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The emergence of multicore platforms has tremendous potential for achieving real-time performance of complex 
computer vision algorithms. However, these applications must run on embedded, mobile platforms with stringent size 
weight, power, and cost constraints. High utilization of local storage on execution cores and low-latency, high-
bandwidth data transfers between this storage and main memory are critical for real-time mobile system performance. 
General purpose processors employ hardware techniques, such as high-speed bus architecture and efficient data 
arbitration schemes, to address the memory bandwidth gap. However, these techniques are insufficient for mobile 
systems requirements. Concurrent algorithmic and architectural optimizations are necessary. This paper uses 
concurrency to minimize data transfer latency when executing video surveillance algorithms on multicore embedded 
architectures. It introduces cat-tail DMA, a technique that provides low-overhead, globally-ordered, non-blocking 
DMA transfers. Using this technique, data transfer latencies are reduced by over 30% for background modeling 
applications, while the local core storage utilization is increased by 60% over existing techniques. 

Key words: DMA, background modeling, embedded computer vision, mobile vision systems, multicore, 
parallel processing  

 
 

1 Introduction  

Demand for efficient image processing on non-traditional mobile computing platforms is being fueled 
by the proliferation of portable multimedia devices, such as cell phones, gaming systems, media 
players, and automotive imaging systems. The combination of low-cost imaging chips and high-
performance, multicore, embedded processors heralds a new era in portable vision systems. Computer 
vision algorithms have the potential for highly data-parallel execution. However, in a mobile 
environment, an implementation must operate within the constraints of embedded systems, including 
low clock rate, low-power operation with limited memory. 

Typically, image processing applications require the transfer of large amounts of data between the 
execution units, where the images are processed, and off-chip memory, where the images are stored. 
The high throughput and low latency characteristics of these applications make image transport crucial 
to overall program performance. On multi-core systems where several cores need to be furnished with 
data, the importance of efficient image transport is further magnified.  
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To fully leverage the concurrent execution of several powerful cores in imaging applications, a 
very fast, high bandwidth communication network is typically provided to move data throughout the 
system. Large data transfers are performed over this network through direct memory access (DMA) 
and each processing core has a DMA controller to which it can offload block data transfers to memory 
as well as to other processing cores. Multiple cores can potentially generate several DMA transfer 
requests and regular cache block requests to memory at once. Arbitration is performed in hardware 
through the bus arbiter to determine which core gains access to the bus during contention. In addition, 
the arbiter determines when source and destination transfer paths do not overlap; in which case, 
multiple transfers can be performed concurrently on the bus.  

Performing data transfers through direct DMA access places a greater burden on the programmer 
to make the best use of the resources provided by multi-core architectures. Partitioning of the 
multimedia workload to most efficiently utilize all the cores is critical to overall system performance. 
In addition, data transfers to and from the cores are now in the programmer’s domain and efficient 
management of DMA transfers along with program execution have a direct impact on execution times. 
In the presence of multiple cores, these DMA transfers must be carefully managed to prevent collisions 
which may result in data transfer bottlenecks.  

The potential to incur higher data transfer latency due to collisions is magnified on multi-core 
embedded systems because of the limited amount of local storage available on each execution core. 
For mobile image and video processing applications which involve very large datasets, limited local 
storage means only a small portion of a given frame can be operated upon in a single iteration on each 
core. Several iterations may be necessary to process an entire frame. The collective concurrent 
execution on the individual cores can potentially yield tremendous speedup. However, processing 
smaller blocks of an image also increases the frequency of data transfers between main memory and 
the local storage on each core. Furthermore, the presence of several cores requesting data from main 
memory simultaneously increases the number of DMA collisions and can result in higher data transfer 
latency. 

This paper evaluates single-buffered DMA and explores the potential to hide data-transfer latency 
on multi-core embedded systems through double-buffered DMA. It presents a new technique, called 
cat-tail DMA, which addresses the primary shortcomings of double-buffered DMA and provides low-
overhead, globally-ordered, non-blocking DMA transfers on a multi-core system. With this method the 
wait times for data transfers are reduced by over 30% for background modeling applications while 
increasing the utilization of core local storage by 60% over existing techniques. The paper focuses on 
background modeling processes because background/foreground segmentation and background model 
maintenance typically dominate the execution and storage costs of video processing workloads [4]. 

