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Technology assisted living is a practical solution to the increasing demands for access to healthcare services in an era 
of aging populations and dwindling supply of professional healthcare workers. Radio Frequency Identification (RFID) 
technology with complementary sensors is widely considered as a very promising approach to realizing the vision of 
technology assisted living. At the core of any assisted living systems is the important function of human activity 
inference, which is what enables such systems to be intelligently perceptive and responsive to the humans under their 
care. In this paper, we review the current state-of-the-art in activity inference for RFID-based assisted living applications, 
and present our ongoing work on an assisted living prototype for ‘goal training’ or brain rehabilitation of patients with 
cognitive impairment in their home environments, with a discussion on the potential design issues involved. 
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1 Introduction  

Human activity inference is an important field that is associated with ubiquitous computing, context-
sensitive computing, and artificial intelligence. For computers to become useful and capable of 
independently assisting humans, activity inference through sensing and machine learning is a key 
aspect for computers to understand our behavior, situation, and needs. 

In general, the process of activity inference may involve the use of any of the following six 
questions of context: When, Where, Who, What, How, and Why [1]. A number of challenges exist in 
human activity inference. Firstly, is the sheer number of activities that humans can possibly engage in. 
For instance, just for household activities, there are hundreds of different activities, and each one of 
them can be accomplished in great number of ways. Secondly, human activities are notoriously 
variable and unpredictable. This makes modeling human activities extremely complex and difficult 
given the very large size of graphical activity models with potentially tens of thousands of nodes. 

In the past, researchers have used various sensors to achieve human activity inference, such as 
motion-detection using accelerometers, computer-vision using cameras, or other sensing technologies 
including acoustic, pressure, optical, and thermal sensors. However, the limitations of using sensors 
such as motion and video sensors are that they can be difficult, inflexible and costly to deploy. On the 
other hand, RFID technology has gained increasing attention as a low cost, flexible, and relatively fast 
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solution for wireless identification. RFID has been widely used for product tracking in industry supply-
chain management, and more recently has been experimented for detecting human activities through 
user-object interactions. 

With the worldwide growing needs for healthcare services due to the continued aging of our 
societies and the increasing shortage of professional healthcare workers, there has been a serious 
contemplation for alternative healthcare arrangements where technology is being used to assist human 
living. RFID complemented with sensor technology has been identified as a key enabler of systems for 
technology assisted living [2], and activity inference, which infers the activities of the users through 
cues from RFID tags and sensors, is a crucial functional component of any assisted living systems. 

The remaining of the paper is organized as follows. In Section 2, we review and discuss the 
different sensing modalities that have been used in RFID-based applications for assisted living. In 
Section 3, we overview the current two major classes of inference approaches, namely the rule-based 
and probabilistic based inference. In Section 4, we present our ongoing work on an assisted living 
prototype that we have developed for goal management training of cognitively impaired users and 
provide a discussion on some of the potential design issues. Finally, in Section 5, we conclude the 
paper with some remarks on future work. 

2 Sensing Modalities 

There is a myriad of applications for assisted living that adopt different sensing approach towards 
activity inference. In this paper, we are interested in applications that use RFID or RFID in conjunction 
with other sensing modalities such as inertial and vision-based motion tracking for inference. The 
following reviews selected works based on their adopted sensing approach with a discussion of their 
respective merits and limitations. 

2.1  RFID 

RFID has been recently used by many researchers in what we call identity-based activity inference. 
The identity here could refer to the identity of the user, identity of the object that has interacted with 
the user (such as being touched, picked up, or used), or identity of the location of the user. For any 
given application, a combination of such information with common-sense or specialized domain 
knowledge could be used to efficiently identify or infer the high-level activities of the user, such as 
meeting, studying, dining, etc. [3-5]. However, the inference of a RFID-only based system could be 
limited by several factors. 

First and foremost, is the possible ambiguity in the inference when multiple activities could be 
identified by similar sets of RFID identifiers. For instance, it is not easy to differentiate between 
meeting and group studying, simply based on detected RFID objects and landmarks. A system may 
erroneously infer that an object has been picked up, when in fact the RFID reader just happened to be 
positioned near the object. Inference could also be affected by inherent problems of current RFID 
technology, in particular missing tag detection due to tag collisions, tag detuning, tag misalignment, 
and the presence of metal and water in the tag vicinity [6]. These have led the researchers to propose 
augmenting RFID with other sensing technologies as explained in the following. 
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2.2  Accelerometers 

