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This paper studies opportunistic distributed scheduling in an ad hoc wireless network,
assuming partial orthogonality among multiple transmitters. The approach is based on
game theory. A fair distributed scheduling scheme in a time-correlated channel is defined
using a synchronous game for highly orthogonal transmitters and using an asynchronous

game based on one-at-a-time transmission otherwise. Distributed game heuristics only
require local node level information but still achieve a significant portion (at least 80
% in example cases) of the sum of rates obtained using coalitional uplink proportional

fair scheduling for a wide range of orthogonality factors. An asynchronous game based
on one-at-a-time transmission performs well relative to PFS for non-orthogonal trans-
mitters. In addition to noncooperative game models, a cooperative game model for
threshold-based scheduling is studied.
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1 Introduction

Distributed wireless networks such as ad hoc networks, wireless local area networks (WLANs)

and mesh networks give diverse new challenges to wireless research, including distributed im-

plementation of scheduling [1, 2, 3], the estimation of link lifetime in routing [4] and cooper-

ative caching in mobile environments [5]. This paper addresses scheduling in a decentralized

wireless network (e.g. ad hoc network) where each mobile node makes its own scheduling

decision based on local channel information, given its scheduling threshold.

Distributed resource allocation is studied using noncooperative (and cooperative) game

theory, cf. [6, 1, 7]. The main contribution of this paper is in studying novel threshold-based

heuristics for distributed wireless scheduling, taking orthogonality between transmitters [8] into

account. The focus in on opportunistic scheduling schemes [9], seeking to exploit the channel

variations. A noncooperative game-theory approach with dynamic pricing has been applied

to distributed wireless scheduling in [10, 11] and in [12]. Perhaps closest to this paper (based

on [10]) is [1], also addressing distributed opportunistic scheduling; like [11], [1] has recently
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applied an optimal stopping approach to determining scheduling thresholds in a memory-

less channel, assuming at most one user may transmit at a time. In this paper, scheduling

thresholds based on QoS-balancing over time are studied assuming a time-correlated channel,

allowing for multiple users to transmit simultaneously. Noncooperative scheduling is studied

assuming binary transmit powers given user-specific QoS-balancing thresholds. Threshold-

based scheduling enhances energy-efficiency: a user transmits only if its rate meets or exceeds

its threshold. The focus is on scheduling schemes with a resource price that is based on a

dynamic game model of the scheduling problem. [12] is based on a resource price derived

from a static (atemporal) resource allocation model.

In distributed noncooperative scheduling the scheduling decision is based on local infor-

mation whereas traditionally, the wireless scheduling decision requires network-wide channel

information. Traditional (centralized) uplink scheduling algorithms for CDMA packet-data

systems have been recently addressed in [8] where scheduling is studied for different values

of the orthogonality factor f ∈ [0, 1], capturing the effect of limited orthogonality among the

user codes. Efficient scheduling schemes were observed to imply simultaneous transmission

for users with weak channels and one-at-a-time transmission for users with strong channels.

This paper also studies the role of the orthogonality factor for the performance of distributed

scheduling. This paper is based on [10], extending it in two ways: first, distributed schedul-

ing is studied relative to uplink proportional fair (UPF) scheduling [8] ([10] only considered

PFS (proportional fair scheduling) as a point of comparison). Second, as the performance

gap between distributed and UPF scheduling appears large an additional stable-set heuristic

motivated by co-operative game theory [13] is studied, in order to reduce the performance

gap.

The organization is as follows. Section 2 summarizes the wireless scheduling problem and

then presents game models for distributed scheduling. Section 3 presents numerical examples.

Experiments suggest, for example, that an asynchronous scheduling game with one-at-a-time

transmission performs well relative to PFS even though the game model only requires local

information. Section 4 studies coalitional scheduling based on UPF [8] in comparison to dis-

tributed scheduling. A stable-set heuristic based on collaborative scheduling is introduced;

furthermore, cooperative scheduling based on stable sets is shown to be equivalent to dis-

tributed scheduling based on a noncooperative game. Conclusions are presented in section

5.

2 Scheduling in a Packet-Data Network

In a survey on wireless scheduling, [14] identifies two characteristic traffic models: first, in an

infinitely backlogged model each user always has data to transmit, and the scheduler needs

to determine at each time slot the user(s) allowed to transmit, based on channel information

regarding channel state of each user; second, in a model based on an arrival process the

scheduler receives a vector describing the amount of data for each user in addition to a

channel-state vector. This paper focuses on scheduling in an infinitely backlogged model with

a time-correlated or stationary (memoryless) channel. In the absence of an arrival process

queue size performance is studied in terms of the sum of rates. Given two types of traffic

model and considering two main types of channel model, stationary or nonstationary, wireless

scheduling models can be classified to four main types [14].
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Section 2.1 introduces the scheduling problem in an infinitely backlogged packet data

network. In a distributed self-organizing network there is no centralized scheduler to determine

the transmission schedule; section 2.2 presents a distributed scheduling scheme based on

dynamic non-cooperative game theory [15]. Simplified heuristics for distributed scheduling

are formalized in 2.3.

