
Journal of Mobile Multimedia, Vol. 0, No. 0 (2009) 203–237
c© Rinton Press

MESH-BASED P2P LIVE VIDEO STREAMING WITH STREAMCOMPLETE a

FEDERICO COVINO MASSIMO MECELLA

Dipartimento di Informatica e Sistemistica Antonio Ruberti, Sapienza Università di Roma
via Ariosto 25, Roma, 00185, Italy

federico.covino@gmail.com, mecella@dis.uniroma1.it

Received July 21, 2007

Revised March 26, 2009

This paper introduces StreamComplete, a new architecture and prototype system for

mesh-based P2P live video streaming; it realizes a new concept of overlay network’s
management as well as merges the best practices of tree- and mesh-based approaches.
StreamComplete creates a dynamic overlay network that optimizes itself on the basis

of local conditions of peers. We have extensively evaluated the performance and the
behavior of StreamComplete over the PlanetLab. Our experiments demonstrate the
ability of peers in managing the overlay network with autonomic behavior in case of
network changes. Furthermore the system is scalable w.r.t. the cardinality of the overlay

network, by requiring very few control traffic.

Keywords: Net-TV, peer-to-peer video streaming, mesh networks

Communicated by: D. Naniar

1 Introduction

1.1 Net-TV

The merging of a social phenomenon like Web 2.0 with multimedia communication technolo-

gies, and the availability of inexpensive broadband Internet connections for home-users, has

recently made practical a large number of bandwidth-intensive applications, e.g., Network

Television (Net-TV). This is a new communication media: each user, each single person, can

broadcast his own video information to the world in real time and without charge. Net-TV

examples are Joost, BabelGum, Mogulus, Tribler, Veoh, etc.: each of them achieves a televi-

sion infrastructure on the basis of a computer network. The last commercial trends combine

the classic TV in the living room with Net-TV applications. From the hardware point of

view, it is possible to connect the classic TV to the IP network through a simple set-top-box,

similar to a decoder: it represents the television’s network adapter. Furthermore, to avoid

any limitation of the interactivity in searching and displaying, it is possible to abandon the

classic remote control to switch to the new 3D-mouses (e.g., see Figure 1).

The most common applications of Net-TV are: (i) for Public Administrations, services

to citizens and promotion of tourism; (ii) for the so-called Third Sector, promotion of local

aThe work has been partially supported by the EU Commission through the FP6 project workpad and the
FP7 project sm4all.

203

204 StreamComplete - Mesh-based P2P Live Video Streaming

Fig. 1. Example of a 3D-mouse

events and demonstrations; (iii) for entertainment, film, television programmes and music

channels; (iv) User Generated Content.

1.2 From IP Multicast to P2P-TV

For such a kind of applications, the IP multicast protocol might probably be the most efficient

vehicle. But due to the practical issues of routers, this protocol has not been widely deployed

in the wide-area network infrastructure. The IP multicast model extends the traditional best-

effort unicast model with efficient multi-point packet transmissions. The key innovation is to

ensure simultaneous dissemination of packets to a set of destinations traversing each link only

once without duplication. This is achieved through the construction of a spanning tree across

routers in networks. There are primarily two issues within the IP multicast framework:

• heterogeneity: each receiver differs in its computing capability and access bandwidth;

• dynamic: video playback quality varies in the best-effort Internet.

IP multicast encountered the following problems in the deployment:

• scalability: there are potentially a large number of multicast groups that must be man-

aged in a large network;

• a requirement for coordination of dynamic spanning tree(s) construction at routers

across different autonomous subnets, which often makes it practically infeasible;

• routers must maintain the state, which violates (stateless) principles and creates diffi-

culty in the design of high-level functions such as error, flow, and congestion control.

[21] presented the key difficulties encountered in the native IP multicast and proposed

moving the multicast functionality to the edge of the network. The construction of a multicast

tree was performed using an overlay network, that is, a virtual topology over the unicast

Internet. This demonstrated the feasibility of implementing multicast functions at the edges

of the systems while keeping the core functionality of the Internet intact. The significance of

such an approach is to enable efficient multicast service deployment without the requirement

for infrastructure support [17].

Therefore, researchers resorted to application-level solutions, which build a peer-to-peer

(P2P) overlay network out of unicast tunnels across cooperating end-users: the so-called

P2P-TV.

For sake of completeness, we mention another important trend, which is to combine the

mobile networks with the multimedia applications (including video streaming). This has

Federico Covino and Massimo Mecella 205

been started by the introduction of the IP service on top of the Global System for Mobile

Communications (GSM), then on top of the General Packet Radio Service (GPRS) and finally

on top of the Universal Mobile Telecommunications System (UMTS). Also in this context,

P2P architectures have been deeply studied in recent years and several mobile frameworks

have been proposed [1, 2, 3]. Mobile P2P streaming can be achieved as well as an adaptation

of the wired P2P streaming.

1.3 Outline and Contribution of the Paper

In this work, a new mesh-based P2P live video streaming system, called StreamComplete,

is proposed and realized. It merges new algorithms with the current best practices of the

tree- and mesh-based approaches in order to achieve a system capable of creating a dynamic

overlay network that optimizes itself on the basis of the local conditions of peers. Particular

attention was paid in order to reduce the time of connection, the delays and the traffic control

overhead. StreamComplete is based on two distributed algorithms: (i) the Fast Top

procedure that improves the general performance of the overlay intervening on the network

topology; (ii) the Loop Check procedure that checks the presence of bounded loops in the

mesh graph. The logical links between peers are managed on the basis of the peers’ state of

health: this parameter summarizes the condition of available resources in the peer and the

quality of its overlay relationships. StreamComplete entrusts the video stream on top of

the RTP/UDP protocol and the control traffic on top of the TCP protocol. Thanks to the

StreamComplete’s modularity, exchanging the video stream technology without involving

the core engine of the application is very easy.

We have extensively evaluated StreamComplete’s performance and behavior over al-

most all the nodes of the PlanetLab testbeda. The result demonstrates the ability of peers of

joining the system in only few seconds. All the algorithms of network control and optimiza-

tion generate almost zero additional traffic, when compared with data traffic. The network

reacts very well in case of departing or high churn rate. The average node degree is low, in

agreement with the small worlds property [15].

This paper is organized as follows: Section 2 compares with some related works, Section

3 presents the system, whereas Section 4 introduces and discuss the algorithms conceived for

the system. Section 5 presents the experimental evaluation, and finally Section 6 concludes

the paper.

2 Related Works

In this section we compare the main academic (i.e., Chunkyspread [5], CrossFlux [6], Cool-

Streaming [7], Prime [8, 9], LSONet [10], Rainbow [11], Tribler [14], GridMedia [19, 20])

and commercial (i.e., Joost [12], BabelGum [13]) proposals in order to identify similarities,

differences, pros and cons.

2.1 Background

The key characteristics of a P2P-TV system is, first, the use of a pure or hybrid P2P approach

and, second, the topological organisation of the overlay network. Hybrid P2P approach means

aPlanetLab – http://www.planet-lab.org/ is a global research network, consisting of different nodes whose
number ranges from 150 to 400 and over, ideally with a maximum of 800, that allows distributed experiments.

206 StreamComplete - Mesh-based P2P Live Video Streaming

that there is also the use of a client/server architecture embedded into some points of the

overlay network, usually dedicated to solve specific sub-problems of the service: this is the

case of Joost, BabelGum, GridMedia and of all the BitTorrent-based systems, like Tribler.

Furthermore, there are two main possible architectures for the overlay network: the tree-

based or the mesh-based (also called gossip-based). The first one organizes the peers in a

tree structure, in which every peer receives the stream from its unique parent and forward

the same signal to all its children; the second one organizes the peers in a mesh graph, with

a quite casual number of parent/child relationships.

One of the main differences between tree- and gossip-based approaches is either the pres-

ence or not of a loop avoidance or detection procedure: only tree-based systems (Chuncky-

spread, CrossFlux) avoid building loops, conversely mesh-based systems there is an attention

to the best network configuration, based on partial knowledge of the overlay (CoolStreaming,

Rainbow), on congestion control (Prime), on the number of friendship relations (Tribler), on

the minimum RTT (GridMedia) or on an approximate solution of a particular optimization

problem (LSONet). StreamComplete, although it is based on a mesh graph approach,

provides a loop detection module plus a particular optimization procedure, in order to avoid

bottlenecks and disadvantageous network configurations.