This paper is organized as follows. Section 2 describes background work and highlights existing 
DMA optimizations. Section 3 compares single and double-buffered DMA and highlights the 
particular challenges with these techniques with respect to image processing on multicore embedded 
systems. Section 4 presents cat-tail DMA which addresses the challenges described and Section 5 
evaluates it on a multicore platform. Section 6 concludes the paper. 
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2 Related Work 

The hierarchy of computer vision applications is diverse. High-level algorithms tend to process 
relatively compact and persistent data sets of abstract objects. This processing closely resembles other 
applications that run on today’s general purpose processors. In contrast, early vision tasks (typically at 
the pixel level), e.g., background modeling, edge detection, and image enhancement, exhibit high 
levels of data parallelism and feature little data reuse. Conventional general-purpose architectures have 
cached-based memory systems that are tuned for data reuse and hence are ill-suited for image 
processing [8]. In [19] an evaluation of a cache-based system and a direct DMA system is performed 
on the TI TMS320C6416 DSP [6] and the results show superior performance for the DMA 
configuration. A similar evaluation is performed with a MAP 1000 processor in [9] and the 
experiments yielded similar results. 

 Multicore processing is the primary performance driver for today’s and tomorrow’s high 
performance processors. Embedded processor development is following this approach with low cost, 
low power multicore platforms (e.g., ARM Cortex A9 MPCore [3], TI TMS320C6472 six core fixed-
point digital signal processor [16]). These architectures are well-suited for computer vision algorithms 
because they provide hardware support for concurrent execution of these highly data-parallel 
workloads. Early vision algorithms often include pixel-level or local region-based computation that 
can be partitioned and mapped onto multiple cores. However, speculative execution, branch prediction, 
and other latency-reduction techniques that are commonly employed in general-purpose multicore 
processors are ill-suited for embedded mobile vision applications. Automatic data caching is especially 
troublesome, since data access patterns are rarely captured with traditional caches. To achieve 
efficient, real-time execution of data hungry, early vision algorithms, architectures must support 
explicit (program-controlled) data memory transfer and scheduling. 

Many research efforts focus on optimizations and frameworks for efficient and programmer-
friendly DMA transfer. In [12], a technique is presented that permits low overhead, user-level DMA 
without compromising protection and without requiring changes to the underlying operating system 
kernel. A fast Application Programming Interface (API) that integrates standard DMA tasks and 
manages a command list is proposed. This interface allows for the programming of embedded 
multiprocessors on FPGAs without complex DMA controllers. In [17], a series of DMA experiments is 
used as datapoints to derive a mathematical formula for achieving optimal performance of an 
algorithm on a multicore platform. Various other optimizations for DMA transfer are presented in [5], 
[11], [13], and [18]. These techniques typically involve streamlining and integrating DMA tasks and 
providing memory integrity for user-level DMAs. This simplifies the data transfer for application 
programmers and allows seamless interaction between main memory and execution cores. Also, the 
optimizations presented involve predicting the optimal block sizes for DMA transfers for various 
applications. 

However, important challenges still exist for efficient DMA transfer on multicore embedded 
systems. The presence of several cores executing the same program concurrently means there is high 
probability that the cores will request data through DMA transfers simultaneously. A low-overhead 
scheduling scheme that minimizes collisions and provides contention-free scheduling periods on 
execution cores will help reduce the DMA transfer latency. Also, on multicore embedded systems 
where local storage is limited, several data exchanges between main memory and execution cores may 
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be necessary during program execution. By maximizing the amount of data processed during each 
exchange, the frequency of exchanges is reduced and subsequently the data latency due to collisions. 
As a result, ensuring high utilization of local memory is necessary while allowing for concurrent 
transfer and processing of data on execution cores. 

This paper presents cat-tail DMA, a technique that provides low-overhead scheduling of DMA 
transfers on multicore systems while maintaining high utilization of core local storage.  