2.1 Centralized Scheduling

Consider the scheduling problem in a time-slotted multipoint-to-point interference channel

(e.g. CDMA) with m users. Denote the link gain between node i and the destination node at

time slot t by gi(t) and denote by xi(t) the transmit power of node i at time t. The link gain

parameters gi(t) are assumed to be known during slot t but the future values are Rayleigh

distributed random variables. Denote an orthogonality factor between transmitting users by

f , capturing nonorthogonal signalling e.g. spreading codes. The signal-to-noise ratio (SNR)

of node i at time i is

γi(t) =
gi(t)xi(t)

f
∑

j 6=i gj(t)xj(t) + e(t)
(1)

where e(t) is external noise power at time t. In a multi-receiver model (1) can be more

generally written as

γi(t) =
gii(t)xi(t)

f
∑

j 6=i gij(t)xj(t) + e(t)
, (2)

where gij denotes the received power of user j’s transmission at user i’s receiver. The inter-

ference power at user is receiver is defined as

Ii(t) =
∑

j 6=i

gj(t)xj(t). (3)

For simplicity, the orthogonality factor f , modifying Ii(t) in (1) and (2) will be assumed to

be a fixed constant, same across users.

Let

αi(t) = log2(1 + γi(t)) (4)

denote the transmission rate of node i at t. Define sequence xi as

xi = {xi(t)}t=1,...,T , (5)

where T < ∞ denotes the scheduling horizon. Letting {wi(t)} denote a given set of weights

at t, the centralized scheduling problem can be stated e.g. as:

max
{xi}i=1,...,m

E[
∑

t

∑

i

wi(t)αi(t)] s.t. xi(t) ∈ [0, x̄i],
∑

t

xi(t) ≤ Ri

where x̄i denotes the maximum power constraint of user i, and Ri is the aggregate resource

constraint of i. For example, in [11],

wi(t) = bi(t)

where bi(t) = bt
i and bi ∈ [0, 1] denotes the delay-discount factor of node i. [11] considered

discrete choice with xi(t) ∈ {0, 1} ∀i ∀t. For simplicity [11] was based on assuming either
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constant or a memoryless link gain process. Assume Ri ≤ T, i = 1, ...,m. Consider a binary

decision problem at each t, with the upper power constraint x̄i = 1, i = 1, ...,m.

To take long-term fairness in rate allocation into account, the centralized scheduling prob-

lem could be posed in terms of a sum of logarithmic utilities:

max
{xi}

lim
t→∞

m
∑

i=1

log2(Ti(t)), (6)

where Ti(t) =
∑t

v=1 αi(t)/t denotes average rate of i at t. It has been shown in literature

(e.g. [16]) that formulation (6) is consistent with proportional fair scheduling (PFS) criterion,

allocating slot t to the user with maximum rate relative to its expected rate [9]:

max
i

αi(t)

E(αi)
. (7)

2.2 Distributed Scheduling

In a distributed system there is no centralized scheduler to make the scheduling decisions; fur-

thermore, in a fully distributed network (e.g. ad hoc network) there is only local information

available for decision-making. In a distributed wireless network the scheduling decisions are

made by the nodes themselves, based on local information on interference and link parameters.

To model distributed resource allocation, noncooperative game theory [13] will be applied

first. A noncooperative game is defined in terms of a set of players M (users i = 1, ...,m),

strategy sets Si of players i = 1, ..,m and utility functions of players. The utility optimization

of user i = 1, ..,m in a dynamic scheduling problem can be stated as

max
xi∈{0,1}T

E[

T
∑

t=1

btαi(xi(t))], xi(t) ∈ {0, 1}, (8)

where for simplicity only binary strategies are considered:

Si = {0, 1}, i = 1, ...,m.

Define the sequence xi as in equation (5), and let

x−i(t) = {x1(t), .., xi−1(t), xi+1(t), .., xm(t)},

x−i = {x−i(t)}t and

Vi(xi, x−i) =
T

∑

t=1

btαi(xi(t), x−i(t)).