All the analyzed academic systems realize the join procedure (the phase in which a new

peer connects itself to the overlay network) on the basis of a centralized node, that is, a login

server or a bootstrapping node known a priori: this solution may cause a possible lack of

scalability. StreamComplete, instead, provide a distributed join algorithm.

Together with procedures for overlay network’s building and management, a P2P stream-

ing system must decide which logical connections to use in order to transmit the video signal:

this is the task of the so-called scheduling algorithm. In a tree-based system, the video

stream must follow the entire previously built tree topology. In a mesh graph, conversely, the

scheduling algorithm is more complex as of the greater freedom in choosing the signal routing.

Nowadays, there are not universal results to state that the mesh topology is better than

the tree one, or vice versa. Indeed, the relative pros and cons are very clear. The mesh

approach must balance the difficult trade-off between control traffic overhead versus delay in

delivering packets. Instead, the tree-based systems have a continuity-versus-delay tradeoff.

Namely, if in the tree a node’s parent crashes or leaves the overlay network, then the same

node will not receive packets until it find a new parent. If the node wishes to continuously

play out packets to the application, then it must buffer enough packets to bridge the gap. So,

the main difference between these two different approaches is that the mesh-based systems

can be more failures and disconnections resilient but keeping low the traffic overhead it is

not so easy, whereas in tree-based systems there is in general a more efficient videostream

forwarding but with a big effort in order to guarantee the continuity of playback in case of

churn. In particular, if a multi-tree network can spread one packet from the source to all

other peers with O(n) forwarding, the gossip approach needs O(n log n) forwardings [4].

Finally, the robustness of P2P networks can be increased by using either data redundancy

or path redundancy. The data are redundant because the stream is divided - but not par-

titioned - into several parts called stripes; redundant paths can be obtained using multiple

neighbors nodes in sending the same stripe so that, in case of failures, remaining peers can

continue to propagate the stream. The highest level of adaptiveness would serve all peers with

Federico Covino and Massimo Mecella 207

Fig. 2. Joost architecture

equal portion of bandwidth but, in a real context, peers offer heterogeneous upload speeds:

this situation is the reason why the bottleneck are very frequent.

2.2 Commercial Systems

Being Joost and BabelGum two commercial and proprietary products, it is hard to learn

the real technical solutions that they offer. However, [18] attempts to deduce the Joost

architecture. As depicted in Figure 2, there are five different types of servers, Joost super

nodes and Joost clients. There are also other servers in charge of various additional features

(e.g., chat), but we skip them (and they are not shown in the figure) as our focus is on the

streaming service.

The five types of servers participating in Joost are: version server, tracker server, backend

server, channel graphics server and content server:

lux-www-lo4.joost.net (version server) is responsible for checking the current version of

the software. When the Joost client (JC) is crashed, this server is also responsible for

the error reports.

lux-www-lo2.joost.net (tracker server) during the initialization with a JC, sends the

initial peer list that includes some of the super nodes and content servers. After that,

the tracker server is not involved in any of the other stages (e.g., channel browsing,

switching, etc.). Its only function is to keep track of members and help bootstrapping

new peers.

lux-backend-lo-1.joost.net (backend server) is used by clients to perform channel list

management (e.g., updating, downloading) and load balancing. Moreover, it periodi-

cally (every minute, 81 Kb traffic) communicates with the client. Indeed, the channel

management is actually not performed by a single server, but by a server cluster. That

is, the server lux-backend-lo-1.joost.net controls channel requests and keeps the

load balance among the cluster servers, whereas other cluster servers are only respon-

sible for a certain task (e.g., channel graphs downloading). E.g., there is a server,

lux-backend-13-bond0.joost.net (4.251.4.153) from which the JC downloaded the

channel graphs instead from the main server. Another task of the backend server is

providing search services for channels or specific contents.

208 StreamComplete - Mesh-based P2P Live Video Streaming

Graphics and content servers contain the delivered content. Joost deploy a serious num-

ber of such servers over the network.

Differently from other P2P applications (e.g., Skype) or overlay multicast solutions, super

nodes are only used for controlling and helping new peers to find contributing peers. They

are not responsible for relaying/forwarding media data to other peers. Peer management is

split from the media distribution, which not only eases the management but also improves

the efficiency of transmission. Differently, if a super node in Skype leaves ungracefully, all the

other peers relying on it will be unavoidably affected.

The technical solutions of BabelGum are completely unreachable. We only say that Ba-

belGum created a technology that compresses, decompresses and displays the video based on

the standard H.264. The used ports are the 1111 or alternatively the 80 and 443.

2.3 Overlay Networks

In case of a tree-based topology, like in Chunkyspread and CrossFlux, a good practice is to

organize a multi-tree structure for a better load balancing and robustness.

In ChunkySpread, the source (referred to as the true source) transmits the multicast

stream to distinct slices. Each slice is transmitted over a multicast tree: it is very interesting

that these trees are not necessarily node-disjoint.

Crossflux builds a multi tree overlay network, in which every node has one parent plus

another ghost parent (or backup parent) that is able to guarantee the tree structure in case

of first parent’s departure. Each stream is divided - but not partitioned - into parts called

stripes. The separation of the original file into stripes is performed by the source, which can

optionally generate additional stripes for error correction. For each stripe one distribution-tree

is created: this multi-tree approach increase the network reliability and allows to implement

efficient recovery policies.

In case of mesh-based topology, it is possible to design very different solutions.

CoolStreaming is data-driven: every node periodically exchanges data availability infor-

mation with a set of partners, and retrieves unavailable data from one or more suppliers. In

the data-driven approach, a node always forward data to others that are expecting the data,

with no prescribed roles like father/child, internal/external, upstreaming/downstreaming, etc.

In Rainbow the overlay network management is based on information about the geograph-

ical location of peer. Of course, the scenario of using Rainbow is the entire globe: if used

only on relatively restricted geographical areas, the potential of the system would not be

exploited to the maximum. An interesting feature of Rainbow is the two-level mesh-based

overlay network. The lower layer consists of many clusters with a root node for each cluster.

The cluster root nodes form the upper layer, the backbone network. The backbone network

and each cluster are constructed as unstructured overlays with a fixed minimum node degree.

In addition, random connections between members and clusters serve as shortcuts to reduce

network delay and bandwidth consumption.

In Prime, participating peers form a randomly connected and directed mesh. All connec-

tions in the overlay are congestion controlled and are always initiated by the corresponding

child peer. Each peer tries to maintain a sufficient number of parents that can collectively fill

its incoming access link bandwidth.

Federico Covino and Massimo Mecella 209

LSONet manages one overlay network per sub-stream and it is based on principles very

similar to CoolStreaming and Rainbow: the data-driven and the locality awareness.

The basic task of the overlay manager component on each GridMedia node is to find

appropriate neighbors for each node by gossiping.

Finally, Tribler is based on the well known BitTorrent, plus an extension called cooperative

download. An interesting add-on is called Tribler Streaming (TS), and it has been developed

for the live video P2P streaming but, at the moment, its technical solutions are not reachable.

From the review, it stems that the overlay networks can be managed in several ways.

The only universally accepted core principles are the locality awareness and the multi-path

routing, wich represent the common features of all the analyzed systems.

2.4 Joining the System

In Chunkyspread, a new peer contacts a known-a-priori rendezvous node, which must know at

least one member of the multicast group. The new node is then inserted within the group. In

CrossFlux, a new peer contacts the known-a-priori source. The request is forwarded toward

the child with the best state of health, so iteratively until finally the new node is added as a

leaf.

In the mesh-based systems, there is a higher level of freedom in join-request forwarding

and there can be a trade off between random and specific procedures. In CoolStreaming, a

new peer contacts the known-a-priori source which forwards the request to a randomly chosen

child. Rainbow is very different, as of the use of a specific login server that responds with a list

of clusters’ roots. The new peer must choose one of these and than can join the relative cluster.