3    Single vs Double-Buffered DMA 

The 2D block transfer mode is the most popular DMA method used in image processing. With this 
method, an image is split into blocks which are transferred from main memory to the processor and 
returned after processing. The block size is determined by the maximum allowable DMA transfer per 
transaction and the particular operations being performed on the image. Overlapping portions of a 
given block is common in some applications (e.g. edge detection) to compensate for the artificial 
boundaries introduced into the image during block segmentation. Extra processing between blocks is 
sometimes required in more extreme cases. 
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Figure 1 Single-Buffered DMA 
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Figure 1 illustrates the execution of an image processing application on a multicore processor 
using the single-buffered DMA mode. Block n of the input image, which is located in main memory 
off-chip, is transferred using DMA to buf_0 of processing core n for processing. A new DMA 
transaction is initiated in each core at the end of the processing for each block, and the processing core 
waits while the DMA controller writes out the processed image and reads in a new one. The processing 
core does no useful work while the DMA controller is performing the transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Double-Buffered DMA 

 

The double-buffering technique hides the data transfer latency by continuing execution on the 
processor while the DMA transfer is being handled by the DMA-controller. Figure 2 illustrates how 
the image processing application is executed in double-buffering mode. With this method, the memory 
transfer latency that occurs when a processing core is stalled for an old image to be written and a new 
one read is hidden by overlapping the execution of a given block with the transfer of the next. 
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Two buffers, each of which can store a block of the image, are allocated in each core. During the 
processing of block n of the current image in buffer j, a DMA transfer is initiated to concurrently write 
out the processed data in buffer j+1 and fill it with block n of the next image. Typically, the total time 
to process the entire block is greater than the latency of the DMA transfer in both directions, therefore 
a new block is available in buffer j+1 by the time the processing of the old block in buffer j is 
complete. The steps to perform the double-buffered DMA on each core c are as follows.  

To simplify the discussion, we will assume all cores working collectively can fully process one 
image in a single iteration. In other words, an image frame can be divided into equal-sized blocks 
among the cores and a single DMA transaction is required to transfer a block. Let N be the number of 
images to process.  

Read image 0 block c into buffer 0 
Write tag 0 
For i in 1,2, … N: 

b = i&1 (i.e., b = 1 if i is odd, else b=0) 
Poll status of tag b 
 Read image i block c into buffer b 
Write tag b 
Poll status of tag ~b  
Process buffer ~b 
Write image i-1 block c from buffer ~b 
Write tag ~b 

Write image N block c from buffer 1 

In the main loop, the processor checks for completion of the previous write transaction to the 
transfer buffer, schedules a new read transaction to that location, processes the data in the processing 
buffer, and schedules a write out of the processing buffer. Processing the data between the read and 
write transactions ensures that the likelihood of the read transaction being completed before scheduling 
the write is very high and so there is minimal waiting if any. Similarly there is some loop overhead 
between the write and the next read which again minimizes the wait time.  

For computer vision applications, such as background modeling, double-buffered DMA presents 
challenges for multi-core embedded systems. In background modeling, a reference background model 
is computed that captures the features of the scene that are not moving or changing (e.g., a wall or 
sidewalk) or that have nonsalient movement (e.g., fluttering leaves). Typically, these applications 
compare the current image to the background model to subtract out the background and isolate the 
moving foreground objects. In this process, both the reference background model and the current 
image must be present on the cores for processing. As a result, these applications require the transfer 
of multiple sets of data for each processing iteration and require explicit management by the processor 
to ensure correctness.  

To understand these issues, we experimented with background modeling on the Cell Broadband 
Engine [7]. This is a heterogeneous multicore chip which features one PowerPC (PPU) computing core 
and eight Synergistic Computing (SPU) cores on the same die. The PPU is a fully compliant 64-bit 
PowerPC RISC architecture with 32 128-bit vector registers, 32-KB L1 instruction and data caches, 
and a 512-KB unified L2 cache. It is a modified version of the general-purpose Power architecture and 
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is tuned for executing general-purpose workloads. Each SPU is a 128-bit RISC processor with 128 
128-bit registers and 256 KB of local storage. The SPUs are designed for high-performance, data-
streaming, and data-intensive computation. DMA is the primary method of communication between 
the SPUs and main memory. The element interconnect bus (EIB), which is a very high-speed, high-
bandwidth communication network, provides a critical communication link between the powerful 
computing cores and main memory. The entire system is well-suited for embedded image processing 
applications with the PPU handling program and data management and flow control, while the SPUs 
perform the pixel-level image operations. However, the limited on-chip SPU local storage presents 
challenges for efficient image data transport between main memory and SPUs [10].  

Table 1 shows block configurations partitioned to store the image and background model for 
representative classes of well-known background modeling algorithms [2], [14], [15] on the Cell 
multicore embedded platform. Background modeling was chosen because it represents an important 
component of video surveillance algorithms and constitutes up to 95% of such workloads [4]. Also, it 
is memory intensive as well as computation intensive and serves as a good benchmark for image data 
transfer analysis. The configurations were chosen to maximize the utilization of processing core local 
storage on the Cell. 