Definition 1 Nash equilibrium (NE) for the scheduling game defined by m objective functions

(8) is defined as a vector {x∗
i } satisfying for each i = 1, ...,m,

E(Vi(x
∗
i , x

∗
−i)) ≥ E(Vi(xi, x

∗
−i)), ∀xi ∈ ST

i . (9)
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Assuming a stationary link gain process {gi(t)}, i = 1, ..,m [11] considers a dynamic

programming model for the distributed scheduling problem defined by utility functions as in

(8): in a stage game a time t each user i = 1, ..,m solves

vi,t(αi(t)) = max
xi(t)∈{0,1}

{αi(t), bEvi,t+1(αi(t + 1))}, (10)

where vi,t denotes the value function of i at t and where for simplicity a constant discount

factor is assumed: bi(t) = b, i = 1, ...,m. Threshold-based scheduling according to (10)

implies setting

xi(t) =

{

1 if αi(t) ≥ ᾱi

0 otherwise,
(11)

where the transmission threshold ᾱ(t) is defined as the solution to the fixed point equation

(cf. [11, 1]):

ᾱi(t) = bE(vi(ᾱi(t))) = b[

∫ ᾱi(t)

0

ᾱi(t)dF (t) +

∫ ∞

ᾱi(t)

αi(t)dF (t)]. (12)

According to (11), it is optimal for user i to use its scarce resource at t only if its rate at t

meets the scheduling threshold at t. Otherwise, it is better to postpone transmission. A key

difference to the optimal stopping scheduling rules in [11, 1] in equations (11)-(12) is a time-

dependent threshold ᾱi(t) due to assuming a time-correlated Rayleigh channel environment.

Assuming memoryless channel in [11, 1] simplifies the scheduling problem to finding a single

optimal threshold.

The following modifications to the scheduling scheme in [11] are studied in what follows:

• Both synchronous and asynchronous decision making are considered.

• The case of a time-correlated channel will be considered, in addition to a stationary

channel.

• The role of the orthogonality factor f for distributed scheduling is addressed; The

approximate SNR, gi(t)xi(t)/
∑m

i=1 gi(t)xi(t), of i in [11] will be replaced by the rate of

i, αi(t) in (4).

• A cooperative game heuristic will be studied in section 4.

For scheduling in a time-correlated channel greedy heuristics are proposed in what follows.

2.3 Heuristics for Distributed Scheduling

In a dynamic noncooperative equilibrium all m allocation problems in eq. (8) would need to

be simultaneously solved for a dynamic Nash equilibrium [15]. The transmission thresholds

{ᾱi(t)}, could in principle be solved using dynamic programming. However, even for fixed

x−i(t), ᾱi(t) is hard to solve as it depends on both gi(t) and on f
∑

j 6=i gj(t)xj(t), where the

parameters gj(t), j 6= i are not known by node i; also, ᾱi(t) depends on the remaining amount

of resources at t, Ri(t) = Ri −
∑

k<t xi(k), further increasing the state space of the problem.

A simple greedy heuristic suggested by the scheduling model (10) developed for stationary

channels is to consider the scheduling problem as a repeated game where the stage game at

time t is defined by the m objective functions at t:

ui(xi(t)) = αi(xi(t)) − Pi(t)xi(t), i = 1, ..,m, (13)
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where a resource price Pi(t) approximates the optimal threshold:

Pi(t) ≈ ᾱi(t).

Pi(t) captures the opportunity cost of postponing transmission and simplifies the scheduling

problem to a dynamic game consisting of a series of stage games. NE in a stage game at t

can be defined as a vector {x∗
i (t)}

m
i=1 such that for all i = 1, ...,m

ui(x
∗
i (t), x

∗
−i(t)) ≥ ui(xi(t), x

∗
−i(t)), ∀xi ∈ Si.

Recently, [12] has studied price-based distributed resource allocation using noncooperative

game theory. In [12], the focus is on a resource price pi(t), derived from a user-specific power

constraint defined for a static (atemporal) game. Letting x̄i denote the maximum power of

user i, the price adjustment rule proposed by [12] can be stated as

pi(t) = max{0, pi(t − 1) + c(xi(t − 1) − x̄i)}, (14)

where c > 0 denotes a price adjustment parameter; the resource price of node i is reduced by

c whenever resource is not used by i. The underlying optimization problem is stated as:

max
∑

i

Ui(αi(xi)), 0 ≤ xi ≤ x̄i, i = 1, ...,m, (15)

where Ui is the (gross) utility function of node i (whereas ui in (13) is a net utility). Problem

(15) is a static resource allocation problem, implying a resource-pricing heuristic:

Definition 2 A resource-pricing heuristic is defined as follows: at time t each user simulta-

neously solves

max
xi∈Si

αi(gi(t), Ii(t − 1)) − pi(t)xi(t),

where interference power Ii(t − 1) (eq. 3) is assumed to be signalled to node i, where pi(t) is

defined in (14) and where Ui(αi) = αi, i = 1, ...,m.