Prime, instead, creates more than one connection since the beginning: a new peer contacts

a known-a-priori bootstrapping-node, which returns a random subset of nodes which start to

directly serve the new peer. LSONet tries to optimize the topology since the join-request: a

new peer contacts the nearest bootstrapping node which forwards the request to other peers.

These peers either forward the request or accept it with probably p=1/(1+sizeOf partialView),

where partialView is the overlay network subset known by the peer. Afterwards, the new node

sends data requests to its suppliers basing on the approximate solution of an optimisation

problem called OTP. GridMedia bases the joining phase on a well-known Rendezvous Point

(RP), which is deployed to assist the construction of the overlay. During the startup, a

participating node firstly contacts the RP to get a list of the nodes already in the overlay

(called candidates list). The new participant will select several nodes from the candidates

list as its initial neighbors. It first measures the Round-Trip Time (RTT) to each candidate

and then chooses some nodes with the minimum RTT as one part of its initial neighbors.

Finally, a Tribler peer, immediately after the first installation, automatically contacts, only

once, one of a set of pre-known super-peers, in order to obtain an initial list of other peers in

the system. So, it can start participating in the epidemic information dissemination. Then,

according to the BitTorrent protocol, Tribler uses Web servers and tracker servers in order to

find available data with the relative peers.

StreamComplete provides a completely distributed joining procedure processable by

any peer without prefixed roles, increasing in this way the robustness and the scalability of

the system.

210 StreamComplete - Mesh-based P2P Live Video Streaming

2.5 Run-time Management

In case of peer disconnections or failures, the overlay network topology must be managed in

order to guarantee the service without slowing down the performances. A continuous topology

monitoring and management is needed in order to avoid or to solve the bottleneck into the

overlay network: this is true for both tree- and mesh- based systems.

ChunkySpread uses a parent-switch operation in order to balance the workload and the

latency values in the packet delivery. These operations are invoked by children and must be

accepted by involved parents to avoid contemporaries switches.

Crossflux implements the so-called HeapTop algorithm to perform a father-child exchange

when the father’s bandwidth is significantly lower.

Also in this case, the mesh based systems are very heterogeneous. CoolStreaming does

not provide a real optimisation procedure, and the management of the overlay network is

based on three key modules: (1) membership manager, which helps the peers to maintain a

partial view of other overlay nodes; (2) partnership manager, which establishes and maintains

the partnerships with other nodes; (3) scheduler, which schedules the transmission of video

data. The partnerships are established with a data centric procedure that is periodically

re-invoked. In Rainbow the root-election procedure is started as often as possible in order

to find the best network configuration. Prime bases the network management mainly on the

congestion control: the links are added or removed on the basis of the bandwidth exploitation.

LSONet, also in this case, is based on the OTP approximate solution, that is recalculated in

the event of a change in data availability or in network configuration. GridMedia manages

the neighborship of each node in a traditional distributed way after login process. And all the

nodes will self-organize into an unstructured mesh. Each node has a member table initially

obtained from RP, in which each item represents an active node that is currently in the

overlay. The information of member tables is exchanged among neighbors periodically. Each

node updates its member table in accordance with the member tables sent by its neighbors.

Note that each item in the table has a field called life-time. It denotes the elapsed time since

the latest message was received from this member. When the life-time of a node exceeds the

predefined threshold, it will be removed from member table. Finally, Tribler is social-based,

that is, the entire application is based on the following principle: the similarity in content

tastes can be the founding principle for the construction of on-line communities with altruistic

behavior. The Social Networking module in Tribler is responsible for storing and providing

information regarding social groups (the group members, their recently used IP numbers,

etc.). The context information that needs to be saved in order to improve the performance

consists of information on social relations, altruism levels, peers uptimes, taste similarities,

etc. In Tribler, every piece of context information received by a peer that is relevant to

it, based on its interests and tastes, is stored locally in its so-called megacaches, and this

information is exchanged within social groups using an epidemic protocol called Buddycast.

The state of art in run-time management shows that a pure probabilistic approach is not

acceptable. All the P2P streaming systems provide some optimization policies, which can be

classified into three families: event driven, periodic or the combination of the above.

F
ed

erico
C
o
vin

o
a
n
d

M
a
ssim

o
M

ecella
2
1
1

Technology Overlay

network

Joining Run-time

Management

Scheduling Loop

avoidance

or detection

Core Princi-

ples

CHUNKY
SPREAD

Multi-tree
structure not
necessarily
node-disjoint

A rendezvous
node adds the
new peer to one
multicast group
(tree)

Parent-switch
operations in
order to balance
the workload.

The same
rules of joining
and run-time
management

Avoidance Node-degree
management
to carry the
workload closer
to the actual
target value

CROSS
FLUX

n couples of
trees, one per
stripe

The new peer
contacts the
root and finally
it is added as a
leaf

HeapTop al-
gorithm to
perform a
father-child
exchange

The same
rules of joining
and run-time
management

Avoidance Peer state of
health and
bandwidth
availability
monitoring

COOL
STREAMING

Almost random
mesh graph

The known-a-
priori source
forwards the
request to
a randomly
chosen child

Data centric The suppliers
with great-
est available
bandwidth are
preferred

None Data-driven
network and
gossiping for
membership
management

RAINBOW Network of clus-
ters

A login server
responds with a
list of cluster
roots.

Reorganisation
of the clusters
through the
root election
procedure

Pull-based
scheduling
mechanism
to notify new
available data

None Locality-aware
and pull-based
data requesting

PRIME Randomly con-
nected and di-
rected mesh

A
bootstrapping-
node returns a
random subset
of nodes

The links are
added or re-
moved on the
basis of the
bandwidth
exploitation.

Pull-based
dissemination
of the video
segments over
the pre-built
overlay

None Reduce content-
and bandwidth-
bottlenecks

LSONet One mesh
graph per per
sub-stream

Based on a
bootstrapping
node and on the
approximate
solution of an
optimisation
problem

Based on an ap-
proximate solu-
tion of an op-
timisation prob-
lem.

Based on an ap-
proximate solu-
tion of an op-
timal scheduling
problem.

None Solving an op-
timization prob-
lem in heuristic
way, maximiz-
ing the band-
width use

TRIBLER Bit-Torrent
based

Some super-
peers provide
an initial list
of the others
nodes

Based on the
similarity in
content tastes
and the altru-
istic behavior’s
level.

With the
cooperative
download, a
user invokes
the help of his
friends to speed
up downloads.

None The Bit-Torrent
extension,
called coopera-
tive download

2
1
2

S
trea

m
C
o
m

p
lete

-
M

esh
-ba

sed
P
2
P

L
ive

V
id

eo
S
trea

m
in

g

Technology Overlay

network

Joining Run-time

Management

Scheduling Loop

avoidance

or detection

Core Princi-

ples

GRIDMEDIA Almost random
mesh graph

Some Ren-
dezvous Points
assist the con-
struction of the
overlay

Gossip based
mechanism to
exchange data,
based on peers
availability

Push-pull mech-
anism over
the pre-built
overlay

None Push-pull
scheduling pro-
cedure plus a
periodic check
of the neighbor-
ship.

STREAM
COMPLETE

One workload-
driven-mesh-
graph per
stream

Joining proce-
dure process-
able by any
peers without
prefixed roles

Periodic data
dissemination of
availability and
workload of the
involved peers

Through a pull
mechanism, the
suppliers with
greater state
of health are
preferred

Detection Local optimiza-
tion and auto-
adaptability
of the overlay
topology

Table 1. Comparison of academic systems

Federico Covino and Massimo Mecella 213

2.6 Scheduling Algorithm

The scheduling algorithm manages the incoming and outgoing streams between peers, in-

tervening on the network topology. In ChunkySpread and Crossflux, being tree-based, the

algorithm coincides with the joining phase and with the run-time management of the network.