The Single Mode class in the table consists of algorithms that model pixels with a single 
background value (or “mode”), including frame differencing, approximated median, and weighted 
mean. The Sliding Window class includes algorithms that maintain a representation of the background 
based on the w images previous to the current image, where w is the sliding window size, (e.g., the 
background pixel value may be the median or mean value of that pixel location across the window). 
Mixture of Gaussians (MoG) [14] and Multimodal Mean [1], [2] are multimodal algorithms that 
maintain more than one background value for each pixel to model dynamic nonsalient motion in 
scenes (e.g., fluttering leaves may cause a pixel to vary between two or three different background 
values or modes). The multimodal algorithms were limited to 4 modes and the maximum-size of DMA 
transfers on the Cell B.E. is 16KB. Each SPU local storage area is 256KB and this is divided into two 
equal-sized image storage areas and two equal-sized background storage areas for double-buffered 
DMA.  

Table 1 SPU Maximum Block Transfer for Double-Buffered DMA 

Algorithm Block Size 
(Pixels) 

Image Size 
(Bytes) 

Model Size 
(Bytes) 

Number of 
Transfers 

Image Model 
Single Mode 19,200 57,600 57,600 4 4 
Sliding Window 6,400 19,200 76,800 2 5 
Mixture of Gaussians 800 2,400 80,000 1 5 
Multimodal Mean 1,600 4,800 76,800 1 5 
 

To process a given block for a technique such as MoG, a single DMA transaction is needed to 
transfer the image but five transactions are required to transfer the background model. Also, the entire 
background model must be available on the SPU to process the block. Similarly, the frame 
differencing technique requires four image transfer transactions and four background model transfer 
transactions.  
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The requirement for multiple data transfers of different datasets to complete one block of 
processing for computer vision applications differs markedly from traditional applications of double-
buffered DMA where a single read/write transaction pair is overlapped with processes. This 
requirement inherently serializes the data transfer transactions because the processor must verify the 
completion of all block write transactions before scheduling block reads since both operations share 
the same buffer. Also, using double-buffered DMA decreases the maximum block size that can be 
processed because the local storage area must be split. This increases the frequency of block transfers 
and thus the potential collisions which can lead to high data transfer latency for entire block transfers. 
Furthermore, this problem can be exacerbated on multicore systems where several cores are executing 
the same program and making several simultaneous competing DMA requests. 

Although this evaluation is performed on a single platform the results can be generalized across 
other multicore embedded platforms. These platforms feature limited on-chip local storage on 
execution cores and the same challenges apply.  

4    Cat-Tail DMA 

Cat-tail DMA addresses these issues by providing a technique for low-overhead, globally-ordered 
DMA transfers among processing cores that minimize collisions and reduce data transfer latency. This 
is achieved by: 

1. Dividing the core processing of blocks into two phases: the transfer and process 
scheduling phase and the process only phase. 

2. Staggering the execution on the computing cores to ensure that there is a contention free 
period to schedule transfers for each core.  

The key idea is to reserve a unique period on each core where a series of large data transfers can 
be performed by the DMA controller with minimal input from the microprocessor.  

4.1 Core Processing 

Two circular buffers (e.g., one for the image and the other for the background model) are maintained in 
the local store area of each core. Unlike double-buffered DMA the size of the circular buffers is 
constrained by the available local storage on the processing core and not the maximum DMA transfer 
block size.  

The circular buffer is divided into two dynamic regions called the transfer region and the 
processing region as shown in Figure 3. The core processing is also divided into two phases in which 
unequal sized portions of the images are processed. In the first phase, transfer and process, a given 
block of the processing region is processed while the data in the transfer region is written out and new 
data read in. In the second phase, process only, the remainder of the processing region (which is 
composed of several contiguous blocks) is processed and there is no data exchange. Two pointers are 
maintained for the circular buffers: a processing pointer points to the beginning of the next processing 
region and a transfer pointer points to the beginning of the next transfer region. 