However, the scheduling problem is a dynamic optimization problem and therefore the

resource price should correspond to a dynamically optimal threshold. As the individually

optimal thresholds are hard to define, the following approximation for the threshold-based

price coefficients Pi(t) will be applied:

Pi(t) = bE[log2(1 +
gi(t + 1)

fIi(t + 1) + e
)], (16)

where Ii(t) in (3) is the interference measured by i at time t, and expectation approximates

expected rate at t + 1. The dynamic resource price (16) (where for simplicity bi = b, i =

1, ...,m) is motivated by a dynamically optimal transmission threshold: [11] suggests that

QoS-balancing over time provides an efficient distributed solution to distributed scheduling

consisting of the noncooperative maximization of the sum of SNR’s over time. Thus, close to

a Nash-equilibrium with b = 1 and E(gi(t + 1)) ≈ gi(t),

E[Ii(t + 1)] ≈ Ii(t). (17)

The following example motivates this approximation in the context of a rate sum maximization

game:
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Example 2.1 Consider a stage game consisting of m problems (8) with T = 2, wi = 1 and

Ri = 1, i = 1, ...,m. Assume that in a time-correlated channel

E(gi(t + 1)) ≈ gi(t) = gi, i = 1, ...,m. (18)

An equilibrium solution is for each node i to use a rate-balancing threshold rule with x∗
i (1) = 1

whenever

αi(1) ≥ E(αi(2)). (19)

To see this, note that node is problem can be written as

max
xi(1)

log2(1 +
gixi(1)

∑

j 6=i gjxj(1) + e
) + log2(1 +

gi(1 − xi(1))

Ii(2)
),

where Ii(2) =
∑

j 6=i gj(1−xj(1))+e. Letting xi(1) = 1 is optimal for node i at t = 1 provided

γi(1)

1 + γi(1)
≥

γi(2)

1 + γi(2)
,

implying threshold condition (19).

Assuming asynchronous decision making the users solve in a random order their individual

optimization problems at each time t:

max
xi(t)∈{0,1}

log2(1 +
gi(t)xi(t)

f
∑

j 6=i gj(t)xj(t) + e(t)
) − Pi(t)xi(t), (20)

taking as given xj(t), j 6= i and the fixed unit resource price Pi(t). It is argued in [10]

that the auxiliary game (stage game) at time t defined by m objective functions in (20) is

a submodular game [7]. Since the simple power allocation game with utility functions (13)

is submodular, the asynchronous greedy heuristic converges to a Nash equilibrium, assuming

it can be iterated any finite number of times for a given time slot t [7]. For high values of

f [10] observed that one-at-a-time transmission outperforms simultaneous transmission by a

subset of users. Thus, to simplify the asynchronous game, assume that at most one user may

transmit at a time. Assuming users update their strategies in a random order, a user will

transmit whenever it meets its threshold defined as

Pi(t) = bE[log2(1 +
gi(t + 1)

ei

)], (21)

simplifying (16). Since at most one user may transmit at a time slot, ei = ∞ whenever

xk(t) = 1, k 6= i, assuming user k has reserved the slot by transmitting; the interference

information is assumed to be instantaneously signalled (so Nash equilibrium is assumed to be

instantaneously found at each time slot).

Heuristic 1: A one-at-a-time asynchronous scheduling heuristic is defined as follows: the

users solve in a random order their scheduling problems defined for ith user at time t as

max
xi(t)∈{0,1}

log2(1 +
gi(t)xi(t)

ei(t)
) − E[log2(1 +

gi(t + 1)

ei

)]xi(t), (22)

where for simplicity bi = 1, i = 1, ..,m. At most one user will transmit, as ei(t) = ∞

whenever xk 6=i(t) = 1.
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Heuristic 2: A synchronous scheduling heuristic consists of the simple scheduling rule at

time t:

max
xi(t)∈{0,1}

log2(1 +
gi(t)xi(t)

f
∑

j 6=i gj(t)xj(t − 1) + e(t)
) − P s

i (t)xi(t), (23)

where P s
i (t) contains congestion information about the interference at time t − 1:

P s
i (t) = bE[log2(1 +

gi(t + 1)

fIi(t − 1) + e
)]. (24)

Heuristics 1-2 are applicable for all t while
∑

t xi(t) < Ri.

In a time-correlated channel, note that Heuristic 2 implies simultaneous transmission of

all nodes if at time t E(gi(t + 1)) is approximated by gi(t): applying approximation (18) to

(24) implies

P s
i (t) ≈ b log2(1 +

gi(t)

fIi(t − 1) + e
). (25)

Substituting the right-hand-side of (25) to (23) implies simultaneous transmission for any

b ∈ (0, 1] (if b = 1 each user is indifferent between transmitting and waiting in the absence of

a delay cost).

Remark 2.2 Heuristic 2 is assumed to subsume the possibility of simultaneous transmission,

if implying a higher sum of rates than (24) with

P s
i (t) = b log2(1 +

E(gi)

fIi(t − 1) + e
), (26)

where E(gi) is a long term average link gain at time t. The rationale is, as in [17], that the

nodes can be assumed able to learn about the better (in terms of average rate) approximation

for a transmission threshold.