Instead, into a mesh-based system, each node knows a high number of others peers and

the scheduling procedure can be implemented in different ways. In CoolStreaming, it is an

heuristic algorithm based on the number of potential suppliers for each segment. Starting

from segments with fewer suppliers, the peer chooses the supplier with the greatest avail-

able bandwidth. Rainbow provides a pull-based scheduling where each peer sends a notify

message to its partners to declare the new available data. In Prime we have a two steps

procedure: first, there is a diffusion phase in which segments are disseminated in a pull-based

manner. In the second swarming phase, the data are sent from the peripheral peers toward

the peers closer to the source. LSONet is based on an optimisation problem : given the net-

work configuration and data and bandwidth capabilities, it is possible to define a problem of

optimal scheduling of video streaming. The scheduling algorithm consists of the approximate

solution of this problem, which is recalculated in the event of a change in the network con-

figuration. In GridMedia, the local clock of each peer is synchronized with the Rendezvous

Point. Furthermore, the system uses a push-pull mechanism: each node uses the pull method

as a startup, and after that each node will relay a packet to its neighbors as soon as the

packet arrives without explicit requests from the neighbors. Each node works under pure

pull mode in the first time interval when just joining. After that, based on the traffic from

each neighbor, the node will subscribe the pushing packets from its neighbors accordingly at

the end of each time interval. Finally, Tribler provides the so-called cooperative download: a

user invokes the help of his friends to speed up downloads. The peers that participate in a

collaborative download take one of two roles: they are either collectors or helpers. A collector

is the peer that is interested in obtaining a complete copy of a particular file, and a helper

is a peer that is recruited by a collector to assist in downloading that file. Both the collector

and the helpers start downloading the file using the classical BitTorrent Tit-for-Tat and the

collaborative download extensions. After downloading a file chunk, the helper sends it to the

collector without requesting anything in return.

Table 1 reports a synoptic view on the analyzed systems.

3 System Architecture

A StreamComplete peer is composed by three different logical layers (see Figure 3): NAO,

DO & Controller, and View.

3.1 NAO Layer

This layer is the TCP gateway to the overlay network; it performs the mapping between Java

objects and TCP packets (and vice versa) and it delivers the incoming messages to the right

StreamComplete procedure. This gateway is used only for the control traffic, i.e., for the

communications between the distributed algorithms.

In particular (see Figure 4(a)), ListenerNAO is a multithread TCP Server and starts

in the boot phase; for each new connection, this TCP server starts a new thread using

214 StreamComplete - Mesh-based P2P Live Video Streaming

Fig. 3. StreamComplete architecture

(a) TCP multithread server (b) DO classes

Fig. 4. Details of the code objects

ClientHandler, which processes any new request received from other peers. Furthermore,

it exists one NAO class for each procedure, which provides static methods for sending and

receiving particular messages through the gateway. In particular, ClientHandler recognizes

the type of received message and forward it to the appropriate NAO class. All the classes

maintain the reference to the Node me, created in the boot phase, which represents the

abstraction of the current peer.

3.2 DO & Controller Layer

It contains all the application logic; the algorithm instances manage the connections and the

knowledge of the others peers. Part of the results of the computations are delivered to the

View layer. The Domain Object (DO) package consists of three Java classes (see Figure 4(b)):

• VideoSource (also called Server) is the abstraction of the video source, i.e., the peer

that generates the original video stream. The instance variables are the IP address and

the port number, plus the identifier of the transmitted video;

Federico Covino and Massimo Mecella 215

• Node is the core domain object; it is the abstraction of the peer of the overlay network.

It maintains a reference to a VideoSource object, to its own local view (its partial

knowledge of overlay network) and to the objects of the View package. The current

Node object interacts with the View package to manage the incoming and outgoing

video streams which must be consistent with the state of the local view.

• NetNode: the local view of current node is a uniform set of NetNode objects; in each

of these objects there is the reference to a Node object, plus two flags to know if that

node is a supplier or a child or neither and the identifier of the possible video stream

(from/to that node).

The Controller package is composed by two different types of classes:

• *-Mex classes, wich implement the abstractions of the TCP control packets; each pro-

cedure uses one or more types of messages to complete its own goal; this Java messages

can have a timestamp, or a distinction between current sender and original sender (if

the message is forwarded). Each Java message transports the state of health of the

sender with some other information (node identifier, hop number, etc.). The core infor-

mation contained in these messages is the code - that we can define like the header at

the application level - that represents the procedure and the type of acknowledgement.

Almost all of the messages are made only from header and, for this reason, the control

traffc overhead in StreamComplete is very low.

• Procedure classes, wich provides methods to start the procedure or to reply to an

external request: all the procedures are distributed and require interaction between two

or more peers (see further in the following).

3.3 View Layer

It manages the incoming and outgoing video streams; it creates the right forwarding an the

basis of the information received from the domain objects. While the control traffic is over

the TCP, the data traffic is over UDP. All classes are based on the Java Media Framework

(JMF) that enables audio, video and other time-based media to be added to applications and

applets built with Java technology.

3.4 GUI

The user interface of StreamComplete has been designed in order to manage the tests

(therefore it has not an appealing look&feel as commercial products). As the reader can see

in Figure 5(a), there are three main areas: the first one, in the top left corner, prints the

status messages; down, the second one shows the main information of the actual peer; finally,

in the top right corner, there is a little control panel composed by seven buttons, each of them

dedicated to invoke one StreamComplete’s algorithm.

Once the user invokes the Join procedure, a new JMF window - with the received video

stream - is placed in the bottom right corner, as shown in Figure 5(b).

216 StreamComplete - Mesh-based P2P Live Video Streaming

(a) GUI (b) Incoming video stream

Fig. 5. StreamComplete Interface

4 STREAMCOMPLETE Algorithms

4.1 General Principles

As we discussed in Section 2, a possible approach to P2P streaming is to organize participating

peers into multiple, diverse tree-shaped overlays where each specific sub-stream of the live

content is pushed through a particular tree from the source to all interested peers. This

approach has the following potential limitations: (i) in the presence of churn, maintaining

multiple diverse trees could be very challenging; (ii) the rate of content delivery to each

peer through individual trees is limited by the minimum throughput among the upstream

connections; (iii) the outgoing bandwidth of those peers that do not have a sufficient number

of children peers or an adequate amount of new content can not be effectively utilized. This

in turn limits the scalability of the tree-based approaches.

The proposed architecture is based on a mesh overlay network and on several optimization

procedures. In the same way as in a tree based network nodes less performing are leaves,

the system centralizes the position of stronger peers: this is the core principle and it is

implemented in an innovative algorithm called Fast-Top.

StreamComplete respects the small world property b, but combines some aspects of this

paradigm with the principle of locality awareness. Two main attractive properties of a small

world network are: (1) low average hop distance between any two randomly chosen nodes,

and (2) high clustering coefficient of nodes. Having a low average hop distance implies a low

latency for object lookup, while having a high clustering coefficient implies the underlying

network can effectively provide object lookup even under heavy demands (e.g., in a flash

crowd scenario).

A way to construct a small world network is the following: (1) each node in the network

is connected to some neighboring nodes, and (2) each node keeps a small number of links to

some randomly chosen “distant” nodes. In a live video streaming scenario, is very important

that every peer has many suppliers and is very important to avoid linear chains of nodes: all

bA small world network can be viewed as a connected graph in which two randomly chosen nodes are connected
by just about six degrees of separation. In other words, the average shortest distance between two randomly
chosen nodes is approximately six hops. This property implies that one can locate information stored at any
random node of a small world network by only a small number of link traversals.

Federico Covino and Massimo Mecella 217

this is realized in StreamComplete through the Join and the Scheduling procedure and

for this reason it is very close to the first principle of the small world paradigm. But in our

scenario, the links to some randomly chosen distant nodes have to be avoided: this is due to

the principle of locality awareness applied to the live video streaming. If we do not consider the

network locality in the construction of the overlay, nearby hosts in the overlay network may

actually be far away in the underlying network. This may waste too much network resources

and, therefore, degrade performance significantly. For this reason StreamComplete allows

nodes to increase their knowledge of the overlay network only in a “blemish oil” way: a peer

knows its own neighbors, then the neighbors of the neighbors and so on. This is implemented

in the Membership procedure. All this is necessary because the StreamComplete peers

must organize themselves against the churn rate.