Accelerometers are a type of inertial sensors that could be attached to parts of human body for sensing 
their rate and orientation of movements in order to infer primitive actions such as sitting, standing, 
walking, or arm swinging [7]. Such sensor data from the accelerometers could complement object-use 
data from RFID tags to enable an understanding of how an object is being used, e.g. a detected object 
‘hammer’ with sensed action ‘arm swing’ could imply a ‘hammering’ activity. Both the object-use data 
and acceleration data could be jointly used in different ways to infer an activity. For instance, the 
authors in [8] formulated a joint probabilistic model of object-interaction (RFID) and physical action 
(accelerometers) for activity inference. On the other hand, the authors in [9] proposed a two-stage 
classification in which RFID-based classification is used as the baseline method, and only if it fails to 
infer the activity, then the acceleration based classification is used. Both authors reported better 
inference is attained than when either accelerometer or RFID is used alone.  

2.3  Video Sensors 

Vision-based motion tracking is another effective approach to augment RFID, in particular in its ability 
to eliminate ambiguities in RFID-based inference, such as through using video for tracking the motion 
of objects detected (or missed) by the RFID reader to validate that an object has indeed been 
manipulated, e.g. being picked up, by the user. In [10], the authors proposed an unsupervised method 
to learn object models automatically from the video of household activities and employ these models 
for activity inference using a combination of video sequences and RFID data. In [11], the authors 
adopted a different approach in which cameras are used for tracking humans instead of objects, such as 
for monitoring the motion of their heads and hands. On the other hand, RFID readers were modified to 
capture received signal strength from the tags in order to allow estimation of their positions and 
orientation. The resulting fusion of visual human motion and RFID object modalities enables the 
authors to make inference about an user’s activities such as picking up an object, holding at eye-level 
to examine it, and then taking it away or putting back, in the context of a retail application. Despite the 
possible high cost and complexity involved in vision-based inference, integrating RFID with video 
sensors appears to be a very interesting approach.  

3    Inference Approaches 

In this section, we overview and discuss two major classes of approaches for activity inference, namely 
the rule-based and probabilistic-based approaches. 

3.1  Rule-based Inference 

In the rule-based approaches, logic rules are formulated and applied to correlate patterns of sensor 
events with the activities. As an example, the authors in [12] presented a system that uses knowledge-
engineered rules for in-home detection of daily living activities such as meal preparation and possible 
emergency conditions of elderly people. The rules are expressed in the form IF A (AND/OR) B THEN 
C, where A and B are sensor events, and C relates to the activity that is being inferred. Such inference 
rules are computationally efficient to execute given their simplicity, but their accuracy depends on the 
specificity of the rules, and improving the specificity normally implies more instrumentation using 
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sensors on aspects of environment that are key to the activity of interest in order to reduce the rate of 
false positive detection. 

Related to rule specificity is the information granularity of the input (sensor events) and output 
(inferred activity) of the system. Depending on the type of sensors, different granularity or ‘intensity’ 
of sensor events may be captured, and depending on the type of applications, different level of details 
about an inferred activity could be desired. To support such information granularity in a rule-based 
system, fuzzy-type rules that use multi-value logic to represent notions of granularity, such as <high, 
medium, low> or <good, fair, poor> will be necessary. The iDorm (Intelligent Dormitory) [13] is one 
such system that uses a fuzzy rule-based inference engine to map sensor states to actuator commands 
representing user’s actions for automating a living environment.  

3.2  Probabilistic-based Inference 

More prevalent are approaches based on probabilistic frameworks such as Hidden Markov Models 
(HMM), Dynamic Bayesian Networks (DBN), and more recently Conditional Random Fields (CRF). 
The reason is because probabilistic approaches are often more capable than their rule-based 
counterparts in handling uncertainties, such as noisy sensor readings due to imperfect hardware and 
operating environments, variable action sequence due to the fact that the same activity could be 
performed in various ways, or ambiguous situations when different activities could generate similar 
sensor patterns. Thus, activities are more often represented as probabilistic distributions over 
sequences of object use/sensor events, and the one associated with a sequence found having the highest 
probability (and above a threshold) is chosen as the inferred activity. 

HMM [14, 15] is a temporal model that considers an activity as being composed of a sequence of 
sub-activities with corresponding object use/sensor events occurring in consecutive time slices. As 
shown in Fig. 1, it consists of a hidden state yt representing a sub-activity for each time slice t, and an 
observation or outcome xt representing a vector of object use/sensor events occurring during that time 
slice. The states are ‘hidden’ as only the outcomes and not the states are visible to the external 
observer. The model is specified with a set of transition probabilities ( )1| −tt yyp  that governs the 
transition of each state to its next state, and a set of observation probabilities ( )tt yxp |  that governs the 

generation of observation xt in each state. A HMM can be built for each activity and its probabilistic 

parameters learned by maximizing the joint probability, ( ) ( ) ( )∏
=

−=
T

t
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training with actual activities. Inference is then performed by finding the model that best matches the 
new observed outcome (sequence of object use/sensor events). Both parameter learning and inference 
can be performed using algorithms commonly in use with HMM, e.g. forward-backward, Baum-
Welch, and Viterbi algorithms [16]. 