3 Numerical Examples

Numerical examples are presented next to compare the performance of threshold-based schedul-

ing to PFS (eq. (7)) and to scheduling based on resource price studied in [12] (equation 14).

It will be shown that the one-at-a-time heuristic outperforms the synchronous heuristic for

relatively high values of f , implying a high congestion effect of interfering users. Performance

comparisons to UPF scheduler will be discussed in section 4.

An example case can be summarized as follows. For simplicity, consider first a multipoint-

to-point QoS model (1) (a multireceiver model will be addressed in the end of the section).

To capture user mobility, a time-correlated Rayleigh channel will be assumed. Assume the

Doppler frequency is 10 Hz, corresponding to slowly moving users. Assuming the sample

frequency (sf) is 200 samples per second, the scheduling decision is made once in every 0.02

seconds (3G/4G wireless system). Consider m = 10 transmitters always having data to

transmit. The average channel gains of the users are uniformly distributed between 1 and 10,

capturing fading due to distance. In numerical simulations, let external noise power e = 1

and consider independent samples each of size of T=2500 slots of a Rayleigh fading process.

Using Heuristic 1 (at most) one user transmits at time t whereas Heuristic 2 implies that the

set of transmitting users varies over time.



246 Distributed Scheduling in a Time-Varying Ad Hoc Network

Scheduling in a Time-Correlated Channel

Let c = 0.001 in equation (14), and let b = cT/(2m) in (24). Consider a scheduling window

T = 2500. The synchronous Heuristic 2 allows for simultaneous transmission and is bet-

ter suited for channels with high orthogonality (low f). By Remark 2.2, P s
i is assumed to

equal the better (in terms of sum of rates) of (26) and (25), the latter implying simultaneous

transmission. In this example case, Heuristic 2 implies simultaneous transmission and out-

performs the resource-pricing heuristic (even though price is scaled down by b = 0.75): in the

time-correlated example case approximation (25) works better than a long term average (26).

Figure 1 depicts the sum of rates using different scheduling policies. First observation

concerns the performance of the asynchronous game relative to PFS; in the case model it

obtains a sum of rates approximately 93 % that of PFS ([10] studied a less variable channel

with sf=10 Kbps implying slightly better performance for Heuristic 1). Figure 1 suggests

that the best distributed scheduling scheme uses one-at-a-time transmission for f ≥ 0.5 and

a simultaneous game otherwise. In this way, at least 93 % of the sum of rates of PFS can be

obtained. A topic for further study would be to rationalize, e.g. via learning games (cf. [17]),

the use of a combination of two or more distributed heuristics.

[12] studied transmit power pricing assuming simultaneous decision-making based on

transmit powers xj(t − 1) observed previous period (equation (14)). In this example case

resource-based pricing implies a higher sum of rates than Heuristic 2 with (26) but lower

sum of rates than simultaneous transmission, subsumed by Heuristic 2. The threshold-based

scheme is more fair in terms of transmission times allocated to users [10]. Figure 2 depicts a

representative time share of users for the threshold-based scheme with (26) ((25) implies equal

allocation) and for the resource-pricing scheme with f = 0.1. Recall that users are indexed so

that user 10 has the highest expected value of channel (10). Resource-based pricing favors the

strong users at the expense of the weak users. The scheme in [12] does not take into account

user-specific dynamic thresholds whereas the threshold-based heuristics are similar to PFS by

taking a long term rate into account in a user’s scheduling decision.

The sensitivity of the scheduling models to varying the channel model, receiver model and

load is discussed next.

Scheduling under different Channel Models

The sensitivity of the scheduling models to different channel models was addressed in [10].

Two cases were considered: first, a very slowly varying channel and second, a memoryless

channel that may change a lot between successive time slots. To model a slowly varying

channel, [10] considered a high sample frequency 200 Kbps implying the channel changes

very little betweens successive slots. Simulations suggested that the relative performance of

the different scheduling schemes is not sensitive to making the channel closer to a constant.

Interestingly, in this channel environment the one-at-a-time Heuristic 1 was observed to give

slightly higher sum of rates than PFS for all f [10]. In a very slowly varying channel the

asynchronous game model thus meets and even exceeds the sum of rates obtained using PFS

even though only requiring local information.

