figure 2. In terms of the conceptualization of situation in the previous
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section, a situation at a specific time point τ can be described as the accumulation of states

occurred before that particular time. This can be denoted as follows.

Fig. 2. The graphical representation of state traces

SITUτ ≡ S0 ∪ S1 ∪ ....... ∪ Sm−1 ∪ Sm

Here Sn denotes a state at the time point tn, SITUτ the situation at time τ . In this way,

the interpretation of a situation is essentially the joint interpretation of individual states. As

each state is detected by a sensor, a state change is equivalent to a sensor’s activation. If

sensors can be semantically described, i.e., to give each sensor reading explicit meaning, it

will be straightforward to generate situations with explicit semantics that can be interpreted

by both humans and software agents

We contend ontological SH modeling lends itself naturally for semantic situation formation.

The main reasons are three folds. Firstly, ontologies can provide rich descriptions for sensors,

environments and activities. These attributes can disclose the inherent implicit knowledge,

useful for situation construction and interpretation. For example, suppose a sensor is attached

to a milk bottle within a freezer in the kitchen. When the sensor activation is detected, it

is easy to infer that an actor is in the kitchen opening the freezer and take the milk bot-

tle. In addition, semantic descriptions are understandable and processable for both humans

and machines, thus supporting automated situation comprehension and inference. Secondly,

ontologies can capture and model rich interrelationships between sensors, situations and ac-

tivities. The interlinking facilitates semantically enabled data integration and fusion because

situation awareness of complex dynamic environments like SHs often require to fuse infor-

mation from multiple, disparate information sources for the recognition of a situation [19].

Thirdly, the embedded knowledge such as activity patterns, heuristics and causal relations in

ontologies allow assistive systems to reason over perceived situational data with respect to

the prediction of future states of SHs or next action of the inhabitant. Figure 3 depicts the

core elements and technologies on semantic SH modelling, content creation and manipulation

in the Semantic Management component in Figure 1. Details are described below.

4.1 Smart Home Analysis

A SH is a complex ecosystem typically consisting of a physical environment with various

furniture, household appliance, rooms, inhabitants that perform various ADLs within the

environment, and sensors and devices (actuators) to sense and act on environmental changes

and inhabitant behaviors. At any specific time it will generate data/information about the

environment such as temperature, humidity, the status of doors, windows and lights, about

the behaviors of inhabitants such as sleeping, cooking or watching TV and about events
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Fig. 3. The core components for semantic situation modelling

within the smart home such as alarm-fired, cooker-turn-on or tap-turn-on. Such information

once monitored and collected can be aggregated to denote a situation against which an as-

sistive system should be able to carry out interpretation and reasoning to make just-in-time

assistances for the inhabitant. As such, the central issue is how to fuse data from multiple

data sources to form a meaningful situation and further interpret them at higher level of

automation, i.e., by software agents.

The nature of SH presents a number of challenges to situation formation and compre-

hension. Firstly, most sensor data are primitive numerical data such as 3-D coordinates for

motion detectors, 2-state values for contact sensors. They lack formal descriptions and can

only be consumed by humans through hard-coded operation logics in ad hoc data processing

components. For example, for a contact sensor attached to a tap, the two state values, either

on and off or 0 and 1, may denote different actions. A human user may be able to interpret

that the state on/1 corresponds to the tap turn-on action, and the state off/0 the tap turn-off

action. But the primitive signals or data will tell anything about this. Metadata is needed.

Otherwise it is difficult, if not impossible, for machines or soft-agents to interpret and rea-

son their high-level situational meaning. Secondly, sensor data are increasing available in a

variety of diverse forms, such as unstructured textual data, audio and surveillance videos.

They are heterogeneous in data formats and representation, and conceptually isolated from

each other. For example, a location sensor (or a video monitor) can detect an inhabitant in

front of cooker. An event sensor detects the turn-on of a cooker and a contact sensor detects

the move of a spaghetti pack. While each sensory data reflect one facet of the situation, it

requires the interlinking and fusion of data from multiple, disparate information sources in

order to comprehend and understand such a complex situation.

