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Mobile applications utilizing wireless networks are growing in popularity as increasingly capable terminals 

and advanced networking technologies emerge. In order to provide a seamless user experience, 

applications must be able to rely on an intelligent mobile middleware that hides the complexity of 

underlying technologies and allows developers to solve application-specific problems instead. A 

middleware should take care of generic networking functionality such as management of user 

communities, signalling for sessions, interaction with content-licensing services, and management of the 

terminal’s networking resources. This paper focuses on two major components of a prototype peer-to-peer 

networking middleware: a solution for connectivity management and another for session management. 

First, the connectivity management solution is discussed. The solution formalizes cross-layer resource 

optimization and employs upgradeable state machines to make connectivity selections based on context 

data and user preference, aiming to always provide the best connection for different communications and 

keep the system extensible. Second, the session management solution is discussed. The solution enables 

installation of missing software dynamically on a terminal when another user proposes a mutual 

application session. This greatly increases users’ possibilit ies to initiate sessions with each other. In this 

paper, design principles behind each of the novel solutions are studied, their prototype implementations are 

evaluated on the Symbian smartphone platform, and they are contrasted with existing technologies. A 

lightweight Session Initiation Protocol (SIP) stack has also been implemented as a component for the 

middleware. Future work concerning the connectivity and session management solutions includes 

evaluation of the technologies in more realistic settings than was possible within the work for this paper. 
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1 Introduction  

Mobile networking has established its position as part of the everyday lives of a substantial number of 

end-users. Networked data-intensive mobile applications, such as e-mail clients and World Wide Web 

browsers, are used by an increasing number of people and organizat ions. Thanks to the ongoing 

adoption of more and more capable network environments and terminals, mobile networking is no 

longer a mere curiosity. Mobile data networks are becoming a regularly used enabling technology for 

applications, paving the way for novel wireless services as well as more flexib le access methods to the 

existing Internet services. 



 

 

82     Analysis of Connectivity and Session Management for Mobile Peer-to-Peer Applications  

 

However, mobile networking defin itely has not yet reached its full potential. It is supposed that 

advanced wireless network services will emerge. The increasing availability of high -speed wireless 

access networks is a major enabler, but that alone does not drive the development of meaningful 

services and a seamless user experience. Unanswered questions include what kind of networked 

services are feasible; how users will interact with each other in the context of the services, i.e. what is 

the social impact of having a h ighly connected smart terminal in  one’s pocket 24 hours a day; what 

kind of enabling technologies are needed to provide reusable functionality, on an adequately high level 

of abstraction, for application developers who strive to create new innovative services on the platforms 

they are given; how do mobile terminals collaborate in the networks and cope with the dynamic and 

heterogeneous environment of wireless networks; and, how to achieve all this without bothering the 

end-user with technical details and crashing systems. 

Efforts of today’s researcher community are needed to shape the conceptual and technological 

basis for the solutions that we will see in  commercial use five to ten years from now. Dominant as well 

as weaker trends in the field of mobile networking must be observed in order to be ab le to steer the 

course of advancement; one of the strong trends visible today is the tendency to use the Internet 

Protocol (IP) to carry increasingly many types of communication.  

This paper introduces two mobile middleware components implemented for an All-IP network 

environment. The paper is organized as follows. First, we introduce the conceptual framework behind 

our work and present the research questions to be answered. Then we extensively discuss the design 

and implementation of our connectivity and session management midd leware components; also 

measurement results of their performance are provided. Finally, we d iscuss the results and related 

future work, and provide a conclusion of the paper’s contribution. 

2 Application Supernetworking 

2.1  The Concept 

The unifying purpose of the All-IP pro ject work is to realize the envisioned paradigm of application 

supernetworking by defining the components of the framework and implementing prototype systems. 

This paper elaborates the concepts of session and connectivity management with  respect to application 

supernetworking. 

Application supernetworking, according to [1], is a natural continuation of today’s mobile 

communicat ion. As the world moves towards the use of faster communication technologies and more 

capable end-user devices, the concept can be fully realized and deployed in real-world solutions, 

benefiting end-users and commercial players by offering a more seamless user experience and a set of 

novel services, as well as potentially reducing the costs of networking. Application supernetworking is 

defined as a functional framework, embracing the following three key elements: 1) mult isessions 

and/or rich calls; 2) p lug-and-play interactions between sessions and applications; and 3) holistic 

connectivity management.  

While not completely abandoning the client-server model, application supernetworking has an 

emphasis on peer-to-peer (P2P) networking. Here the word P2P refers to application-layer protocols 

and applications, not to be confused with lower-layer technologies sometimes labelled as P2P, such as 

routing in ad hoc radio networks. The application-layer logical networks established among peers  are 
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called  overlays and determined by the P2P protocol used [2]. Discovery of fellow users and sharing of 

resources are examples of the usages of P2P networks in application supernetworking.  

Peer groups are essential for modelling the relationships between users in the network. A peer 

group is a collection of co-operating peers sharing the same interests and providing a common set of 

services to other members of the group; members are held together by shared interests [3]. The 

management of peer groups is supported in certain P2P protocols such as JXTA, and also Direct 

Connect++ (DC++) in which the concept of users on a hub equals the concept  of peer groups. 

The session-related concepts may  need clarificat ion due to the possibly differing interpretations of 

the terms by d ifferent people; we use the terms as they were defined in [1]. A session is an abstract 

entity that is created when a process starts communicat ing with another, fo r example, when a call is 

init iated between two voice-over-IP (VoIP) application instances. The communicating processes 

typically run on d ifferent terminals. Sessions can also be established between processes of the s ame 

device. A session is destroyed when the communication channel is no longer needed. 

In a peer group of N  users and M possible applicat ion modules, group communication can be 

described as an N-dimensional session space E, presented as a matrix. This sess ion space E indicates 

which application modules, at the moment, are being used for sessions between specific users in the 

group. The width of the matrix is M in every dimension, and each value in  it can be 1 to indicate an 

active session, or 0 otherwise. A 2-dimensional matrix (i.e ., the case of N = 2 terminals) in its general 

form is shown below, containing M M session-entries Sij (1  i  M, 1  j  M): 
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If an active session Si j has the property i = j (the communicating application modules on both 

terminals are the same), it is called a  homogeneous session. On the other hand, if it has the property i  

j, it is called a heterogeneous session. Homogeneous sessions are on the diagonal of the matrix;  

heterogeneous ones are outside of the diagonal. “Different modules” might also be different versions 

of the same module or different implementations of the same functionality. On some level, these 

modules are able to communicate, but they are not identical; hence, such a session is heterogeneous. 