The probabilistic approach for network management is replaced in StreamComplete

with a careful balancing of the workload across the overlay network. The key parameter

used by StreamComplete is the state of health, which is calculated by every node and

is disseminated within each communication. The state of health’s value is based on: used

incoming bandwidth (X), used outgoing bandwidth (W), nominal bandwidth value (Y),

number of suppliers (Z) and number of hop from the video source (T). Each of this parameters

contributes to the calculation of the state of health through a specific weight. The exact

formula used is as follows (let H be the health function):

H(node) = α · X − β · W + χ · Y + δ · Z − ǫ · T

In StreamComplete, the peers with a better health must serve a higher number of nodes

and, to this end, they must position themselves in the inner part of the network. On the other

hand, all the peers with a lower level of health must position themselves in the peripheral

areas of the overlay network: this behavior resolves the problem of bottlenecks that is very

likely in the P2P networks. Thanks to this particular network management, you can consider

StreamComplete like a signal amplificator.

In the following of this section we analyze the four distributed algorithms designed in

order to build and manage the overlay network.

4.2 Joining the System

The distributed algorithm designed for joining the system (simply called Join procedure) is

able to connect the new node - in a completely distributed fashion - to more than one peer:

to connect the new peer with only another one would be too risky in presence of churns.

If the new node starts the joining with the video source, this procedure creates exactly

two connections. Furthermore, in any case, after the join to the system, the peers must start

the membership and the scheduling procedures in order to increase their local view. There

are three major steps in this procedure:

1. The new node X sends the request to one or more peers; (1-bis) on receiving the request,

a peer calculates its own available outgoing bandwidth: if it is too low, it selects the best-

health supplier with highest hop number and forwards the request to it, maintaining

the information on the original sender;

2. Otherwise, it becomes directly itself one of the suppliers of X responding with a

StartOkMex.

218 StreamComplete - Mesh-based P2P Live Video Streaming

Fig. 6. Message pattern of the Join

This particular forwarding ensures that the request does not trace the overlay network too

quickly back to the center, namely to the video source. So, StreamComplete is designed

to be completely decentralized.

Being the Join parametric w.r.t. the first peer request, the new peer could directly contact

the video source. In this case, the Join procedure tries to realize two connections: one from

the video source itself and a second from a peer with high state of health. If the video source

has not available outgoing bandwidth, the procedure realizes two connections with two generic

peers with high state of health and high hop number. The innovation introduced in the Join

consists in connecting the new node to the peripheral areas of the mesh overlay network.

Furthermore, the procedure tries to avoid the formation of linear chains in order to keep low

delays.

Figure 7 depicts a message pattern summarizing the major steps of the procedure, whose

pseudo-code is presented in Algorithm 1.

4.3 Membership

During its own lifetime, a peer increases and upgrades its partial knowledge of the overlay

network thanks to the Membership procedure, which exchanges information between couples

of peers. So, each peer maintains a local view of the overlay network. The local view’s

cardinality must be limited in order to guarantee the scalability of the system. In each peer,

the knowledge of the overlay network starts with the neighbor peers and increases to the

farthest, like an “oil spot”.

In only two step, the peers exchange their local views. This procedure can be started by

any peer at any time.

1. The peer that starts the procedure sends a LocalViewReqMex message to all the other

known peers. This particular message contains all the values of the sender’s local view.

Federico Covino and Massimo Mecella 219

Input: currentNode: Node; videoSource: Node;

Upon Event [INIT];
JoinReqMex jm;
jm.sendTo(anotherNode);

Upon Event [JoinReqMex jrm DELIVER | originalSender, sender];
if currentNode.isTheVideoSource() then

if available input bandwidth < x% of nominal input bandwidth then
Node first = first best known Node with high hop number;
Node second = second best known Node with high hop number;
jrm.forwardTo(first);
jrm.forwardTo(second);

else
currentNode.children ∪= {originalSender} ;
StartServerOkMex ssom;
ssom.sendTo(originalSender);
Node first = first best known Node with high hop number;
jrm.forwardTo(first);

end

else
if available input bandwidth < x% of nominal input bandwidth then

Node first = first best Supplier with high hop number;
jrm.forwardTo(first);

else
currentNode.children ∪= {originalSender} ;
StartOkMex som;
som.sendTo(originalSender);

end

end

Upon Event [StartServerOkMex mex DELIVER | videoSource];
currentNode.suppliers ∪= {videoSource} ;
currentNode.hopNumber = 1;

Upon Event [StartServerNotOkMex mex DELIVER | videoSource];
STOP;

Upon Event [StartOkMex mex DELIVER | sender];
currentNode.suppliers ∪= {sender} ;
currentNode.hopNumber = min{x|x = currentNode.suppliers[i].hopNumber ∀i}+1 ;

Algorithm 1: Join

220 StreamComplete - Mesh-based P2P Live Video Streaming

Fig. 7. Message pattern of the Membership

2. The peer that receives a LocalViewReqMex message updates its local view, and finally

replies with a LocalViewResMex message in which there are only information unknown

to the other peer.

This procedure has important features: (i) it has a minimum number of steps, only two;

(iii) the response message does not contain the same information of the initial request. These

properties minimize the traffic overhead introduced by the procedure.

Input: currentNode: Node; receiver: Node;

Upon Event [INIT];
LocalViewReqMex lvrm;
lvrm.sendTo(receiver);

Upon Event [LocalViewReqMex mex DELIVER | senderLocalView, sender];
currentNode.localView ∪ = {senderLocalV iew} ;
Node[] response = currentNode.localView - senderLocalV iew;
response.sendTo(sender);

Upon Event [LocalViewResMex mex DELIVER | senderLocalView, sender];
currentNode.localView ∪ = {senderLocalV iew} ;

Algorithm 2: Membership

Figure 7 depicts a message pattern summarizing the major steps of the procedure, whose

pseudo-code is presented in Algorithm 2.

4.4 Scheduling

In a P2P live streaming scenario, scheduling means to change the network topology to increase

the local performance. In StreamComplete, a peer can find new potential suppliers by

increasing its own incoming degree: higher used-incoming-bandwidth means higher state of

health. Thanks to the local view, each peer can create new incoming or outgoing video

streams: this video-stream-routing procedure (called Scheduling) also aims to balance the

workload on the basis of the suppliers’ state of health. The goal of Scheduling procedure is

to fill the incoming bandwidth with the best available suppliers: this behavior can allow to

Federico Covino and Massimo Mecella 221

Fig. 8. A possible message pattern for the Scheduling

survive even in the case of major phenomena of churn (the continuous addition/removal of

users to the system). Below, the three steps of the procedure:

1. With a new thread, a peer starts the scheduling procedure and, in this first step, orders

all its known peers by decreasing the state of health and sends to them a StartMex

message.

2. On receiving a StartMex message, a peer checks its available outgoing bandwidth and,

if it is not too low, accepts the request sending a StartOkMex message; otherwise the

peer sends a StartNotOkMex message.

3. Note that the number of new suppliers that the peer can accept is limited, so, if it

receives a positive response, it must check the available input bandwidth: if this is too

low, the peer replies with a StopMex message to interrupt the logical link; otherwise it

begins to receive the video stream. If the peer receives a negative response, it updates

the local-view data only.

Figure 8 depicts a message pattern summarizing the major steps of the procedure, whose

pseudo-code is presented in Algorithm 3.

4.5 FastTop

The proposed architecture is based on a mesh overlay network and on several optimization

procedures. As well as in a tree-based network you prefer less performing nodes as leaves,

StreamComplete centralizes the position of stronger peers: this is the core principle and

it is implemented in FastTop. It derives from this particular union and gives an “intelligent”

behavior to the network: to increase the general performance of the overlay network, it is

important to avoid the bandwidth bottleneck. Suppose that the health of a peer X is much

222 StreamComplete - Mesh-based P2P Live Video Streaming

Input: currentNode: Node;

Upon Event [INIT];
foreach Node n ∈ currentNode.localView do

StartMex sm;
sm.sendTo(n);

end

Upon Event [StartMex mex DELIVER | sender];
if sender ∈ currentNode.suppliers ∨ sender ∈ currentNode.children then STOP;
else if available output bandwidth >= x% of nominal output bandwidth then

currentNode.children ∪ = {sender} ;
StartOkMex som;
som.sendTo(sender);

else
StartNotOkMex snom;
snom.sendTo(sender);

end

Upon Event [StartOkMex mex DELIVER | sender];
if available input bandwidth >= x% of nominal input bandwidth then

currentNode.suppliers ∪ = {sender} ;
else

StopMex stopm;
stopm.sendTo(sender);

end

Upon Event [StartNotOkMex mex DELIVER | sender];
STOP;

Upon Event [StopMex mex DELIVER | sender];
currentNode.children -= {sender} ;

Algorithm 3: Scheduling

Federico Covino and Massimo Mecella 223

greater than its supplier Y: the network may have beneficial effects if we reduce the hops of

X. To this end, the low-state-of-health peer must position itself in the peripheral areas of the

network (almost like a leaf in a tree-based architecture) while all the peers with high state of

health must trace the network back to the video server and back to the central areas (almost

like the children of the tree root). In a mesh graph, swapping the position of two nodes is

very difficult. You can think to a view of a graph ordered by increasing number of hops from

a particular node, the video server: while in a tree there is only one father for each node

(excluding the root), in a mesh graph the links are very complex and a swapping procedure

must manage this complexity.