In addition to situation construction and interpretation, the third challenge is how to

model and represent normal ADL routines and inhabitants’ profiles. Formal modeling and

representation of ADLs and user profiles in essence provide a recognition context for an

assistive system to interpret perceived situational data for the provision of personalized as-

sistance. Traditionally activities are modeled as processes using probabilistic or statistical

analysis methods, such as Markov Models and Bayes Networks. To construct a specific ac-
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tivity model for a specific individual, a large dataset obtained from monitoring the particular

use’s activities is required in order to train and test the model. This is usually done using

machine learning techniques. However, this approach suffers from the problems of reusability

and scalability, i.e., one model for one user is not applicable to another one; and every activity

needs to be learned. Not mentioning the lengthy computation and accuracy issues, in most

cases data are simply not available.

4.2 Context Modeling

SH inhabitants perform ADLs in a diversity of temporal, spatial, environmental and event

contexts within a SH. Spatial contexts consist of location information and surrounding en-

tities such as rooms, windows, household furniture and appliance. Events contexts contain

background activities and dynamic state changes of appliance and devices. Example events in-

clude the previous or ongoing activities of an inhabitant, the state changes of doors, windows,

lights, alarms, a cooker and taps. Environmental contexts are composed of environmental in-

formation such as temperature, humidity and general weather conditions. Temporal contexts

indicate the time and/or duration. Apparently there are close couplings between ADLs and

contexts. For example, a cooking ADL happens in the kitchen with a cooker turned on. A

grooming ADL takes place in washing room in the morning. Lights turn on in the evening

and windows (or air-conditioners) open when temperature is high.

We build seven ontologies for a SH. These include an ontology for the physical equipment

such as sensors, actuators, medical devices and home electronic or electrical appliances; an

ontology for actions and ADLs such as watching television and making drinks; an ontology for

living spaces and environments such as the kitchen, sitting rooms; an ontology for actors such

as inhabitants, care-providers; an ontology for medical information; an ontology for software

components such as services and applications and an ontology for time in order to model

temporal information. Each ontology is used to explicitly conceptualise a specific aspect and

overall they provide a semantic data model for the construction of SH situations. Figure

4 shows some classes and properties of SH ontologies which have been developed using the

Protege [20] It is worth noting that existing well-defined ontologies could be imported and

reused directly, for example the time ontology [21].

4.3 Situational Data Creation

Ontologies are knowledge models that can be used to create semantic data. There are two

major approaches for this purpose. One is to use generic ontology editing tools such as the

Protege OWL Plugin [20]. These tools can perform several activities in one go, such as knowl-

edge acquisition, ontology editing, knowledge population as well as knowledge base creation.

They are feature rich but require professional knowledge engineering expertise. So this method

is suitable for knowledge engineers. Another approach is to develop domain specific dedicated

lightweight annotation tools for domain experts or resource (data) providers to carry out

semantic annotation and create knowledge repositories. Such tools are often designed to pro-

vide intelligent semi(automatic) support for knowledge acquisition and modelling, including

automated information extraction, classification and completion, to help create instances.

Given the nature of data in SH we develop a two phase semi-automatic approach to

semantic descriptions. In the first phase data sources such as sensors and devices are manually

semantically described. As the number of data sources in a SH is relatively limited, though
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Fig. 4. A fragment of the SH ontology

large, it is manageable to create all semantic instances manually by generic ontology editors

such as the Protg OWL Plugin. In the second phase dynamically collected sensory data

are first converted to textual descriptors. For example, a contact sensor returns a two-state

binary value. It can be pre-processed to literals sensible for denoting two states such as on/off

or open/close or used/unused, etc. The concrete interpretation of the state depends on the

purpose of the object to which the sensor is attached. For example, the two states of a contact

sensor in a microwave could be open/close. If the contact sensor is attached to a milk bottle,

the literal might be used or unused. The conversion of numerical values to descriptive terms is

to facilitate interpretation and comprehension for both humans and machines. Pre-processed

data can then be automatically attached to semantic instances of the corresponding data

source to create a data repository.

4.4 Situational Data Storage

Once semantic data are generated, they can be archived in semantic repositories for situation

construction and interpretation. Semantic repositories are essentially knowledge bases con-

sisting of millions of RDF triples. They are built on top of traditional database management

systems by adding a semantic processing layer for semantic manipulation. Semantic reposi-

tories have been extensively studied and open source systems are available for use [22, 23].