However, rad ically d ifferent applicat ion modules (e.g., a  VoIP module and a file -sharing module), 

cannot communicate in a meaningful way. Thus, if the modules are completely different, a session 

requires dynamic installation of the missing software on the terminals that lack the software; then the 

resulting session is homogeneous, if both communicating modules are identical after the installat ion. 

A multisession enables having multiple sessions open concurrently. For instance, a user may have 

two videoconference sessions, one voice call, and one remote desktop session active simultaneously. 

When a multisession is active, the platform can manage the resources required by the sessions in a 

centralized manner, potentially attaining synergy benefits between them. In E, a mult isession exists if 

there are more than one homogeneous sessions between two specific terminals. 
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The term rich call refers to the use of several types of media streams within one session, as 

opposed to the separate streams within a mult isession. Rich calls are visible in E as ordinary sessions  

Si j; the matrix does not differentiate between rich calls and non–rich call sessions. 

A supersession is in question, when there are several sessions between two specific terminals in E , 

and at least one of those sessions is a heterogeneous session. 

Application supernetworking also provides support for inter-device session mobility [4]. This 

means that a session, when certain triggering conditions are fulfilled, is decoupled from its current 

physical network interface and also from the terminal it runs on, and moved to another host without the 

need to tear down the session. An example case could be the migrat ion  of a video call, received on a 

mobile phone, to the user’s more capable device such as a PC.  

Also intra-device session mobility is possible: consider a case where a heterogeneous session has 

been activated, but the terminal is downloading a module’s upgrade package in the background. The 

upgrade package contains the module version that is identical with the other party’s version and thus 

enables a homogeneous session. When the identical module has been installed, the session can be 

seamlessly transferred from the non-identical module to the new one. The benefit of this is that the 

session could be initiated already when only  having non-identical modules. Obviously, it must be 

decided, which party’s terminal upgrades its module to conform the other party’s o ne. Possible rules 

could be “the initiator’s version prevails” or “the newest version prevails”.   

The Internet Engineering Task Force (IETF) backed, widely used Session Initiation Protocol (SIP), 

RFC 3261, is a candidate for the main communication protocol of supernetworked applications. As 

stated in [4], SIP provides a lightweight toolkit fo r session signalling between peers, as well as 

identifying users with SIP Uniform Resource Identifiers (SIP URIs). SIP supports a number of 

signalling primitives, such as event notification and redirection of connection attempts. 

2.2  Plug-and-Play Application Platform Middleware 

A mobile middleware solution, Plug-and-Play Application Platform (PnPAP), has been designed and 

implemented for the purpose of providing common services for supernetworked applications. It runs 

on top of Symbian OS for Nokia Series 60 s martphones. PnPAP comprises of a body of approximately 

20,000 lines of C++ code. 

The PnPAP middleware, first proposed in [5], was in itially  designed for the automat ic selection o f 

optimal P2P protocols and physical connectivities, exhib iting a relatively monolithic architecture. This 

section describes the status of PnPAP as it was just before augmenting its functionality with the 

solutions that are described later in sections 4 to 7. 

The heart of the middleware is the PnPAP server, a central server process to which all the user-

level applicat ions automatically connect. Applications access PnPAP functionalit ies through the 

PnPAP Application Programming Interface (API). A client stub library, linked with the PnPAP-

compliant applications, works as an access mediator between the applicat ion process and the PnPAP 

server: applications call the methods of the client library, which translates them to Symbian client -

server calls. These calls are interpreted by the PnPAP server, which carries out the specified task.  

Generic interfaces of software modules within PnPAP enable the use of functionalities on a higher 

level of abstraction. Let us consider the scenario that an application requests PnPAP to send a human-
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readable instant message to a remote peer, using any combination of a P2P protocol and a physical 

connectivity that PnPAP finds suitable for the purpose. Of course, the currently selected protocol and 

connectivity will probably be used, but the application would not notice even if PnPAP dynamically 

decided to pick a new protocol or connectivity. Having an active P2P protocol (e.g. DC++) and 

physical connectivity (e.g. GPRS), PnPAP calls the protocol module’s method that sends the instant 

message. As this interface is the same for all P2P protocols, PnPAP can call the methods in the same 

way regardless of which protocol implementation it selected as the best for the purpose. 

Figure 1 illustrates the basic setting, PnPAP with several different connectivities and P2P 

protocols to orchestrate for the benefit  of the user’s applications on the top. There are two terminals in 

the picture, and a session (supersession) is shown between some of their applicat ion modules. 

 

Figure 1 Modular interaction model of PnPAP. 

Applications can query PnPAP whether a g iven functionality  is present in  the currently  selected 

protocol, because all protocols do not support all communicat ion primit ives; the absence of peer group 

functionality in some P2P protocols is an example. The protocol module’s interface seen by PnPAP 

supports querying the supported functionalities of the protocol represented by that module.  

Somet imes a P2P protocol required for a specific purpose is unavailable on the terminal: it might 

happen that none of the existing protocol modules support a given functionality requested by the 

application. Th is is why dynamic installation of P2P protocols was implemented. PnPAP detects the 

application’s need for the retrieval of a specific protocol implementation, and is able to retrieve the 

required protocol module from the network dynamically. The motivation for dynamic installation is 

that different P2P protocols are incompatible, and a given node might not have  the same protocols 

installed as the other parties of the communication; with dynamic installation the nodes will have a 

common protocol to use. Deciding what protocol to install will of course require some signalling 

between the nodes; this can be accomplished, for example, with the PnPAP-to-PnPAP signalling 

network that is described later in this section. 

However, the solution relies on the existence of a central server that provides protocol modules for 

the PnPAP nodes to download. PnPAP does not browse P2P file-sharing networks to find the missing 

protocol module from there, although that kind of solution would be clearly more flexib le and less 

centralized than a server. 