There are two main ways to implement this procedure.

A. We could reverse the two nodes in a transactional way. But in this case, swapping

the roles of X and Y is very difficult (see Figure 9(a)) because it means that we must

exchange the suppliers and the children of these two peers. This type of procedure

requires a single transaction and this is not recommended in a very dynamic scenario

with high churn. So this first solution is not good and must be avoided.

B. There is another solution that does not need transactions and that allows to reduce

the hop number of X (see Figure 9(b)). The main principle is that X must receive the

stream from the suppliers of Y: even this operation decrease the hop number. At the

same time, it is important that Y moves itself under X, that is, it is important that X

become its only supplier. This procedure must be started by the original child only if

the state of health of the supplier is extremely low.

StreamComplete uses this second solution through the following six steps procedure,

whose pseudo-code is presented in Algorithm 4.

1. The first step consists in the searching of the lowest health-state supplier: if the value

is lower than a particular percentage, the peer X can start the procedure by sending

the request messages (to the peer Y, for example);

2. On receiving a request message, peer Y checks its current health state to verify the real

gap with its child (the starter peer). So, peer Y replies with a positive or negative ack

message;

3. In case of positive ack, the peer Y itself must stop all the video streams received from

its own suppliers;

4. In case of negative ack message, the peer X only updates its own local view and stops

the procedure; otherwise, the positive ack message contains the list of Y’s suppliers: in

this case, after updating the local view, the peer X sends a request messages to them in

order to receive new video streams;

5. On receiving a positive ack message from the new suppliers, peer X can accept the new

video streams;

6. At same time, it must start a new video stream to Y which becomes, now, a child.

224 StreamComplete - Mesh-based P2P Live Video Streaming

(a) How to swap the roles of X and Y ? (b) The six steps

(c) The final solution

Fig. 9. Fast Top

Federico Covino and Massimo Mecella 225

Nevertheless, there is a problem in this solution: there is a time interval in which peer

Y does not receive any video stream: in particular from step three to step six. So, we must

re-organize the evolution of the procedure simply as follow (see Figure 9(c)):

1. FastTopReqMex from peer X to peer Y ;

2. FastTopResMex (positive or negative) from peer Y to peer X ;

3. StartOkMexFastTop from peer X to peer Y ;

4. StopMexByFastTop from peer Y to all its suppliers;

5. StartMex from peer X to all its new suppliers;

6. StartOkMex from the suppliers to peer X.

4.6 LoopCheck

Generally, the mesh-based P2P video streaming systems are developed without a loop avoid-

ance or a loop check mechanism. In particular, a loop avoidance procedure would be too

disadvantageous from a computational point of view: before adding a new link in the overlay

network, a peer should check the presence of a potential loop that involves the new link itself

but this mechanism would slow down too much all core procedures (Join, Scheduling, Fast

Top). In the “zapping” phase of a user, the system must have a near real time interaction.

Our loop check mechanism does not slow the system because (i) it is invoked after the end

of other procedures and (ii) it is correct but not complete c. In particular:

1. With a new thread, a peer sends to all its children a LoopCheckMex message which

contains: the orignial sender, the current sender, the current receiver, the bound of the

possible loops and the TTL. In this first message, TTL and bound have the same value.

A good practice is to set the bound equal to the size of the local view.

2. The received LoopCheckMex messages are analyzed: if no loop is found, the current peer

forwards the message to its children with the decreased TTL (until it is greater than

zero). If the message’s original sender is the current node itself, then there is a loop:

in this case the peer cuts off the logical link to the last sender of the message (i.e., a

supplier).

Figure 10 depicts a message pattern summarizing the major steps of the procedure, whose

pseudo-code is presented in Algorithm 5.

cCorrectness: a loop check algorithm LC is correct if, for each graph g, when LC(g) = true then g actually
contains a cycle. Completeness: a loop check algorithm LC is complete if, given a graph g, when g contains a
cycle then LC(g) = true. A correct and complete loop check algorithm, in case of n nodes graph, must check
all the possible i-hops paths where i = 2,...,n.

226 StreamComplete - Mesh-based P2P Live Video Streaming

Input: currentNode: Node; candidate: Node; gap: int;

Upon Event [INIT];
FastTopReqMex ftreqm;
ftreqm.sendoTo(candidate);

Upon Event [FastTopReqMex mex DELIVER | child];
if currentNode.health ≥ gap% of child.health then

FastTopResNotMex ftnot;
ftnot.sendoTo(child);

else
FastTopResYesMex ftyes;
ftyes.sendTo(child);
foreach Node n ∈ currentNode.suppliers do

StopMexByFastTop ftstop; ftstop.sendTo(n);
currentNode.suppliers -= {n};

end

end

Upon Event [FastTopResNotMex mex DELIVER | sender];
STOP;

Upon Event [FastTopResYesMex mex DELIVER | sender];
foreach Node n ∈ sender.suppliers do

StartMex sm;
sm.sendTo(n);

end

Upon Event [StopMexByFastTop mex DELIVER | sender];
currentNode.children -= {sender};

Upon Event [StartMex mex DELIVER | sender];
currentNode.children ∪ = {sender};
StartOkMex ftok;
ftok.sendTo(sender);

Upon Event [StartOkMex mex DELIVER | sender];
currentNode.suppliers ∪ = {sender};
StartOkMexFastTop ftsok;
ftsok.sendTo(candidate);

Upon Event [StartOkMexFastTop mex DELIVER | sender];
currentNode.suppliers ∪ = {sender};

Algorithm 4: FastTop

Federico Covino and Massimo Mecella 227

Input: currentNode: Node;

Upon Event [INIT];
foreach Node n ∈ currentNode.children do

LoopCheckMex lcm;
lcm.sendTo(n);

end

Upon Event [LoopCheckMex mex DELIVER | sender];
if sender 6= currentNode then

if mex.TTL > 0 then
mex.TTL -= 1;
foreach Node n ∈ currentNode.children do

mex.forwardTo(n);
end

else
STOP;

end

else
currentNode.suppliers -= {sender};
STOP;

end

Algorithm 5: LoopCheck

Fig. 10. A possible message pattern of the Loop Check

228 StreamComplete - Mesh-based P2P Live Video Streaming

Fig. 11. A possible message pattern of the Departure

4.7 Departure

A peer that leaves the overlay must warn the others nodes: to this end, the Departure

procedure achieves a controlled network flooding warning. Each message is forwarded a limited

number of times, generally equal to the local view’s cardinality. After a departure, the local

overlay region re-organizes the network topology through the Scheduling and Membership

procedures. In particular:

1. the departing peer sends a DepartureMex message to all the nodes of its local view,

with the TTL set to bound value.

2. On receiving a DepartureMex message, a peer deletes the original sender from its own

local view and then it forwards the message - with decreased TTL - to all known peers.

Input: currentNode: Node;

Upon Event [INIT];
foreach Node n ∈ currentNode.localView do

DepartureMex dm;
dm.sendTo(n);

end

Upon Event [DepartureMex mex DELIVER | sender];
currentNode.localView -= {sender};
if mex.TTL > 0 then

mex.TTL -= 1;
foreach Node n ∈ currentNode.localView do

mex.forwardTo(n);
end

end

Algorithm 6: Departure

A possible message pattern is as shown in Figure 11, and the simple pseudo-code is in

Algorithm 6.