Based on the nature of SH data we design a centralised repository with two interlinked

components, as shown in Figure 5. The first component contains semantic descriptions re-

lating to the various devices, inhabitants, individual SH and the services offered within an

institution. These entities and their semantic descriptions are relatively stable for a care in-

stitution, i.e. static data. This component can functionally serve as a registry so that new

SH once built within the institution, devices once added to any individual SH, inhabitants
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once they take residence in a SH and new services once developed can all be registered for

later discovery and reuse. The second component is dedicated to the storage of dynamically

generated sensory data and derived high level ADL data, which are time dependent, varying

and extensive, i.e. dynamic data. Static data only need to be described and recorded once

while dynamic data have the requirement to be recorded whenever they are generated. The

separation of their storage saves storage space and also increases recording efficiency. Another

advantage with this design is its ability to supports dynamic, automatic discovery of devices,

device data, services and inhabitants, thus facilitating reuse of data and services. Further

details of these concepts will be presented in the following Section.

Fig. 5. The semantic data repository

5 A Situation Aware Assistive Agent

As semantic data are machine understandable and processable, the assistive system is able

to use an intelligent agent to automatically interpret situational data for activity recognition.

The Assistive Agent, as shown in Figure 1, is responsible for the interpretation of the signifi-

cance of perceived data and the provision of decision support for just-in-time ADL assistance.

It performs reasoning against domain knowledge and subsequently advises corresponding ac-

tions to inhabitants. In the context of situation-aware assistive living, domain knowledge such

as context, ADL and user profiles is formalized as Description Logic (DL) [24] based formulae

in the form of subject-predicate-object triples, e.g. the event ”FireAlarm” leads to ”leadTo”

the action ”Call999”. They can be described in ontological relationships and represented in

RDF or OWL. The perception of an event and/or the detection of sensor signals are equiv-

alent to the identification of a concrete instance of a class. For example, the activation of a

contact sensor in a cup means that the cup, as an instance of Container, is used in an ADL.

Suppose the Container class is the range of the hasContainer property, it can be inferred that

the hasContainer property is assigned the value cup. If the hasContainer property is used to

describe the MakeDrink class, it can be further inferred that a MakeDrink ADL has taken

place. In this way the sensing of an agent amounts to the retrieval of the situational data

periodically from the semantic repositories.

Central to situation-aware ADL assistance is the comprehension and reasoning capabilities

of the Assistive Agent. In terms of the nature of a SH’s situations the Assistive Agent can

be internally designed in a two layer framework - refer to Figure 1. The Reactive Layer is
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used to deal with emergency situations such as an alarm fires or a pre-defined action takes

place such as taking medicine at a specific time. Such situations usually involve fewer sensor

data but require quick responses. The Deliberative Layer is responsible for the recognition of

complex non-emergency situations that involve multiple sensor inputs. For example, sensors

attached to a milk bottle, a kettle and a cup have been activated within a short time interval,

how to decide the situation and further to assist the inhabitant with the completion of the

ADL being performed.

An Assistive Agent comprehends perceived situational data by interpreting the data

against their ontological context, i.e. ontologies. For instance, a smoke sensor in a lounge

can be semantically described using two property-value pairs - [hasConsequence, fire] and

[hasLocation, lounge]. Whenever the sensor is activated, an agent can interpret the occur-

rence against the above semantic context in the ontologies and recognize the situation ”a

fire breaks in the lounge”. With recognized situation the future states of a SH can then be

predicted and ADL assistance is subsequently provided through reasoning and inference. For

example, a fire event can be semantically described with three property-value pairs - [takeAc-

tion, toEvacuate], [takeAction, callFireEngine] and [hasEffect, homeEvacuated]. Whenever

a fire event is detected, the agent can reason against the above knowledge to advise the in-

habitant to evacuate the home and call fire engines. It can further deduce that the home is

empty. Reasoning at the Reactive Layer can be directly realized via built-in entailment rules

in DL based ontologies.