Traditional P2P applicat ions usually have a single P2P protocol to use, and are thus  restricted to 

use only the network associated with that protocol. As stated above, a PnPAP node has access to 
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multip le P2P networks, depending on the protocol modules that are available. As a coro llary of this, 

PnPAP nodes see an overlay network that is composed of the networks accessible by individual 

protocols [5]. The set of peers that a specific PnPAP node can contact (Soverlay) is the union of the sets 

of peers that can be contacted using each individual protocol. If each protocol i of the Nprot protocols 

available can be used to contact a peer-set Sprot(i), then 

).()2()1( protprotprotprotoverlay NSSSS                                                             (2) 

Thus, an application on top of PnPAP may be able to make connections with  a far greater number 

of peers than a traditional P2P program. This also increases the probability to find a resource that is not 

available in all networks, e .g. a  rare shared file. The PnPAP overlay  solution is also significantly 

different from just having multiple d ifferent single-protocol applications in the terminal: with PnPAP, 

several P2P networks are accessible from one applicat ion; the centralized nature of PnPAP also helps 

save the resources of the mobile device [6].  

While the aforementioned PnPAP overlay network enables the user to access several P2P networks 

from a single application, it  could still happen that two PnPAP nodes do not have access to a common 

P2P network. Could this mean that those nodes cannot communicate with each other? Even dynamic 

installation of new P2P protocols would not help  here, because the peers would not have knowledge of 

each other’s existence in the first place.  

However, there is a straightforward solution to the problem. All PnPAP nodes together form 

another logical network, where any node can contact any other node regardless of their installed P2P 

protocols. (It should also be noted that this network contains only PnPAP nodes, while the peer-set 

Soverlay of an overlay network seen by a given PnPAP node contains also non-PnPAP nodes that happen 

to be using the same P2P protocols). The PnPAP-to-PnPAP network has been implemented on top of 

SIP;  every PnPAP node runs a SIP stack. Every  PnPAP node can be unambiguously identified  using a 

SIP URI even when no identification schemes from other P2P protocols  are present, and the SIP URI is 

used as the recipient address in PnPAP-to-PnPAP messaging. All the node-intercommunication 

messages are carried in bodies of SIP MESSAGE packets. The data records of the messages are 

encoded using a simple type-length-value scheme. The SIP messages are routed through the home 

network’s SIP server, where a node reg isters itself when coming online. Over the PnPAP -to-PnPAP 

communicat ion channel, the nodes are able to, among other things, share their context information 

within a  peer group. 

The work for implementing PnPAP has produced an important reusable software component: a 

lightweight SIP stack for Symbian OS. The stack provides a sub-set of the functionality described in 

RFC 3261. The stack was created for PnPAP, because there was no existing client-side Symbian SIP 

stack reliab le and flexib le enough to be used as part of our system. The SIP server used in our 

communicat ion architecture was the open-source SIP Express Router (SER). 

3    Problem Statement 

3.1. Need for Enhanced Connectivity Management 

Wireless networks are converging into a ubiquitous, seamlessly accessible data-transmission network 

[7]; however, this will not happen by itself, as the heterogeneity of mobile networks and services will 
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raise several certain ly non-triv ial issues to solve. Modern mobile terminals, such as smartphones, are 

equipped with multip le network connectivities that operate on several radio -frequency bands and have 

bitrates varying by several ten-folds, different requirements for external network infrastructure, and 

different operational ranges, among other things. 

Despite the advances in radio-based communication technologies, the typical mobile terminal still 

has relatively restricted capabilities with regard to networking. Even if the mobile terminal is equipped 

with an interface to a h igh-speed connectivity, for example WLAN, the network is not necessarily 

available in all locations. When the user moves in and out of the coverage areas of d ifferent networks, 

the terminal should select the best interfaces to use without bothering the user. 

Versatile  physical connectivities are just the top of the iceberg, as the communicat ing end -systems 

feature also full-fledged IP stacks, different transport protocols such as TCP and UDP, and a plethora 

of standardized or proprietary application-level protocols ranging from simple messaging protocols to 

real-t ime multimedia. Several concurrently active system-level processes and end-user applications 

pose versatile requirements for the management of these entities. One noteworthy challenge will be the 

anticipated emergence of IP version 6 (IPv6). During the transition phase, IPv4 and IPv6 will be used 

concurrently and transition-aiding mechanis ms are applied [8].  

There has been academic research on different aspects of automated connectivity management. In 

the following paragraphs, a summary of some related publicat ions is provided. 

Vertical handoff, i.e . the handoff of connection between heterogeneous network interfaces, is 

extensively discussed in [9]. The work main ly concentrates on the analysis of handoff systems, 

mobility management, and optimization of the actual handoff event in a mult i-network environment, 

not mechanisms for selecting the best connectivity to use.  

A handoff decision system, employing user-adjustable policies for select ing the wireless network 

to use, is presented in [10]. The work includes the design of a performance-reporting scheme that 

estimates current network conditions; an agent gathers bandwidth-usage data at a base station and 

transmits it to the nodes in the coverage area. Goals of the system are to balance the bandwidth load 

across several networks that have comparable performance, and to minimize user interaction. A  mult i-

parameter network cost function (a weighted sum of parameters normalized with logarithm functions) 

is periodically calculated.  

In [11], partially by the same authors as [10], a similar system for triggering the use of 

heterogeneous wireless interfaces has been implemented. The work is built around the concept of 

physical overlay networks, i.e. a h ierarch ical structure of overlapping room-size, build ing-size, and 

wide-area networks; the more bandwidth, the less coverage. Availability of networks is detected by 

observing periodic beacon messages sent by base stations. 

In [12], a decision model is proposed for determin ing both the target network and the moment to 

perform the vertical handoff. Again, user preferences and network properties are used as input for an 

algorithm. The authors claim that their weighted-sum score function for ranking network interfaces 

might be more sophisticated than the preliminary system presented in [10]; parameters are normalized 

without logarithms so that zero-valued parameters do not cause problems. 

A generic function for selecting between different wireless networks is presented in [13]. A quality 

value for each network interface is calcu lated using a first-degree polynomial function, based on 
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several factors. It is pointed out that some factors, such as security, might not have a numerical 

representation, thus their applicability in the fo rmula may be restricted.  

The solution in  [14] features an arch itecture that enables automatic connectivity selection with the 

network’s assistance. New network-layer “assistant” nodes are defined, along with new functionality 

for some of the existing nodes in the current systems. The network informs the user’s terminal about 

the best connectivity for the requested service, based on parameters such as QoS and current network 

conditions. 

Intelligent selection of network interfaces is elaborated in [15]. Although not implemented, the 

proposed algorithms are designed to deduce the optimal connectivity at any time.  