DBN [17, 18] is a more general temporal model where HMM and their variants can be seen as 
special cases of DBN. Key difference between HMM and DBN lies in their model structure and 
dependency relationship: In HMM, only one hidden state and one observation variable is allowed in 
each time slice. Moreover, a hidden state at time t depends only on the previous hidden state at time t-1, 
while the observation variable at time t depends only on the hidden state in that time slice. DBN relaxes 
both of these requirements by allowing arbitrary number of hidden states and observation variables in 
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each time slice, and dependencies among the states and variables that were assumed independent in 
HMM (Fig. 2). While this introduces greater computational complexity, it does offer more flexibility to 
the designer of DBN. Furthermore, it is possible to have one observation variable per object use/sensor 
event, instead of packing them all into a vector represented by one observation variable as in HMM. 
The one hidden state in HMM can also be represented by several constituting hidden states. From such 
decomposition, DBN can take advantage of the conditional independencies that may exist among them 
to simplify the computation of joint probability distribution, e.g. by factorization, when a complex 
system with many variables is involved. In contrast, compressing all hidden states and observation 
variables into one ‘super’ hidden state and observation variable in HMM causes the loss of dependency 
and interdependency relationships, which in turn will require more training data for HMM to converge to 
the true distribution. In terms of inference accuracy, DBN is found to surpass HMM in a comparative 
study in [19] as it uses learned dependencies between variables that are not available in HMM. The 
presence of missing observations is also found to have less impact on DBN than on HMM.  
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Figure 1. HMM. The clear and shaded nodes represent hidden states and observation variables, respectively. 
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Figure 2. DBN. Allows arbitrary number of states and variables and arbitrary dependencies within a time slice. 
However, Markov assumption still holds for relationship between states across time-slices 

Finally, CRF [20, 21] is another probabilistic model that can have many forms, but the form of 
most interest is the linear-chain CRF as shown in Fig. 3, due to the sequential nature of activities to be 
inferred. Unlike HMM and DBN, there are no directed edges in the model, and the hidden states are all 
linked to a single observation variable representing the entire sequence of observations over time. This 
means that CRF is an ‘undirected’ model, and it represents the conditional probability ( )XYp | of the 
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state sequence given the observation sequence X, rather than the joint probability ( )YXp ,  of both the 
states and observations as in HMM. Since the model conditions on the entire observation sequence X, 
it avoids the need for independence assumption between observations as required by HMM. Thus, a 
hidden state yt in CRF is not constrained to look solely at observation xt, but has the flexibility to 
incorporate observations from any time slice. This makes CRF an attractive model to use for inference of 
activities with complex time-overlapped observations. However, training a CRF requires significantly 
more computation than training a HMM. For more details of this model, readers may refer to [20]. 
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Figure 3. Linear-chained CRF. The model conditions on the entire sequence of observations X and therefore does not 

need to assume that the observations across time are independent. 

4    GMT-PD 

Having discussed the existing approaches for activity inference, we present an assisted living 
prototype, which we call a Goal Management Training Personal Device (GMT-PD) that we have 
developed (and still developing) for cognitively impaired patients, and discuss some of the potential 
design issues for inference in such applications. 

Goal setting is an approach aimed to assist people to adapt and recover after injury and illness. For 
those experiencing cognitive decline due to brain injury or natural aging, goal attainment can be 
facilitated by Goal Management Training (GMT), which is a process of steps that guide the patient to 
complete a set of defined tasks in order to achieve everyday goals such as making a cup of tea [22]. 
However, GMT traditionally relies on one-on-one interaction with a rehabilitation therapist over an 
extended period and is thus costly and limited to weekly sessions. Thus, we want to explore whether 
electronic personal digital assistant (PDA) coupled with a RFID reader and tags could help patients to 
apply GMT principles on their own in their own time and own environment, in addition to the one 
hour professional training they receive to achieve a GMT outcome such as improved memory, 
attention and organization ability. 