A single sensor input can sometimes decide a specific situation, in particular for those

emergency situations as discussed above. Nevertheless, most situations may involve per-

ception inputs from multiple sources. In this case, a situation requires joint formation and

interpretation of multiple perceived sensor data. For example, if sensors attached to a milk

bottle, a teabag and a cup have all be activated within a short period, by linking what have

happened it is reasonable to assume a situation that involves cup, sugar, milk and tea. It is

straightforward for humans to figure out that this is a situation in which ”MakingTea” ADL

takes place. However, for software agents to recognize the situation as humans do, it requires

an explicit representation of these situations and reasoning mechanisms. The reasoning mech-

anism will combine all sensor inputs to derive the corresponding situation by interpreting the

aggregated perceived data against the abstract knowledge representation.

As an ADL can be viewed as a sequence of situations along the temporal dimension, we

can model situations through semantic ADL modeling, i.e., to build an ADL ontology as

discussed in Section 4.1. The ADL ontology consists of an ADL hierarchy in which each

node, also called as a class, denotes a type of ADL as shown in Figure 6. Each ADL class

is described with a number of properties and sub-classes can inherit all properties from its

parent class. A property is defined by specifying its domain and range. The domain refers

to all classes that can be described by the property and the range refers to all classes whose

instances can be assigned to the property. A property describes a class using either a literal

or an instance of another class as its value, thus linking two classes. This essentially gives rise

to a description based activity/situation model, i.e. an ADL/situation is described by various

properties. The underlying idea is that if a number of properties can be identified and linked,

then the corresponding situation and ADL can be inferred.

The agent monitors and collects perceived sensor inputs by periodically retrieving semantic
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situational data from semantic repositories. These situational data have already been enriched

with ontological relationships, thus ready for reasoning. The agent performs reasoning at the

Deliberative Layer to derive the situation and its corresponding ADL. The process is as

follows: Sensor inputs are used to identify concrete items that have been involved in ADLs.

These items should have already been specified as instances of classes in SH ontologies. In

terms of the scope of a property’s range, the property that takes the identified item as its

value can be inferred. In terms of the scope of a property’s domain the ADL(s) that can be

described by the inferred properties can then be recognized. As properties can be inherited

from super-classes (higher level abstract ADLs) to sub-classes (lower level specific ADLs), the

lower a class is in the ADL class tree the more properties it has. This means that the more

sensor data that are available, the more accurately ADLs can be recognized. Conceptually

the process amounts to the gathering of multiple sensor data at a specific time to form a

situation. The situation is interpreted to identify the corresponding ADL and further identify

these items in order to complete the ongoing ADL.

Fig. 6. A fragment of kitchen ADL hierarchy

The reasoning capabilities of the cognitive assistive agent are based on the theoretical

foundation of Description Logic. Briefly, suppose that in abstract notation we use the letters

A for atomic concepts, the letter R for atomic roles, the letter T for TBox, and the letters

C and D for concept descriptions. Concept descriptions in OWL can be formed using the

syntax rules, constructors and axioms in Figure 7.

DL supports a number of reasoning tasks [25]. If we view a situation as a description for

a unknown activity, then the interpretation of the situation is equivalent to the subsumption

reasoning, i.e., to decide if a concept description C is subsumed by a concept description

D, denoted as C ⊃ D. The commonly used tableau algorithms [26] use negation to reduce

subsumption to unsatisfiability of concept descriptions, which can be described below.

• Reduce subsumption to check unsatisfiability of concept description, i.e., C ⊆ D 7→ C ∩ ¬D

• Check whether an instance b of this resulting concept description can be constructed

• Build a tree-like model for the concept description
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Fig. 7. OWL Syntax Rules, Constructs and Axioms

• Transform the concept description in Negation Normal Form

• Decompose the description using tableau transformation rules

• Stop when a clash occurs or no more rules are applicable

• If each branch in the tableau contains a clash, the concept is inconsistent

6 Implementation and Evaluation

We use the Kitchen ADL class hierarchy in Figure 6 to delineate how our approach works.