There has also been research on mobile connectivity management with  cross -layer optimization. 

The work in [16] names two enabling layers fo r seamless mobile networking. The first one is the 

selection between different packet delivery methods such as regular IPv4 or mobile IPv4. The second 

one is the selection between different physical interfaces. 

A more clearly cross-layer oriented system for network interface selection is presented in [17]. 

Decisions are made according to user preferences and information on the networks currently availab le; 

this information is gathered from link layer, IP layer, the service providers, and the applications or 

users that are being served. The solution features rule policies that can be created by the user based on 

different metrics. The system also supports simultaneous multi-access, i.e. traffic flows can be d ivided 

between different interfaces in parallel.  

Another cross-layer approach is presented in [18], building on the concept of overlay networks as 

in [11]. The coverage of the overlay is the same as the coverages of the individual networks combined; 

its performance at a given location is that of the best network in range. Cross -layer optimization is used 

in several parts of the system: for example, transport-layer informat ion is exp loited to guide link-level 

retransmission and application-level content adaptation. Mobility issues such as handoff are handled 

by dedicated software agents, which  reside within the network infrastructure but existing clients and 

servers do not need to be modified.  

An issue closely related to  switching of connectivities is IP mobility  management, i.e. the policies 

that dictate how the terminal manages network handoffs in an IP-based wireless environment [19]. 

When switching between networks, it is desirable to take advantage of mobility support in the IP layer. 

Standardized solutions such as Mobile IP (MIP) and Host Identity Protocol (HIP) exist. MIP maintains 

a mapping between the changing care-of address and the non-changing home address of a node; a so-

called home agent is aware of the node’s current physical location, i.e. the care-of address. All protocol 

instances above the IP layer see only the home address [10]. Accordingly, many of the aforementioned 

connectivity management systems, for example [17] and [18], utilize MIP in the networking layer for 

mobility management. 

HIP takes a slightly different approach to mobility. In HIP-based systems, the two basic functions 

of a trad itional IP address are separated: host ID and host locator. The introduction of the new Host 

Identity namespace enables a mobile host to retain its unchanging identity in  any inter-network 

handoff, while its IP address changes to reflect the new location. When using HIP, nodes can keep 

their ongoing TCP connections even if a vertical handoff occurs. 
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Despite the various connectivity management solutions discussed above, there exists no system 

capable of selecting combinations of arbitrary networking resources in a formal manner. The existing 

solutions have not provided a fully  consistent and extensible model of the communicating end systems. 

Neither is there a system that uses dynamically upgradeable, state-machine controlled ru le-bases for 

making connectivity-related decisions. A cross-layer framework accomplishing these tasks will be 

called Holistic Connectivity (HCon). The name is derived from one of the cornerstones of application 

supernetworking: holistic connectivity management. It is expected that the system employs an 

intelligent state-machine based decision engine, since applicable research results and software 

components are availab le from the ISG research group of the University of Oulu.  

The research question for connectivity management is: How to implement an efficient HCon 

system with state-machine based decision intelligence, accessible as a mobile middleware module?  

An answer to this question is provided in sections 4 and 5. 

3.2. Need for Enhanced Session Management 

The current paradigm for the start-up of application-to-applicat ion sessions over a wireless network 

involves two or more instances of the same application, or instances of different app licat ions 

understanding a common protocol, on different hosts in the network. (In this section, the word 

“application” means applications whose usage involves user-to-user sessions over the network). 

Session start-up is typically init iated by sending an invitation message over the network to the remote 

peer’s terminal, which is listening to a specific port and is able to initiate a session using its local 

instance of the application. SIP is a widely used protocol for this kind of session signalling. 

Now, let  us examine the situation of a peer g roup where the peers have a heterogeneous base of 

applications installed, i.e. not many terminals have the same applications. As the different applicat ions 

do not share a common language, nodes of the network are isola ted in “islands” of heterogeneous 

application bases. Nodes with the same application installed are on the same island, but the others are 

not. Although the PnPAP-style approach of combining several protocols did remove barriers for the 

concurrent use of several general-purpose P2P networks, a similar approach obviously would not help 

with strongly application-specific protocols required by user-to-user games, for example. 

Formally  put, the isolated islands are not able to intercommunicate using the applicat ion  (or, more 

precisely, the application protocol) Ai. Some terminals indeed have several applications, but in order to 

init iate a session between any two nodes (terminal devices) Da and Db, the terminal Db must already 

have installed the same application Ai as the terminal Da has. Otherwise establishing a mutual session 

using the application Ai will fail.  

Let us define the “initiator” as the peer who tries to init iate a session with a remote peer, and the 

“receiver” as the mentioned remote peer who may accept or decline the proposed session. Furthermore, 

let there be ND > 1 terminal devices in a peer group. Also, let di denote the number of terminals that 

have installed the application Ai. Then the probability that a given initiator with his installed Ai can 

init iate an Ai-based session with a given intended receiver is  

                                                      
1

1

D

i
s

N

d
P .                                                                     (3) 
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If ND is large or modestly large, and the applicat ion is not installed  in  the majority of the terminals 

in the peer group (i.e. di is s mall), then the probability Ps  is very  low (Ps << 1.0). In  other words, only 

few terminals – that is, few users – are able to initiate mutual applicat ion sessions in such a situation. 

Of course, there might be some applications that are popular, having been installed on almost every 

terminal of the peer group: most peers can initiate sessions using those applications. Still, any 

applications that have little  coverage in the peer group would not benefit from this; they cannot be used 

to create sessions with most peers. This clearly diminishes the usage value experienced by a user who 

has installed, probably even paid for, a rare application. A simple example could be a chess game for 

two users to play over the network: how can you spontaneously play with someone, if no one else has 

installed the same game application? 

The situation seems even more discouraging if the initiator wants to begin a multisession with the 

receiver, and the said mult isession requires n > 1 applications (A1, A2, …, An), all of which must be 

installed on the receiver’s terminal. The probability to be able to in itiate such a multisession is  
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If the mult iplied values are each significantly  less than 1.0, which is likely  to be the case, then Pms 

is very low: the initiator’s attempts to start the multisession will very probably fail. It might even 

happen that the islands of the n required applications do not overlap at all within the peer group 

(resulting in Pms = 0 for all nodes of the group). 

The research question for session management is : How to implement a session management 

solution that overcomes the problem of isolated islands, in a way that is both efficient and usable? 