In a memoryless channel the link parameters of users i = 1, ...,m, gi(t) are independent

exponentially distributed with mean i. In this case also the relative performance of the

distributed scheduling models was similar to that depicted in Figure 1.
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Fig. 1. The average sum of rates using simultaneous Heuristic 2 (dotted line), using PFS (dashed
line), using Heuristic 1 (solid line), using resource based pricing eq. (14) with c = 0.001 (dash-

dotted line), f ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, m = 10.
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Fig. 2. Time share allocated to different users using Heuristic 2 with (26) (solid line), and using
resource pricing when c = 0.0001 (dashed line), m = 10, f = 0.1



248 Distributed Scheduling in a Time-Varying Ad Hoc Network

A MultiReceiver Model

Thus far it has been assumed for simplicity that there is a single received for each user. Al-

lowing for user-specific receivers slightly modifies the QoS model in (1) studied thus far to

(2), where gij denotes the received power of user js transmission at user is receiver. Sim-

ulations (not depicted) suggest that the extended model (1) implies similar performance of

the distributed scheduling heuristics. Specifically, one-at-a-time transmission outperforms

coalitional transmission for f ≥ 0.5.

Distributed Scheduling when Load is Varied

The case with a lower load 2 < m < 10 (not depicted) implies similar conclusions regarding

the relative performance of the two distributed scheduling schemes studied above, assuming a

time-correlated channel. However, for m = 2 the synchronous heuristic outperforms Heuristic

1 for all values of f . (In a slowly varying channel (sf=200 Kbps), letting m = 3 the synchronous

heuristic outperforms the Heuristic 1 up to f = 0.7.) In summary, the value of f where

the one-at-a-time heuristic becomes better depends on the channel model and load; that

f = 0.5 should be considered as a breakpoint in general only holds for a variable channel (the

more realistic case though). An optimal scheduling model consists of defining a transmission

threshold simultaneously taking into account m, f, and the channel model.

4 Coalitional Scheduling

Following [10], noncooperative scheduling was studied above relative to PFS. As an alterna-

tive model for noncooperative distributed scheduling, [1] studies cooperative (team) scheduling

where links cooperate to maximize the overall network throughput. This section presents a

novel collaborative scheduling model based on cooperative game theory [13]. A motivation

is given by observing that the scheduling performance of a ”coalitional” PFS, uplink PFS

(UPF), by far exceeds that of PFS [8]. In what follows, an UPF scheduler is first defined.

Then, a coalitional stable-sets heuristic is presented to reduce the performance gap of dis-

tributed scheduling relative to UPF. The stable-set heuristic is threshold-based, modifying

the asynchronous Heuristic 1 introduced in section 2.

UPF Scheduling of Subsets of Users

Thus far the performance comparisons have been done relative to PFS. Uplink proportional

fair (UPF) scheduling modifies PFS to uplink with multiple transmitters [8]:

• users are sorted using the PFS criterion, and

• users are added to the set of transmitting users in this order until the sum of rates no

longer can be improved.

In this scheme, either a single user or a group of weak users are allowed to transmit. [8]

observed that UPF performs close to optimal scheduling under moderate loads.

Performance analysis in [8] suggests that PFS implies 95 % higher average queue lengths

compared to UPF. The infinitely-backlogged scheduling model applied in this paper suggests

that the performance gain of UPF scheduler in terms of sum of rates is at least 30 % (at

f = 1), increasing up to 300 % at f = 0.1.
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The performance gain of UPF relative to distributed scheduling using the better of the

asynchronous and synchronous heuristics is illustrated by the upper curve in Figure 3. Clearly,

there is much scope for improvement for the performance of distributed scheduling. To reduce

the performance gap, in what follows we consider collaborative scheduling based cooperative

game theory [13]. A cooperative approach is based on assuming the players can make binding

agreements. This approach typically requires network-wide channel information, unlike the

noncooperative models studied above. Therefore, noncooperative foundations for a simple

cooperative scheduling game will also be discussed.

Collaborative Scheduling based on Stable Sets

Above distributed noncooperative models were based on assuming the players (users) do not

communicate with each other: the scheduling decisions are made based on local information

on channel and interference power signalled from the receiver. In cooperative game theory the

players may communicate with each other and more importantly, make binding agreements

(unlike in noncooperative models). Like e.g. in [18, 6, 1], consider modelling the wireless

resource allocation problem applying cooperative game theory. Let M = {1, ...,m} denote

the set of players and define, for every nonempty subset S of M (a coalition), a real number

v(S), the value of S (characteristic function). A coalitional game is defined as the pair (M,v)

where v(∅) = 0.

Definition 3 A subset Y of the set of (rate) allocations X of a coalitional game is a stable

set if it satisfies two conditions [13]:

1. If α = (α1, ..., αm) ∈ Y then for no z ∈ Y does there exist a coalition S for which

zi > αi ∀i ∈ S (internal stability).

2. If z ∈ X \ Y then there exists α ∈ Y such that αi > zi ∀i is some set S (external

stability)

Stable sets is a solution concept in cooperative game theory, requiring a stable set of outcomes

to satisfy two conditions: 1) for an unstable outcome (e.g. resource allocation) some coalition

has a credible objection and 2) no coalition has a credible objection to a stable outcome [13].