The example in Figure 3 shows the progression of both pointers along a circular buffer in each 
processing core. The process is the same for both circular buffers in each core. In circular buffer 
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implementations, a pointer is moved to the beginning of the buffer once it reaches the end as shown in 
the example. 
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Figure 3 Circular Buffering 

 

At initialization, the entire circular buffer is filled with data and the transfer pointer updated to the 
end of the buffer (beginning of next transfer region) as shown in Figure 3a. The entire processing region 
is then processed in a process only phase (no data exchange) and the processing pointer is moved to the 
beginning of the next processing region to complete the initialization as shown in Figure 3b. 

After initialization the two-phase processing occurs. In Figures 3c, 3e, and 3g the processing core 
is in transfer and process phase whereas it is in process only phase in Figures 3d and 3f. Figure 3c 
shows the first phase, transfer and process: a portion of the processing region is processed (dark area) 
concurrently with the exchange of data in the transfer region (light area). The transfer pointer is then 
updated to the beginning of the next transfer region and the processing pointer is updated to the 
beginning of the second phase of the processing region. The second phase, process only, is shown in 
Figure 3d. The remainder of the processing region is processed (additional dark area) and the 
processing pointer is updated. Since there has been no transfer, the processed block from Figure 3c 
remains. Also, there is no data exchange during this phase and therefore the transfer pointer remains 
unchanged. In Figure 3e, the core reverts back to transfer and process phase, with the transfer and 
processing pointers pointing to updated regions. It proceeds to the process only phase in Figure 3f. The 
process is repeated in each core until the end of the program. 

4.2 Staggered Execution 

Execution on the cores is staggered to provide individual cores with a unique time slot to schedule data 
transfers in the first phase of processing. Figure 4 illustrates the staggered execution on the multicore 
system.  
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A token is passed around cores in a round robin fashion to signal which core is scheduled for data-
transfer. During the first phase of processing, the processor on the core that possesses the token 
schedules all its data writes (e.g., image tile and background model) interleaved with the processing of 
the image pixels. The processor is not stalled to wait for completion of the transfer and the processing 
is continued. On the kth iteration of processing in the phase, the processor checks for completion of the 
scheduled writes and proceeds to schedule reads. On the 2kth iteration, the token is released to the next 
core and the process is repeated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Staggered Execution 

 

The parameter k is chosen such that all scheduled DMA transactions will be completed in the time 
taken to complete k pixel processing operations. On an embedded platform with limited memory, the 
number of DMA transfers required for complete utilization of local memory is several orders of 
magnitude less than the total number of pixels processed per block iteration. As a result, there is a wide 
range of possible values of k, to accommodate different image processing operations and execution 
platforms. However, for embedded platforms, DMA transfers should typically be completed during the 
processing of a given row of pixels, and for our experiments k was set to the image row size. 

The execution is summed up as follows, where CB1 and CB2 refer to circular buffers 1 and 2 (e.g., 
the image tile buffer and the background model buffer in background modeling applications): 
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Phase 1 (Transfer and process): 
Initialize process_counter 
For each block A in CB1 transfer region: 

Schedule write block A. 
Write A’s write_tag. 
Process corresponding pixel location in CB1 and 
CB2’s processing regions. 
Increment process_counter.  

For each block B in CB2 transfer region: 
Schedule write block B. 
Write B’s write_tag. 
Process corresponding pixel location in CB1 and 
CB2’s processing regions. 
Increment process_counter. 

For i in process_counter … k: 
Process (k-total_blocks_written) corresponding pixel 
locations in CB1 and CB2’s processing regions. 

Poll status of A and B’s write_tags 
For each block A in CB1 transfer region: 
Schedule read block A. 
Write A’s read_tag. 
Process corresponding pixel location in CB1 and 
CB2’s processing regions. 

For each block B in CB2 transfer region: 
Schedule read block B. 
Write B’s read_tag. 
Process corresponding pixel location in CB1 and 
CB2’s processing regions. 

For i in k + process_counter … 2*k 
Process (k-total_blocks_read) corresponding pixel 
locations in CB1 and CB2’s processing regions. 

Release token. 
For i in 2*k … processing block: 

Process all remaining pixels first block of CB1 and 
CB2’s processing block. 

Phase 2 (Process only): 
Process all remaining pixels in CB1 and 
CB2’s processing regions. 