As can be seen, KitchenADL is the top class of kitchen ADL with two properties - inLocation

and HasActor. It has two subclasses, MakeDrink and MakeMeal. Apart from inherited

properties, MakeDrink has a property of the class Container that could be a cup, a mug or a

bowl. Similarly MakeDrink has two subclasses, MakeHotDrink and MakeColdDrink and each

with some more properties. For example, MakeHotDrink ADL has two properties of the class

HotDrinkType and Addings respectively. The HotDrinkType can assume one of tea, coffee or

chocolate and the Addings can assume sugar and milk. Situation recognition that is denoted

as corresponding ADLs is performed as follows:

Suppose that the contact sensor in a cup is activated. This means that the cup, as

an instance of Container, is used in an ADL. As the Container class is the range of the

hasContainer property, it can be inferred that the hasContainer property is assigned the

value cup. Since the hasContainer property is used to describe the MakeDrink class, it can

be further inferred that a MakeDrink ADL has taken place. Nevetheless, it is not possible

to ascertain whether the ADL is MakeHotDrink or MakeColdDrink as both ADLs have the

hasContainer property. This is exactly one of the advantages of the description based ADL

recognition because based on limited sensor information the system can still identify uncertain

high level ADLs. In the given example, though we can not tell the concrete ADL, i.e. the

MakeHotDrink or the MakeColdDrink, we can at least know that the inhabitant is performing

a MakeDrink ADL. Suppose we obtain another sensor data from a coffee container, then we



L. Chen and C. Nugent 275

can determine that the inhabitant is making coffee but we still do not know if it is a white

coffee or a black coffee. Hence the sensor data from a milk or sugar container can further

help to recognize the details of the performed ADL. From what we have described above, it is

apparent that the proposed approach can monitor the unfolding of an ADL and dynamically

build situations based on the underlying semantic data models. This will enable the assistive

agent to incrementally recognize the ultimate ADL, which may be considered as not previously

possible. The reasoning can be performed automatically using a DL-based reasoner such as

the Fact reasoner [25].

We have implemented the proposed approach to situation-aware ADL assistive living in a

feature-rich prototype assistive system. Figure 8 shows the front-end interface of the system.

The system is developed with C# language as the scripting language while the front-end is

developed using ASP.NET with Ajax and Silverlight support for better user experience. We

use the SemWeb semantic library for C# [27] to read and write RDF, manage RDF in per-

sistent storage, query persistent storage via simple graph matching and SPARQL, and make

SPARQL queries to remote endpoints. SemWeb provides built-in general-purpose inference,

but we use an implementation of the Euler proof mechanism for reasoning [28]. Euler is an

inference engine supporting logic based proofs. It is a backward-chaining reasoner enhanced

with Euler path detection.

Fig. 8. The front-end interface of the Assistive system

The system works as follows: A user first logs into the system and uploads the SH on-

tologies from the BASE ONTOLOGY panel. By registration and logon the user establishes

his/her identity. As such the user’s ADL preferences can be browsed in the USER PREF-

ERENCES panel as can be seen in Figure 7. Once SH ontologies are loaded, the system

can display sensors that are semantically described. At this stage the system can operate in

two modes - simulated and real-time ADL monitoring. In the simulated scenario, the system

does not need to be connected to sensors. Sensor activation is simulated by the selection of
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a sensor, e.g. KichenDoor, in the SENSOR SOCIETY panel and the set-on of the sensor in

the SENSOR STATE panel, see Figure 8. This is equivalent to the activation of real sensors.

Once a sensor activation is observed, either simulated or triggered in real time, it will be

used to form a situation to reason against the semantic ADL descriptions. The LEARNING

OUTPUT panel displays the inference process of the assistive agent as sensors are activated

and events perceived. The RECOGNISED ACTIVITIES panel displays the recognized ADL

and its location in an ADL tree structure. Both are shown in Figure 9.

Fig. 9. Simulated situation construction and ADL recognition

Figure 10 illustrates the dynamic situation formation and incremental ADL recognition

process. When a KitchenDoor sensor is activated, only high-level ADL such as MakeMeal

and MakeDrink can be inferred. When ChinaCup and ChineseTea sensors are activated

later, situations with more contextual details can be dynamically formed. By reasoning these

situations an assistive agent can recognise the ongoing ADL progressively in increasing details,

e.g., MakeDrink initially and then MakeTea as depicted in Figure 10. Suppose that a user

Fig. 10. The incremental situation formation and ADL recognition process
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has a pre-defined, semantically described preferred ADL UserAMakeTea. By comparing the

user’s MakeTea profile with the perceived situation, an assistive agent can infer what shall be

done next in order to complete the ongoing ADL, thus providing situation-aware personalized

ADL assistance for the particular user. For example, if abashrawi-preferred-tea ADL contains

sugar, the agent may remind the user to add sugar if it does not detect the activation of the

sugar container for a pre-defined period of time.