Given a set of players M , suppose we define the value of any transmitting coalition S ⊆ M

in terms of the sum of rates it obtains:

v(S) =
∑

i∈S

αi(t). (27)

It is easy to see that the rate sum maximizing allocation is not part of a stable set in a

cooperative game with coalitional values as defined in equation (27). A threshold-based

cooperative game will be studied in what follows, providing a modification of noncooperative

Heuristic 1.

[18] has observed the applicability of simple weighted games to wireless scheduling. Here

the stable sets concept is applied to a weighted scheduling game:

Definition 4 Denote the value of coalition S by v(S). A simple weighted game is a coalitional

game in which

v(S) =

{

1 if w(S) ≥ q

0 otherwise,
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for some q ∈ R (quota) and w ∈ Rm
+ where w(S) =

∑

i∈S wi for any coalition of S and wi is

the weight of i [13].

Thus, in a simple weighted game the value obtained by a winning coalition S, v(S), is one

[13]. Here consider the scheduling game a time t as a weighted cooperative game with quota

q = 0, (28)

and with (exogeneous) weights

wi = αi − Pi(t), (29)

where the transmission threshold of i at t is given by

Pi(t) = b log2(1 +
E[gi(t + 1)]

fIi(t − 1) + e
). (30)

game we assume that the value of a winning coalition S, with
∑

i∈S wi ≥ q, at time t is

defined as the sum of rates of transmitting users i ∈ S with xi(t) = 1 as in equation (27).

Letting M = {1, ...,m} denote the set of players, the value of the coalition of remaining

players v(M \ S) =
∑

i∈M\S αi = 0.

Proposition 1: Consider a weighted game (M,v) with a quota and weights as given in (28)-

(29). For any winning coalition S with
∑

i∈S wi ≥ q, let v(S) be defined according to (27).

Then, a stable set of the coalitional scheduling game at t is given by:

Y (t) = {{αi(t)}i∈T , {0}i∈M\T },

where

T = {i ∈ M |αi > Pi(t)}.

Proof: If a user i with wi ≤ 0 was included in a winning coalition T , then T would not be a

minimal winning coalition, i.e. T would have a strict winning subset, contradicting internal

stability requirement. Furthermore, for any z ∈ X \ Y (t), the winning coalition T in Y (t)

prefers Y (t) to z (external stability) �

Proposition 1 suggests the following definition:

Heuristic 3: Stable-set heuristic for distributed scheduling at time t schedules only those

nodes i ∈ M to transmit at t for whom

αi(t) ≥ Pi(t),

assuming the threshold Pi(t) in given in (30), where (cf. Remark 2.2) E[gi(t + 1)] is approx-

imated by either a mean rate of i at time t, or gi(t) (implying simultaneous transmission of

all nodes), whichever yields a higher sum of rates.

Figure 4 illustrates the relative performance of the stable-set-heuristic. Heuristic 3 obtains

a higher sum of rates than Heuristic 2 (which in the example case implies simultaneous

transmission of all nodes) for all f ≥ 0.1. Heuristic 3 also outperforms the resource-pricing

model in terms of the sum of rates for all f . Furthermore, it achieves a relatively fair time

allocation between users, the time shares varying between 35 % and 38 %, as compared to

the less fair allocation implied resource-pricing scheme as illustrated in Figure (2).

Figure 3 shows that the stable-set-heuristic enables to achieve a slight reduction in the

overall performance gap relative to UPF for 0.2 < f < 0.5 where coalitional scheduling
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outperforms both simultaneous transmission and one-at-a-time transmission. Using the more

efficient threshold-based pricing model, Heuristic 1 for f ≥ 0.5 and Heuristic 3 otherwise,

implies a sum of rates at least 80 % of that obtained by UPF for a wide range of orthogonality

factors: f ≤ 0.3 and f ≥ 0.6.

The cooperative interpretation of the stable-set heuristic is based on assuming that the

users can communicate to make binding agreements about how to play the scheduling game.

In the absence of communication between players, one might ask whether the cooperative

scheduling game has noncooperative foundations. The following remark shows that the stable

sets-heuristic can also be motivated by a noncooperative model:

Remark 4.1 The stable-set defined in Proposition 1 is equivalent to a Nash equilibrium al-

location in a noncooperative scheduling game.

This can be seen as follows. Consider a simultaneous move game at t with a threshold Pi(t)

in (30) with b = 1: Then for any i ∈ M and Ii(t) > 0,

log2(1 +
gi(t)

Ii(t − 1) + e
) ≥ Pi,

whenever

log2(1 +
gi(t)xi(t)

e
) ≥ log2(1 +

E(gi(t))xi(t)

e
). (31)

It thus suffices for each i to ignore Ii(t − 1) when making its scheduling decision. A stable

scheduling set at time t is equivalent to a noncooperative Nash equilibrium (NE) at a stage

game at t where each node applies a simplified threshold as given on the right-hand-side of

(31). The NE can be made unique adding a small ǫ > 0 to the thresholds Pi(t), i = 1, ...,m.