5 Experimental Evaluation

We have extensively evaluated StreamComplete over the PlanetLab. As of the strong

constraints of the PlanetLab testbed, the user interface is substituted by an appropriate

Federico Covino and Massimo Mecella 229

module that simulates the bandwidth use. Tests ran over almost all the nodes of PlanetLab,

with a number of different nodes that ranges from about 150 to 400 or over, with a maximum

of about 800 (April, May and June, 2008). The StreamComplete prototype has been

deployed through the PlanetLab Experiment Manager (PlMan) software of the University of

Washington. Thanks to the PlMan, it is easy to send SSH commands to all the slice’ nodes.

The video source peer was the planetlab-1.dis.uniroma1.it node. In each node,

through a local MySQL database, we measured the performance of the algorithms, in terms

of time and generated control traffic. Furthermore, we log the evolution of the local-views.

In order to reproduce realistic scenarios, with heterogeneous peers and variable churn

rate and video frame rate, we conducted multiple executions of the system with different

parameters. To this end, we fixed a set of session parameters, in particular:

1. video frame rate: the video frame rate ranges from about 30 Kbps to 100 kbps,

depending on the quality of the video capture device;

2. churn rate: in the video streaming context, the rate of departing or joining of the

peers depends on either failures and the “zapping” of the users themselves across the

available videos. In particular, ever x minutes there is a range [w,t] of time in which

peers can disconnect and re-connect themselves with probability p;

3. max local-view cardinality: each peer has not to know all the overlay network’s

nodes, for this reason StreamComplete limits the maximum local-view cardinality in

a range from 10 to 100 peers.

4. available bandwidth: in our experiments, each peer can have a xDSL connection that

range in the following set: 2 Mbps, 4 Mbps or 7 Mbps.

Furthermore, the state of health calculus is as follow (let H be the health function):

H(node) = 0.2 · X − 0.35 · W + 0.25 · Y + 0.15 · Z − 0.05 · T

StreamComplete has been tested into five realistic scenarios, in order to simulate five

possible applications of such a system. The first one is about the professional entertainment

which assumes a high video frame rate and a quite high maximum local-view cardinality.

Because of the high video quality, the 50% of the population has the fastest internet connection

and only the 20% has the slowest. The churn rate is medium. So, in this first scenario we

assumes the presence of a professional provider and of nodes with high performance.

Below, all the details:

• Video frame rate: 100 kbps;

• Churn rate: x=3, w=0, t=2, p=0.4;

• Max local-view cardinality: 60 peers;

• Nodes bandwidth population: 20% @ 2 Mbps, 30% @ 4 Mbps, 50% @ 7Mbps.

The second scenario simulates an amatorial entertainment context and for this reason it

is quite similar to the first one, even if it presents lower video-quality and a consequent higher

maximum local-view cardinality. The typical context is a P2P television with user generated

contents. Below, all the details:

230 StreamComplete - Mesh-based P2P Live Video Streaming

• Video frame rate: 60 kbps;

• Churn rate: x=3, w=0, t=2, p=0.4;

• Max local-view cardinality: 100 peers;

• Nodes bandwidth population: 20% @ 2 Mbps, 30% @ 4 Mbps, 50% @ 7Mbps.

The third scenario is about private security, for example the surveillance of a private office,

in which only the deployment of few high-quality devices is requested. In this particular

scenario the churn rate is very low, and only two kinds of nodes exist: devices with slow

connection (PDAs, wireless devices, etc.) and high performance nodes (i.e., the nodes of the

control center). Below, all the details:

• Video frame rate: 60 kbps;

• Churn rate: x=3, w=0, t=2, p=0.3;

• Max local-view cardinality: 20 peers;

• Nodes bandwidth population: 20% @ 2 Mbps, 0% @ 4 Mbps, 80% @ 7Mbps.

The fourth scenario is quite similar to the previous, since it simulates the public security,

in particular the environmental monitoring : monitoring of streets, public places, mountains,

volcanos, etc. In this case, the video quality could be lower than the previous but, at the

same time, the maximum local view cardinality could be higher and the nodes bandwidth

population more complex, because of legagy devices or slow wireless connections. Below, all

the details:

• Video frame rate: 50 kbps;

• Churn rate: x=3, w=0, t=2, p=0.3;

• Max local-view cardinality: 40 peers;

• Nodes bandwidth population: 50% @ 2 Mbps, 30% @ 4 Mbps, 20% @ 7Mbps.

Finally, the fifth scenario has been designed in order to put StreamComplete under

stress and in order to study the ability of the system to react in case of a very dinamic

scenario. For all this reasons, the fifth scenario is called stress. Below, all the details:

• Video frame rate: 40 kbps;

• Churn rate: x=2, w=0, t=1, p=0.7;

• Max local-view cardinality: 100 peers;

• Nodes bandwidth population: 60% @ 2 Mbps, 0% @ 4 Mbps, 40% @ 7Mbps.

Federico Covino and Massimo Mecella 231

SCENARIO Num. of runs
/ Num. of
messages

1 - Professional Entertainment 6,604 / 144,571
2 - Amatorial Entertainment 4,460 / 121,527
3 - Security 2,907 / 70,217
4 - Environmental Monitoring 4,215 / 142,777
5 - Stress 3,950 / 105,731

Table 2. Data collected during testings

(a) Performance (b) Average control traffic

Fig. 12. Join procedure

We totally collected data on 22.136 runs of the algorithms with 584.823 messages ex-

changed between the nodes.

The traffic and time data are shown into double charts, in which the bar chart represents

the time performance (relative scale on the left) and the line represent the average size of

control packets (relative scale on the right); everything is grouped by scenarios.

Join Procedure. Figure 12(a) demonstrates the ability of peers of joining the system and

receiving the video stream in only few seconds. As shown in the figure, the scale of seconds

ranges from 0 to 60, being the initialization period of DOnet [7] of about one minute. In the

first scenario we registered an average time of 5.2 seconds and 15,5 in the fourth one: this

range depends on the current workload of PlanetLab. Note that in the stress scenario we

registered an average time of only 9.9 seconds. The average size of control packet is about

180 bytes, which is irrelevant in terms of total traffic.

Furthermore, we analyzed the control traffic of the Join procedure. Each peer, during

the joining phase, generates a very low control traffic. This is a very important result that

demonstrates the ability of StreamComplete in solving one of the main problems of the

P2P networks: the control traffic’s overhead. In particular, Figure 12(b) shows the average

control traffic of a single run, for each scenario. Note that, in joining the overlay network,

each peer generates, in average, at most 0.52 KB.

FastTop. Figure 13(a) shows the performance of FastTop. In the different scenarios we regis-

tered times that range from 18 to 46 seconds, including disconnections and the re-activations

of all the involved video streaming. Note that FastTop is much more complex and distributed

than all the others algorithms. Furthermore, this procedure is scalable w.r.t. the overlay

workload: in the fifth scenario, which is the more stressful, we registered a result similar to

the others (average of 32.795 seconds with a minimum of 1.694 seconds). So, StreamCom-

232 StreamComplete - Mesh-based P2P Live Video Streaming

(a) Performance (b) Average control traffic

Fig. 13. Fast Top procedure

(a) Distribution of number of hops in the first
scenario

(b) Loop Check performance, grouped by scenario

(c) Loop Check - average traffic (KB) per run

Fig. 14. Loop Check procedure

plete reacts very well in case of very dynamic cases with high churn rate. The average size

of the control packet is about 150 bytes.

Another import result of our experiments is the very low average control traffic of FastTop.

This complex procedure, in average, takes at most 0.56 KB per run (see Figure 13(b)). So,

this procedure can be used very often without slowing down peers and, at the same time,

increasing the overall performance of the overlay network.

Obviously, the FastTop procedure is invoked only in particular network configuration and,

for this reason, the number of runs is quite low.