Naturally, the solution must also be able to perform other session management primitives besides the 

start-up of sessions, including the graceful terminat ion of sess ions and passing session parameters. 

The problem of session management is tackled in sections 6 and 7.  

4    Design of the Connectivity Management Solution 

4.1. Objectives 

As a response to the stated problem, the objective of the Holistic Connectivity (HCon ) framework is to 

manage the wireless networking resources in a way  that is optimal –  the applicat ions should be always 

provided the best combination of resources. Holisticity means the system’s ability to make cross -layer 

connectivity decisions based on rich information that may involve, for example, network signal 

strengths, application-level semantics, and user preferences. The HCon framework must cover the 

practices required for pursuing this goal, although it is impossible to guarantee that decisions made by 

HCon are always optimal from the user’s viewpoint. HCon has first been discussed in [20].  

Another objective for the HCon framework’s design is to introduce rigorous definitions for the 

concepts that are used for discussing the problem field. Those devoted to the optimization of 

connectivity management can discuss the topic within a solid frame of reference. A consistent view to 

the resources that are controlled may also facilitate the formal verificat ion of networking systems. 
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HCon’s approach to connectivity management must not mandate any specific set of networking 

resources to be controlled by the system. It might be tempting to explicitly define a list of cross -layer 

resources to use, as many existing connectivity management designs do [16] [17]. In sharp contrast, the 

HCon design should avoid the kind of logic that restricts functionality in the long run. It must allow 

introducing new resource types without the need to break its definition or to apply awkward, one -off 

patches. Otherwise, emerging networking concepts will cause problems in the future.  

To determine what is the best networking behavior in a given situation, the applications or their 

users must be able to state their preferences. Good networking performance might often be 

synonymous with high data throughput, low transmission delay, or low packet loss. However, there are 

more factors to consider: for instance, the monetary cost of a service, the QoS of concurrent media 

streams, the choice of media codecs, and the security features in different protocols. 

To allow for maximal adaptability to different conditions, including changing user preferences, 

HCon must employ dynamically upgradeable ru le-bases. For the same goal, HCon must separate the 

decision logic o f the rule-bases from the component that carries out the decisions (switches the 

networking resources). There must be no unnecessary couplings between the two components (as 

strong coupling makes the ru le-bases harder to upgrade) and they must communicate over a well-

defined interface and continue operation even if ru le-bases change when applications are running. 

Thus, an intelligent state machine (SM), containing the rule -base to use, is used as the brains of an 

HCon system. Any parameters for HCon decisions are the input for the SM, and its output is a 

connectivity decision when one is requested. State machines must be dynamically changeable. If the 

SM component is sufficiently decoupled from other parts of HCon, it also fulfils the requirement of 

separating decision logic from the “workhorse” component. SMs must be able to incorporate 

operational logic from various connectivity schemes; examples include algorithms from [15].  

Mobility-supporting protocols such as the already mentioned MIP and HIP would probably 

provide significant added value to HCon. Upon a vertical handoff operation, it is desirable to have IP-

level support for mobility in order to keep active connections alive and node addressing unbroken. 

Unfortunately, these technologies were deemed unfeasible to implement in  reason able time on our 

selected target platform. Thus, they were omitted from the first -phase HCon design, which main ly 

concentrates on the selection of local networking resources and not on IP mobility.  

Proof-of-concept HCon is part o f PnPAP middleware. Choosing SIP as the inter-PnPAP 

communicat ion mediator alleviates the effects of lacking IP mobility. Admittedly, SIP cannot rehome 

an ongoing TCP connection. SIP however provides a certain  degree of mobility support: a SIP URI 

identifies a user, and the changing IP address is the host’s current location in the Internet.  

4.2. Structure of HCon 

The structure of a software-built  system realizing HCon functionality is depicted in Figure 2. The 

user’s numerous applications sit on top of the middleware that takes care  of their networking needs. 

HCon is shown as part of PnPAP because that is how proof-of-concept HCon was implemented; a real-

world HCon could be a stand-alone middleware solution, or part of the operating system.  
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Figure 2 Structure of HCon. 

The component that executes networking-related operations such as activating and de-activating 

protocols, but does not make the decisions when to do that, is called the HCon engine. The HCon 

engine is integrated into the PnPAP server. The HCon engine owns the protocol instances and most 

other networking resources; thus, the resources are bound to the PnPAP server process. 

The State Machine Executor (SME) is responsible for running the state machines and can also 

change the SM to a new one if requested to do so. The SME process is separate from the PnPAP server 

in order to increase modularity. An interface between the HCon engine and the SME allows the two to 

exchange messages. Multiple different state machine descriptions, containing different  rule-bases, can 

be stored in the local file  system so that they can be taken into use when needed. 

4.3. Formal View to the System under Control 

In order to obtain a formal v iew over the system to be controlled, Holistic Connectivity treats the 

terminal’s networking resources as a finite set of entities. An entity is an individually selectable, 

hardware- or software-based piece of technology for a specific networking-related task; a set of 

mutually interchangeable entities is an entity class. Examples of entity classes include “physical 

connectivities”, “P2P protocols”, “audio codecs”, and “operator-provided service classes”. Example 

entities in the class of “P2P protocols” could be FastTrack, DC++, and Gnutella.  

An entity stack  is the complete set of entit ies, which are selectable within the terminal. The entities 

in a stack are g rouped by their entity classes, which are on top of each other; hence the name entity 

stack [20]. By  breaking down the system to distinct functional components and managing them as a 

hierarchical stack, HCon attains an adequate level of controllability over the system. As was required, 

the design of HCon does not force the system to include any specific set of entity classes: HCon’s 

entity-based approach allows for the inclusion of any new entity class. 

The entity classes of an entity stack can be enumerated as C1…CN, where N is the total number of 

entity classes. In this notation, C1 denotes the lowest-level entity class of the stack, typically the 

selectable physical connectivities, and CN  denotes the highest-level entity class. The number of entities 

within class Ci is ni. Entity j from entity class Ci is referred to as Ci(j) (1 ≤ j ≤ ni). 
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The notion of entities within a class being mutually interchangeable must be taken with a grain of 

salt. There are naturally some dependencies between the entities of different entity classes. For 

example, let us suppose that a system has entity classes for transport protocols and IP protocol stacks; 

selecting IPv6-based version of TCP as the transport protocol to go together with the IPv4 protocol in 

the network-layer would not make sense. 