(Note that the transmission threshold (26) also implies that the threshold game can be studied

in terms of the SNRs, instead of rates).

The noncooperative model has the advantage of requiring only node-level information for

opportunistic decision-making, unlike cooperative models. The stable-sets heuristic enables

to improve the performance of distributed scheduling. However with m = 10, for the range

of values of f > 0.5 asynchronous one-at-a-time heuristic outperforms the stable-set heuristic

too. Rational users may be expected to learn the better scheduling model and corresponding

threshold [17].

An Evaluation of Proposed Scheduling Schemes

The distributed scheduling problem in a time-varying self-organizing network is a challenging

one. This is a reason suggested in [1] to a paucity of work on distributed wireless scheduling.

Due to the complexity of the distributed wireless scheduling problem, the best one can do to

look for a theory to provide guidelines for developing efficient heuristics. The approach in this

paper has been based on dynamic noncooperative game theory, as this approach enables to

deal with both autonomous decision-making and with dynamic optimization in a time-varying

network.

A dynamic game approach has yielded novel threshold-based heuristics for distributed

scheduling. Simulations suggest that the orthogonality factor plays an important role in

defining an efficient distributed scheduling scheme: one-at-a-time transmission is superior

for users with low degree of orthogonality (high values of f). A stable-sets heuristic with

both noncooperative and cooperative foundations was observed to be efficient for orthogonal
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transmitters. Using the more efficient threshold-based pricing model implies a sum of rates

at least 80 % of that obtained by UPF for a wide range of orthogonality factors: f ≤ 0.3 and

f ≥ 0.6 (and 95 % of that obtained using the better of PFS and simultaneous transmission.)

Distributed scheduling only requires node-level information whereas UPF is based on assuming

the scheduler knows the instantaneous channel conditions for all links. The performance gap

reflects the value of network-wide information in wireless scheduling.

A key difference between threshold-based scheduling and resource-based scheduling is that

the threshold-based scheme takes fairness into account whereas scheduling based on resource-

pricing in general leads to an unfair time share allocation across users. Still, both schemes

achieve a similar sum of rates performance in different channel conditions and for a wide range

of orthogonality factors.

In summary, a tentative framework for opportunistic distributed scheduling has been stud-

ied in this paper. For simplicity, delay requirements have not been explicitly addressed.

However, the simulations suggest that the proposed distributed opportunistic schemes imply

a relatively fair time division between transmitting nodes. This is due to the similarity of

the distributed scheduling criteria to PFS-type scheduling: each node takes its individual

mean rate into account in its scheduling decision. It remains a topic for future work to add

delay-differentiation (e.g. via user-specific delay parameters bi, i = 1, ...,m) to the analysis.

5 Conclusion

Emerging distributed wireless networks such as wireless mesh networks, WLANs and ad hoc

networks are examples of radio systems requiring distributed approaches to scheduling and

resource allocation in general. Distributed resource allocation is also increasing in significance

due to the growing importance of green wireless communications, highlighting the energy

efficiency of the wireless system, a key issue in an ad hoc wireless network. This paper has

studied distributed scheduling using threshold-based dynamic game models that take the

limited transmit energy into account: if the rate of a user is below its transmission threshold

it is better to postpone the transmission.

The focus has been in developing simple heuristics for distributed scheduling in a time-

correlated (Rayleigh) channel. An asynchronous heuristic based on one-at-a-time transmission

outperforms synchronous heuristics for high orthogonality factors (reflecting strong conges-

tion effect of interfering users is strong). Synchronous distributed scheduling based on simul-

taneous transmission of a subset of users is better otherwise. Asynchronous one-at-a-time

transmission performs well relative to PFS.

For synchronous decision making and simultaneous transmission, a resource-pricing heuris-

tic (recently proposed in literature) and two threshold-based heuristics were studied: a ”stable

sets”-heuristic with both cooperative and noncooperative foundations and a simple heuristic

with a congestion dependent threshold. The stable-sets heuristic was observed to be more ef-

ficient than the other two for the range of orthogonality factors where one-at-a-time transmis-

sion was outperformed. Using the more efficient threshold-based pricing model (asynchronous

or stable sets) enables to achieve s significant portion (at least 80 % in example cases) of the

sum of rates obtained by UPF for a wide range of orthogonality factors.

The performance of distributed scheduling has been compared to PFS, and UPF. Clearly,

there is still need for further work on collaborative scheduling to improve the performance
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of distributed scheduling. Other topics for future work include 1) adding user-specific delay

constraints, 2) optimal dynamic pricing, and 3) rationalizing via learning games the use of

efficient distributed heuristics.
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