On the other hand, if a user activity has been recognized repeatedly over a relatively

long period of time, and there is no corresponding matching ADL profile, the activity can be

recorded as a user’s preferred ADL profile. This is the learning process. We shall not discuss

it here in details due to space limits.

In addition to evaluate the approach and system in the simulated scenario, we have de-

signed an experiment in our smart home environment for evaluation of the proposed approach

and the implemented system in a real world use case. We attach contact sensors to teabag,

sugar, kettle, milk and cup containers. Then we connect the prototype ADL assistive system

to the sensors via the Tynetec wireless receiver. The experiment runs as a user performs

making tea activity following the scenario discussed above, i.e., first coming to the kitchen,

then taking a cup, etc. Each time the user takes an action/item, the sensor activation is

perceived and passed to the assistive system. The system operates and produces results the

same as we discussed in the simulated scenario.

We have designed a number of activity scenarios for testing and evaluation purpose. These

include different activities, e.g., making tea and preparing pasta, and interweaved activities

such as a phone call or fire alarm occurs during making tea. We also test features that are not

covered here, e.g., learning user activity profiles, using different assistance prompts. Initial

results are very positive. The system worked well with the diversity of scenarios and is able

to recognize corresponding activities. This proves the approach and system are applicable in

real world application scenarios.

Semantically enhanced situation-aware ADL assistance has a number of compelling advan-

tages: Firstly, the scalability of situation modeling has been a bottleneck to effective situation

aware applications. It is often the case that proof-of-concept experiments, either state-based

or process-based approaches, work well but fail to scale up. The use of ontological ADL

modeling as a way of situation modeling overcomes this problem. Ontology engineering offers

extensive technological support, including tools, APIs, storage and reasoners. Ontologies of

thousands of classes have been developed in other domains, e.g. 7,000 concepts in the gene

ontology, and semantic data repository of 25 million triples has been practiced in TripleStore

[23]. For smart homes, ADL classes and associated instances are simply not present in such

a scale. Secondly, semantic ADL models contain explicit rich semantics and built-in logical

entailment rules. This allows not only humans but also assistive software agents to interpret,

comprehend and reason against semantic situational data. As such, situation monitoring and

ADL recognition can be realized at higher levels of automation. Thirdly, description based

reasoning provides a mechanism to dynamically construct situations by interpreting limited or

incomplete sensor data that ultimately leads to the incremental recognition of the correspond-

ing ADL. This capability is particularly important because assistive systems are supposed to

provide reminding or suggestive assistances with limited sensory data.
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7 Conclusions

In this paper we propose a semantic-enabled agent-based novel approach to enhanced situation-

aware assistive living. We have discussed the concept of situation awareness and introduced an

integrated system architecture for semantically enhanced situation awareness and intelligent

just-in-time ADL assistance provision. We have analysed the nature and characteristics of

SH-based assistive living. Based on the analysis we describe semantic situation modeling and

formation including SH ontologies, semantic data creation and storage. We have presented

the use of assistive agents for situation comprehension and ADL recognition with special em-

phases on the agent’s internal structure and its interpretation and reasoning mechanisms. A

simple yet convincing example scenario from a real world ADL assistance context has been

used to illustrate our approach.

We have implemented a prototype assistive system for the proposed approach using the

latest semantic technologies and toolkits. We have carried out both simulated and real world

use case study. While the full evaluation of the proposed approach and system awaits further

large-scale deployment and experimenting with real world users, initial research results have

been promising. Our future work aims to address temporal issues such as parallel / concurrent

ADL recognition. We shall extend the existing assistive system with capabilities of taking

actions, e.g., playing audio/video or switch on/off devices/appliances through actuators.
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