4.1. System Description 

The GMT prototype is built on an existing RFID home support system that our group has developed 
for tracking and recovering losable personal objects such as eye glasses [23]. The system was 
developed on a HP iPAQ Pocket PC paired with a portable Tracient RFID reader (UHF) using Bluetooth. 
The application software was developed using C#.NET and Microsoft SQL Server CE as database engine. 
The system maintains a database of RFID tag identifiers corresponding to static landmarks such as 
kitchen sinks and cabinets, and user movable objects such as tea cups and pots. A generic customizable 
framework for GMT [24] was implemented with the following features: 
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Goal setting: For the rehabilitation therapist to set up specific activity tasks for the patient’s goal 
training. This is done by customizing a generic goal-setting template that defines the steps or milestones 
required for completion of each task. Each step is further defined by a start and finish point, each 
identified by a set of known objects and landmarks involved. Fig. 4 illustrates the goal setting for an 
example two-step task: ‘Making a cup of tea’. It begins with the initial registration of objects and landmarks 
associated with the task (Fig. 4a-b), then defines ‘Boil water’ and ‘Brew tea’ as the two steps required to 
complete the task, with each step being further specified with a set of objects (items) and landmark for 
both its start and finish items of landmarks (Fig. 4c-d).  The start finish approach was adopted to allow 
the system to be able to prompt the user during the process and not to prompt the user when the task 
has been completed. 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

Goal recognition: The system regularly monitored the user’s surrounding (or ‘aura’) to identify 
potential beginnings of goal tasks, i.e. by monitoring the set of objects and landmark associated with the 
start point of each task. When a goal task is recognized, the system started the dialogue by asking the 
user if he/she needed help in ‘relearning’ how to perform the task at hand.  Goals were registered 

(a) (b) 

     
(c) (d) 

Figure 4. Goal setting 
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separately and may reuse objects and landmarks that were  tagged in the environment.  However, due 
to the nature of this task, participants do not complete two goals at the same time. 

Goal training: Once a goal task was recognized, the system was used as a virtual goal training guide 
to monitor the progress of the user, and respond with sets of escalating prompts when the system 
detected that the user was not carrying through the task correctly. The training process goes through 
three phases of support: i) Pause; ii) Hint; and iii) Tell. The first phase encourages the user to pause 
and think of the step that he/she should be doing next. If the user did not react with the correct next 
step, the system prompted the user again and executed second phase of support by providing him/her 
with some hints. If user still fails to react as expected, the system carries out the last phase of support by 
telling what objects he/she needs, or where he/she should go to perform the next step. To achieve the 
therapeutic effect of goal training, it is desirable that the user works through the current task to 
completion and not abandon the task due to frustration. 

4.2. Design Issues for GMT   

The most difficult challenge for the GMT system was dealing with false tag non-detection. The 
instance of a false non-detection of an RFID tag already in range of the system was an issue.  Because 
the system reacts directly to the presence or absence of tags to sense progress with the goal activity, the 
system was very vulnerable to false tag non-detection. That is, the tag is in range of the reader but is 
not detected on that read cycle. Where false non-detection of tags occurs, there are two implications.  
Firstly, the display will incorrectly show the environment around the person. That is, an item of 
interest is present, but because the tag was not detected, it will not show on the display. This was very 
confusing for our test users as they will be confronted with an object not showing on the screen that is 
clearly within the users environment. Secondly, if the tag that was falsely non-detected is a finishing 
tag, the system will recognize that the step in the goal being practiced is completed and will move on 
to monitor the next step when the user of the system has not actually completed the step. 

 
Figure 5. Approach with dealing with false tag non-detection 
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Our approach to overcome the false tag non-detection problem was to delay the removal of tags from 
the display until they were not detected in three consecutive reader cycles (refer to Figure 5).  The 
implications of this approach for the user was that there was an approximately three second delay on 
completing each activity (depending on the read interval set on the RFID reader device) before the 
display recognized that the particular step in the activity was complete. 

5    Conclusion 

In this paper, we have reviewed and discussed the different sensing modalities and inference 
approaches used in human activity inference for RFID-based applications. We have also presented our 
first GMT-PD prototype, which is currently undergoing performance and usability evaluation, as well 
as further development. The current prototype is solely based on RFID and rule-based inference, which 
maps user’s activities to sets of landmarks and objects.  As future work, we plan to adopt a more robust 
probabilistic-based approach for inference, taking into account the environmental needs and unique 
characteristics of the users as highlighted in this paper. We also plan to revise the user interface 
particularly where interaction will be required during the goal training (as opposed to the setup 
sections of the software).  We will also investigate minimizing the delay in the system recognizing task 
completion through the use of probability sampling.  That is, using historical data from the system to 
calculate the probability that tag non-detection is legitimate.  The contribution of this paper has been to 
investigate development of an Assisted Living device applied to a health context and to explore how 
human activity inference models can be applied to improve the reliability of a prototype utilising RFID 
to provide human activity inference data.   
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