Loop Check. We analyze some important aspects: first, the average number of hops of the

messages, that is, the average number of forwarding of each message; second, the generated

traffic. The results are directly proportional to the configuration of the scenarios. For example,

the stress one: in this case we registered the highest average hops number and this depends

on the local view cardinality and on the high out-degree of nodes. In any case, the design

Federico Covino and Massimo Mecella 233

SCENARIO Average hops
number

1 - Professional Entertainment 3.44
2 - Amatorial Entertainment 2.69
3 - Security 3.55
4 - Environmental Monitoring 2.61
5 - Stress 5.87

Table 3. Loop Check Performance, grouped by scenario

of all the procedures avoids, in most cases, the formation of loops, since the joining to the

system.

In average, the majority part of the Loop Check message is forwarded at most six times.

For example, Figure 14(a) shows the details of the Loop Check procedure in the first scenario

(professional entertainment): note that the y-axis is logarithmic and the 84,71% of all the

messages are forwarded at most six times. Being a LoopCheckMex forwarded from a peer to

each own child, the number of hops also represents the average length of the walks of the

video stream. So, a low average hops number confirms that StreamComplete can organize

the mesh graph in compliance with two main properties of the small world networks.

From the point of view of generated traffic, Figure 14(c) shows very low values in average

KB per runs. Obviously, in this case the generated traffic is a little more than the other

analyzed procedures, since the Loop Check makes a partial flow of the overlay network. In

any case, comparing this values with a realistic amount of KB of the video traffic, Loop Check

provides excellent result like the other algorithms.

5.1 Video Demonstration

We have realized a video demonstration of the Join procedure, available at

www.dis.uniroma1.it/pub/mecella/projects/StreamComplete. The video shows a run-

ning of StreamComplete, made with eleven peers and using a non-professional video-

capture device. The evolution of the initial join phase is described through black arrows (see

Figure 15(a)). The first peer that requests the service is pc10, followed by giam46, dell64 and

so on: the arrows’ labels show the temporal evolution of the joining. Note that StreamCom-

plete avoids linear chains since this phase and, at the same time, it makes a first workload

balancing through the double initial connections.

In this demonstration (for reasons of visual clarity of the video), in addition to the join

phase, only one execution of the Scheduling procedure is shown, and it is invoked by the last

peer, called petr55 (see Figure 15(b)). The peers rago45 and giam46 are very close to the

video source and have a very low number of outgoing connection: finally, they are the two

best state of health peers and the Scheduling procedure is able to detect them in order to fill

up the petr55 ’s incoming bandwidth - creates a new video stream from the two best peers -

from the free outgoing bandwidth’s point of view.

6 Conclusions

Every P2P network is a computing power and transmission amplifier. With the increasing

connectivity and bandwidth availability, it is possible to develop critical systems in a P2P

234 StreamComplete - Mesh-based P2P Live Video Streaming

(a) An evolution of the Join Procedure (b) Petr55 invokes the Scheduling procedure

Fig. 15. Demonstration

fashion, especially in case of multimedia applications. StreamComplete realizes local op-

timizations thanks to an autonomic behavior of the peers. The tests of the proposed system

demonstrates the low time of connection, the ability of peers in re-organizing the network

topology in a completely distributed manner and the very low traffic overhead.

References

1. X. Ye, J. Zhang, J. Wang. Architecture of HIKEC: An IMS-based Mobile P2P File Sharing Service.
Proc. ICCT 2006.

2. J.H. Kim, J.W. Song, T.H. Kim, J.H. Lee, K.J. Lee, J.S. Han, S.B. Yang. Reliability Schemes for
P2P Systems in Dynamic Mobile Environments. Proc. CSA 2008.

3. G. Gehlen, F. Aijaz, Y. Zhu, B. Walke. Mobile P2P Web Service Creation using SIP. Mobile
Information Systems, 3(3-4): 165-185, 2007.

4. S. Agarwal, S. Dube. Gossip Based Streaming with Incentives for Peer Collaboration. Proc. ISM
2006.

5. V. Venkararaman et al. Chunkyspread: Heterogeneous Unstructured Tree-Based Peer-to-Peer Mul-
ticast. Proc. ICNP 2006.

6. M. Schiely, P. Felber. Tit-for-tat Revisited: Trading Bandwidth for Reliability in P2P Media
Streaming. Technical Report 2007.

7. X. Zhang, J. Liu, B. Li, P. Yum. CoolStreaming/DONet: A Data-driven Overlay Network for
Peer-to-Peer Live Media Streaming. Proc. INFOCOM 2005.

8. N. Magharei, R. Rejaie. PRIME: Peer-to-Peer Receiver-drIven MEsh-based Streaming. Proc. IN-
FOCOM 2007.

9. N. Magharei, G. Yang, R. Reza. Issues in Offering Live P2P Streaming Service to Residential
Users. Proc. CCNC 2007.

10. H. Guo, K.T. Lo, C.T. Cheng. Overlay Networks Construction for Multilayered Live Media Stream-
ing. Proc. ISM 2006.

Federico Covino and Massimo Mecella 235

11. Y. Chen, B. Deng, X. Li. Rainbow: a Locality-aware Peer-to-Peer Overlay Multicast System. Proc.
Grid and Cooperative Computing Workshop, 2006.

12. Joost, web site: http://www.joost.com/
13. BabelGum, web site: http://www.babelgum.com/
14. J.A. Pouwelse, P.Garbacki, J.Wang, A.Bakker, J.Yang, A. Iosup, D.H.J.Epema, M.Reinders,

M.R.vanSteen, H.J. Sips. TRIBLER: a social-based peer-to-peer system. 2007 John Wiley & Sons.
15. K.Y.K. Hui, J.C.S. Lui, D.Y. Yau. Small World Overlay P2P Networks. Proc. IWQOS 2004.
16. F. Covino, M. Mecella STREAMCOMPLETE: an Architecture for Mesh-based Peer-to-Peer Live

Video Streaming. Proc. CCNC 2009.
17. B. Li, H. Yin Peer-to-Peer Live Video Streaming on the Internet: Issues, Existing Approaches,

and Challenges. IEEE Communications Magazine, 2007
18. J. Lei, L. Shi, X. Fu An Experimental Analysis of Joost Peer-to-Peer VoD Service. Technical

Report No. IFI-TB-2007-03, Institute of Computer Science, University of Goettingen, Goettingen,
Germany, October 2007.

19. M. Zhang, L. Zhao, Y. Tang, J.G. Luo, S.Q. Yang Large-Scale Live Media Streaming over Peer-
to-Peer Networks through Global Internet. Proc. P2PMMS 2005.

20. M. Zhang, J.G. Luo, L. Zhao, S.Q. Yang A Peer-to-Peer Network for Live Media Streaming -
Using a Push-Pull Approach. Proc. MM 2005.

21. Y. Chu, S. G. Rao, and H. Zhang A Case for End System Multicast. Proc. ACM Sigmetrics 2000.

Appendix

In Figure 16, we show the details of each scenario for the Join procedure. Note that, in all

the nodes, the algorithms run n times, from the initial joining to the system until the end of

the life time. So, the increasing number of runs scans the advance of time: this parameter is

used in the x-axis. Instead, in the y-axis you can find the time of execution in milliseconds.

In the analysis of our experiments, we use a data filter in order to cut off the main spikes.

For correctness, this filter is not too strong, so you can see some spikes even in the charts.

An interesting aspect of these charts is the presence of a trend line (in bold black): this

line is the average trend of the time performance and it shows an important quality of the

Join procedure. Note that the increasing of the number of runs dovetails with the increasing

of the time and with the increasing of the overlay network’s cardinality. So, the trend line

demonstrates that the Join procedure (like all the other procedures) is scalable w.r.t. the

number of peers. This is a very important result, being StreamComplete realized in order

to transmit a video signal from one source to a very large number of users.

Figure 17 provides details on FastTop: the trend line demonstrates that this procedure is

scalable w.r.t. the overlay network cardinality. Furthermore, note that Fast Top reacts very

well even in case of high churn rate (5th scenario).

236 StreamComplete - Mesh-based P2P Live Video Streaming

(a) Professional Entertainment (b) Amatorial Entertainment

(c) Security (d) Environmental Monitoring

(e) Stress

Fig. 16. Join

Federico Covino and Massimo Mecella 237

(a) Professional Entertainment (b) Amatorial Entertainment

(c) Security (d) Environmental Monitoring

(e) Stress

Fig. 17. Fast Top