One might observe a similarity between the entity classes and the widely deployed network layer 

models. However, there might be several entity classes in one layer or one entity class could 

encompass several layers. HCon enriches the OSI and TCP/IP reference models by providing means 

for vertical control and by introducing the entity classes that can be added or removed. 

In order to allow the data to flow from the applications to the physical radio network, a path for the 

bits must be established through the entity stack. An N-tuple containing one entity from each of the N 

entity classes is a top-down connectivity policy (TDCP). A TDCP represents the vertical path the bits 

take through the stack. When the HCon engine requests the state machine to select the best networking 

resources for the current situation, a TDCP is what the SM gives as its output. The details of the 

communicat ion between HCon and the state machine are exp lained in section 4.4. Two example 

TDCPs through an example entity stack (N = 4 entity classes) are presented in Figure 3.  

 

Figure 3 An example entity stack with two example TDCPs. 

4.4. Decision Control using State Machines 

The SME fo llows a state-machine execution architecture called SteMach. The architecture has two 

functional components: an event queue, and a storage module containing the current active SM.  

All communication to and from the SME is asynchronous. However, the o rder of the arrivals of 

events is preserved in the event queue so the SME always reacts to asynchronous events in the correct 

order. The incoming events are safely stored in the queue if not enough main memory is availab le for 

handling them; thus the SME is able to recover from a temporary low -memory condition in the 

terminal. Only  incoming events are queued. All outgoing events (in HCon’s  case, TDCP decisions) are 

simply sent out of the SME and forgotten. 

Networking resources have logical states: for example, different observable signal levels of a 

physical interface, the current activit ies of a communication protocol, any context informat ion, or the 

current user preferences. All these pieces of information are stored in the SM’s internal states and 

treated as parameters for the TDCP selections. The current state of the SM represents the last known 
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combination of parameters. State informat ion is the foundation of decision rules. A rule “if a and b 

then c” can be represented when a is an active state, b is an event, and c is a transition to a new state. 

The state machine variety applied in HCon allows the SM to be in mult iple concurrent states. This 

is beneficial for storing multiple pieces of state information about different parameters. Using a 

traditional single -active-state SM format would obviously exp lode the number of states required and 

would render the SM inconveniently large and also difficu lt to comprehend for its developers.  

Complexity  is also managed by applying nested states, which are essentially  a special case of 

concurrent states. A given type of context informat ion – for which the SM contains a number of states 

– can be divided into several sub-contexts, each of which is represented by a sub-SM. An example on 

how parameters are combined to make TDCP decisions is presented in section 4.5.  

SMs may contain additional code sections that help make the TDCP decisions based on the current 

states. These decision scripts are defined to be executed at the entry or exit of a given state. They are 

often associated with a state that absorbs decision-request events from the HCon engine.  

When the HCon engine sends a serialized  SM specification to the SME, the SME loads the SM to 

a storage module and starts it from its in itial state. The Notation 3 (N3) description language is the SM 

specifications’ serialization format. The format is capable of capturing the structure of arbitrarily 

complex state-hierarch ies and the allowed transitions. SMs can be created using a visual editor.  

The HCon system is adjusted to comply with the user’s expectations by employing new SMs. SMs 

must be created by the operator or other party with the skills and business  interests to provide a good 

networking  experience to the users. There could be a selection of ready -made SMs for the user’s 

convenience. Users can also ignore the fact that their terminals are controlled by SMs. SM upgrades 

could even be issued over-the-air (OTA), with little or no user interaction. 

To enable dynamic upgrading of HCon rule -bases, SMs are replaceable on-the-fly; this does not 

require any kind of re-compiling of the HCon engine or the SME. A  replacement could  occur if, for 

example, the operator issues an OTA upgrade. Whatever the reason and mechanism for the delivery of 

a new SM, the HCon engine notifies the SME about the replacement so the SME can gracefully 

terminate the current SM and start executing the new SM. No applications need to be terminated. 

The HCon engine, as part of PnPAP, accesses the state machine services by calling the methods of 

the Property Serv ice Interface 2 (PSII). PSII is a generic interface for exchanging informat ion about 

so-called properties between two processes. A stub library, linked with PnPAP, implements the 

interface and takes care of the low-level IPC over a local-host UDP socket connection. 

A property is identified with a name, for example “ev_WlanUp”. A property’s value can be any 

string of bytes. All messaging (parameters, decision requests, and decision responses) between the 

HCon engine and the SME is defined in terms of sending property values over PSII.  

The performance of the Python-based SME has been evaluated in a Linux environment. The test 

system consisted of two virtual Linux nodes running in User-Mode Linux sandboxes with 128MB of 

memory. The sandboxes were running on an AMD Athlon XP 2800+ host with Linux 2.6.11-

6mdks mp. The IP router SM, run on the host system, routed ICMP pings from one virtual n ode to the 

other. The transmission interval parameter was varied from 0.01 to 0.2 seconds and the packet size was 

1428 bytes. With packet intervals over 0.06 s, round-trip t imes stayed below 100 ms and packet loss 
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around 5%. Performance started to drop clearly when packet interval approached 0.04 s. With an 

interval of 0.03 s, the round-trip t ime was about 300 ms and packet loss was about 80%.  

4.5. Simple State Machine Example 

An example state machine is presented in Figure 4. The SM switches physical connectivities (3G, 

WLAN) for VoIP application usage, according to the following kind of user-defined policy. The first 

priority is to maintain a h igh-quality connection at all times; the second priority is to do this with a low 

monetary cost. The decisions depend on the availability of the different access networks. 

In the model, 3G is always high-quality. W LAN can be low- or high-quality, depending on link-

layer in formation. The SM tries to get out of a low-quality, cheap WLAN state, regardless of costs. It 

also tries to get out of a high-quality, expensive 3G state into a high-quality, cheap WLAN state.  

The SM is composed of mult iple sub-SMs. The connectivity-specific SMs “3G” and “WLAN” do 

not know about each other. They are synchronized by the “VOIP” SM tha t communicates with them 

by using events; this modularity reduces complexity and enhances the system’s extensibility.  

The failure transitions are shown just to clarify that the SM can also be used for managing 

exceptions; the actual recovery mechanis ms are not provided. It is possible that if a failure occurs, a 

counting timer can be started to trigger re-try  n times. Failures are handled with the same primitives 

(states, transitions, and events) as other situations. Moreover, realized  failu res can be stored in  the SM 

parameters; the failure is part of the device’s context informat ion, affecting the later decisions. 