 

Unique image read, background model read, image write, and background model write tags are 
maintained for data transfers as a mechanism to verify that transfer of data to a particular region is 
complete before attempting to process it. Also barrier options are used with the DMA transfer to 
ensure proper ordering.  
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5    Evaluation and Results 

An experiment was designed to evaluate the performance of cat-tail buffering on the Playstation 3 
featuring the Cell B.E. For this experiment, the data structures for the background modeling algorithms 
were initialized by the PPU and held in main memory. The resolution of the images is 640 x 480 pixels 
and at startup the images were decoded by the PPU and held in a buffer in main memory. The single 
buffering technique was used as the baseline. Both buffering techniques were implemented in C and 
the data transfers were evaluated for the data structures described.  

All data transfers were 128-byte block aligned for transfer on the Cell. This influenced the 
maximum size of blocks held on each SPU core. For the single buffering techniques the same sized 
blocks were used for data transfers. 

Mailboxes were used to communicate between SPUs and the PPU and signals were used for inter-
SPU communication [10]. This allowed DMA transfers of data to be performed with minimum 
intrusion and very little communication overhead.  

Circular cat-tail buffering combines the desirable features of the single-buffered and double-
buffered techniques. It features the larger processing block sizes associated with the single-buffered 
DMA technique with the concurrent processing and data transfer operation associated with the double-
buffered technique. Table 2 shows the total size of blocks (in pixels) held on each core using cat-tail 
buffering. It shows that the utilization of local storage is improved by 60% when compared to double 
buffering shown in Table 1. For example, when executing Multimodal Mean, cat-tail DMA processes 
2560-pixel-sized sub-images per iteration as opposed to 1600-pixel-sized sub-images for double-
buffered DMA, as shown in Table 1. This is possible because the separate buffers reserved to transfer 
and process images are not of equal size. Also shown in Table 2 is the maximum-sized block that can 
be held on each core (which is the configuration for single buffering). It is clear that the utilization of 
core storage during processing of cat-tail buffering is very close to the optimum case of having a single 
region with no concurrency. 

Table 2 Utilization and Buffering Execution Times 

Buffering Execution Times (s) 
Algorithm 

Blocks Held 
(Pixels) 

Blocks Transferred 
(Pixels) Single Buffering Cat-Tail Buffering 

Single Mode 38,400 30,720 28.11 25.00
Sliding Window 12,800 10,240 51.67 42.94
MoG 1,600 1,280 144.09 132.55
Multimodal Mean 3,200 2,560 88.19 59.53

Our performance results also show significant improvements in execution time for cat-tail DMA 
over single-buffered DMA. This is due to the concurrent processing and transfer of images as well as 
the low overhead management and scheduling of transfers on a multicore system. Figure 5 and Table 2 
(two rightmost columns) show the performance of both the single and cat-tail buffering techniques.  

The cat-tail buffering technique shows a 32.8% reduction in total processing time over the baseline 
single buffering for multimodal mean. For the other techniques it shows an average reduction of 11.9% 
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in processing times. In general, the techniques that feature larger blocks have shorter execution times 
because fewer iterations are needed per frame to transfer data and run those algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Performance of Buffering Techniques 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Performance Improvements Over Time 

 

Cat-tail buffering performs better than the baseline because it provides a low-overhead software 
mechanism to manage data transfers. It employs circular buffering to maximize the block sizes stored 
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in SPU local storage while accommodating concurrent transfer and processing on the cores. Also, by 
performing the data transfers in much larger block sizes, the communication overhead between SPUs 
is minimized. This also provides longer processing periods during which the shared bus is available for 
other cores to schedule and perform data exchanges.  

Staggering the execution cores results in a fixed one-time latency applied to the execution time of 
the program. This charge is a small fraction of a single block transfer and is insignificant in the context 
of several transfers required to process a single frame and several frames during execution of the 
program. Also, the reduction in overall execution times due to cat-tail buffering more than 
compensates for this charge. Figure 6 shows the performance of cat-tail buffering for multimodal mean 
for an increasing number of frames. The results show a steady reduction in total execution times as the 
number of frames is increased.  

6    Conclusion 

This paper introduces cat-tail DMA as a technique for efficient data transport for computer vision 
applications on multi-core systems. Experiments on the Cell BE show this technique significantly 
reduces wait times and overall processing times. Data transfer latencies are reduced by over 30% for 
background modeling applications, while the local core storage utilization is increased by 60% over 
existing techniques. High utilization of local storage on execution cores and low-latency, high-
bandwidth data transfers between this storage and main memory are critical for real-time system 
performance on mobile platforms. This technique better supports early vision applications in 
embedded, low-power environments where slower clocks and voltage scaling normally reduce 
performance. 
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