VOIP CONNECTIVITY
EXPENSIVE & HIGH-QUALITY 3G

CHEAP & HIGH-QUALITY WLAN CHEAP & LOW-QUALITY WLAN

3G & 

SWITCHING 

TO WLAN
3G

EV_LOW_BW_WLAN /

GEN(EV_ACTIVATE_3G)

EV_HIGH_BW_WLAN /

GEN(EV_ACTIVATE_WLAN)

EV_3G_FAILURE

EV_WLAN_FAILURE

EV_WLAN_ACTIVE /

GEN(EV_SWITCHED_FROM_3G)

EV_3G_ACTIVE /

GEN(EV_SWITCHED_FROM_WLAN)

ACTIVATING 3G EXPENSIVE & HIGH-QUALITY

EV_3G_STARTED /

GEN(EV_3G_ACTIVE)

EV_ACTIVATE_3G /

GEN(EV_START_3G)

3G ACTIVE

DEACTIVATING 3G3G PASSIVE

EV_SWITCHED_FROM_3G /

GEN(EV_STOP_3G)

EV_3G_STOPPED /

GEN(EV_3G_DEACTIVE)

EV_3G_START_FAILED /

GEN(EV_3G_FAILURE)

EV_3G_STOPPED /

GEN(EV_3G_FAILURE)

ACTIVATING WLAN CHEAP & LOW- OR HIGH-QUALITY

EV_WLAN_STARTED /

GEN(EV_WLAN_ACTIVE)

WLAN ACTIVE

DEACTIVATING WLANWLAN PASSIVE

EV_SWITCHED_FROM_WLAN /

GEN(EV_STOP_WLAN)

EV_WLAN_STOPPED /

GEN(EV_WLAN_DEACTIVE)

EV_ACTIVATE_WLAN /

GEN(EV_START_WLAN)

EV_WLAN_START_FAILED /

GEN(EV_WLAN_FAILURE)

EV_WLAN_STOPPED /

GEN(EV_WLAN_FAILURE)

3G CONNECTIVITY WLAN CONNECTIVITY

 

Figure 4 An example state machine for switching physical connectivities. 

To simplify the SM, it is supposed that the handoff of the traffic from one access network to 

another does not require stateful handling. It should also be noted that when switching from low-

quality WLAN to 3G, the SM enters a loop, where it repeatedly tries to activate 3G – without delay 

between the tries – until 3G activates. This is feasible, if we suppose that 3G is widely availab le and 

failures with 3G are short-lived; of course, a different re -try policy could be implemented.  
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Cross-layer in formation is utilized in this SM. The events concerning the detected quality of 

WLAN are based on information gathered at the link level, while all decisions are made in a un ified 

manner by the SM that resides in the application layer (more specifically, in the middleware). 

Regarding the potential of multi-entity-class operations for this VoIP-call-optimizing SM, a 

possible functionality that could  be added is the dynamic switching of IP p rotocol versions. If the user 

enters a network where IPv6 support is detected, the device’s IPv6 stack could be taken in to use in 

order to derive benefit from IPv6’s (future) packet prioritization support for real -time traffic . 

5    Implementation of the Connectivity Management Solution  

5.1. Implementation Environment 

The target platform for the mobile software were state-of-the-art Nokia Series 60 s martphones (models 

6680, 6630) running Symbian OS 2nd Edition, FP2. The Octopus testbed network in the city of Oulu 

provided us mobile subscriptions with fixed public IP addresses, freeing the us from the concerns of 

Network Address Translation (NAT) traversal and exp iration of address lease periods. 

Physically, the binary implementations of protocols and connectivity plugins for PnPAP are 

Symbian polymorphic Dynamically Linked Libraries (polymorphic DLLs) with entity -class-specific 

interfaces. Modules, which correspond to the different entities, are loaded and unloaded at run -time. 

5.2. Implementation 

What entities a given HCon implementation can control, depends on what entities have been 

implemented as PnPAP-compatible software modules. In our implementation, there are two entity 

classes in the system (N = 2), namely, physical connectivities and P2P protocols; of course, a real-

world  HCon implementation would  be more complex, but these two entity classes are the most 

essential from the viewpoint of our P2P system and demonstrate clearly the operation of HCon. Each 

of the entity classes contains two entities. The physical connectivities availab le are GPRS and 

Bluetooth. The P2P protocols available are DC++ and the Very Simple Proto col (VSP). VSP is a 

proprietary protocol implemented only for demonstrating the functionalities of PnPAP.  

The prototype SM takes 35 KB in the N3 format. It is important to note that this SM is different 

from the example SM that was presented in section 4.5. 

The prototype SM supports the following context types: user’s speed (bitrate) preference; user’s 

monetary cost preference; application’s latency preference; application’s bandwidth preference; 

application’s type (streaming, P2P, or chat messages); application’s preference for transport type 

(stateful or stateless); application’s battery usage. The HCon engine initializes the SM with the 

relevant context parameters, which could indicate, for example, that the application is P2P-oriented. 

5.3. Delay Measurements 

Delay times related to the SM-based decision-making procedure were measured when we evaluated 

the implemented HCon system. A measurement series would consist of 20 measurement iterations. 

Each of the iterations would consist of the following steps. 

1.   The SME is started manually so that it is ready to accept incoming requests.  
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2.   The NaviP2P application (i.e ., navigation with peer group members on the map) is started 

manually. Implicit ly this causes also PnPAP to start to run and set up a socket  connection to the SME. 

The HCon engine sends a SM-init ialization message (context parameters) to the SME.  

3.   SIP username and password for the PnPAP network are entered manually in NaviP2P. Then 

the HCon engine sends one decision request to the SME, and, after a while, receives the response.  

4.   NaviP2P is exited  and also the SME is shut down. The terminal is rebooted, and the system is 

ready for the next measurement iteration.  

Each iterat ion produces five timestamps. Delays for different actions can be calcu lated from the 

time intervals between the timestamps recorded in the logs. The following values can be calculated: 

•    Tsm-init = delay of the SM in itializat ion phase; 

•    Tconn-decision = delay between the decision request and the connectivity-decision response; 

•   Tprot-decision = delay between the decision request and the protocol-decision response. 

Before beginning, there was one factor to consider regard ing the SME’s performance: Python 

programs can be human-readable scripts or compiled byte-code. Compiled byte-code loads faster than 

the source script, because the non-compiled script must be interpreted into byte-code each time it is 

run; there is however no difference in the actual execution speed between interpreted and compiled 

code, because the compiled file  is just a re -usable result of the same interpretation process, as stated in 

the documentation of Python. We performed two measurement series: one with the non-compiled 

Python codes and one with the compiled codes. The codes were otherwise identical.  

Hypothetical delays were stated before carrying out the measurements in order to enable 

comparison of the actual performance and our assumptions. The hypothetical average delays were as 

follows: Tsm-init = 0.50 s; Tconn-decision = 0.20 s; Tprot-decision = 0.40 s (i.e . there would be 0.20 s between 

receiving the connectivity-decision and the protocol-decision responses: 0.20 s + 0.20 s = 0.40 s).  

The measured delay values for the non-compiled (interpreted) and compiled SME codes are 

presented in Figure 5 and Figure 6, respectively. 

 

Figure 5 HCon delay measurements: non-compiled Python code. 
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Figure 6 HCon delay measurements: compiled Python code. 

With the non-compiled  codes, the average measured Tsm-init was 5.87 s (std. dev.: 0.14 s). The 

average measured Tconn decision was 2.36 s (std. dev.: 0.05 s) and the average Tprot decision was 2.60 s 

(std. dev.: 0.05 s). Between receiv ing the connectivity-decision and the protocol-decision responses, 

the average time interval was 0.24 s.  

With the compiled codes, the average measured Tsm-init was 5.80 s (std. dev.: 0.17 s). The average 

Tconn decision was 2.93 s (std. dev.: 0.08 s) and Tprot decision was 3.18 s (std. dev.: 0.08 s). 

An anomaly is detected when one compares the two measurement series: for some reason, the 

compiled byte-code seems to introduce more delay than the non-compiled scripts. This was not 

expected at all. The compiled codes should yield a shorter total delay (loading and execution delay 

components combined), as they load faster than interpreted code. There is a speculative explanation: 

we compiled the codes on a desktop computer, and although Python byte-code should be cross-

platform compatib le at least between instances of the same Python version, there could be some 

differences between the two environments, and this would affect some component of the total delay.  

In both measurement series, the measured decision-making delays were clearly higher than the 

hypothetical values, but not excessively so. The measured level of performance is satisfying for a 

proof-of-concept solution. The implementations of the SME or the PSII library should be further 

optimized. The measured delays of the HCon implementation are high, because there is a great amount 

of overhead from the SME’s complexity.  

Of course, if HCon is to be applied to mobile networking in the real world, the system will 

probably be implemented in native binary code, preferably as one single process in order to eliminate 

also IPC-related delays. More performance metrics should be evaluated with this more capable 

implementation. It is clear from the measured delays that the current implementation is not ready for 

large-scale deployment. The purpose of the evaluation was, however, only to create a functional 

architecture for decision-making and not to optimize the performance.  

Finally  it  must be noted that the evaluated HCon system lacked a reasonably large variety o f 

physical connectivities and P2P protocols. This obviously made the TDCP decisions easier; the 
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evaluation was not carried out with a system of realistic complexity. The evaluation results however 

provide suggestive information about the performance of a SM-based connectivity management 

system on a state-of-the-art deployment platform. 

In order to estimate the potential real-life impact of TDCP decision on  specific networking 

metrics, we can consider an example case where a P2P protocol supporting only point -to-point 

downloads is changed to one that is able to download from multip le sources, removing the bottleneck 

of remote-node uplink capacity; this would result in increased download speed. In another example 

case, the monetary cost of file transfer is decreased when HCon detects that two terminals are close to 

each other and changes the connectivity from a cellu lar network to Bluetooth. 

It would  be interesting to compare other connectivity-management solutions in the literature to our 

results. While no directly comparable results to our entity-class model were found, we provide a brief 

high-level comparison to selected approaches that are based on the “Always Best Connected” 

ideology. In  [21], access network selection is modelled as a variant of the bin  packing problem and 

specific algorithms for it are evaluated with simulations; while the algorithmic base is different from 

ours, there is an architectural similarity, the intention to deploy connectivity management as part of a 

mobile middleware. A modular system, with selection procedures specified in pseudo -code, is 

presented; some differences to our approach are the specified level of detail fo r input informat ion and 

the design of the components used for parameter-gathering and decision-making. In [22], an object-

oriented framework for encapsulating connectivity management is proposed, along with a problem 

formulat ion based on the knapsack problem, reminiscent of the formulation in [21]. The architecture in 

[22] is not completely unlike ours, as it features a freely adaptable model for context parameters, and 

state machines are used for modelling application and network behav iour. Decision-making itself, 

however, is not provided by state machines. The overviewed solutions, despite some cross -layer 

considerations, have no emphasis on problems such as P2P protocol selection.  

6    Design of the Session Management S olution 

6.1. Connecting the Isolated Application Islands 

As indicated in the problem statement, a key feature of the session management solution is the 

init iator’s ability to start sessions over the network with any other user, using his installed application 

Ai. This must happen in such a way that the receiver does not need to have the same application Ai on 

his terminal at the moment when the session initiation is attempted. The probability (Ps) to be able to 

init iate Ai-sessions with a specific peer should be near 1.0, provided that the session management 

solution is deployed on all terminals of the current peer group. 

Our session management solution overcomes the problem of isolated application islands by 

providing a means to dynamically install and launch the applica tion on the receiver’s terminal if that 

application is not yet installed. The solution also liberates users from thinking about these installations 

before the need for installation is detected. 

From the in itiator’s point  of v iew, a session can be proposed without knowing does the receiver 

already have the application or not. Of course, the initiator might also know about the application -

installation status of the receiver (because, for example, they have talked  with each other about their 

applications, or because the status is automatically transferred over the communication channel 



 

 

100     Analysis of Connectivity and Session Management for Mobile Peer-to-Peer Applications  

 

between middleware instances), but the solution enables him to try init iating a session even if no such 

informat ion is available. When the receiver gets the session proposal (but  does not have the application 

yet), he is proactively informed about the ability to install the applicat ion and can accept or deny the 

installation. If the receiver accepts, the installation package is retrieved from the network without his 

effort; then the application is installed and a session with  the initiator is instantly activated. As a 

consequence of all this, any user can try to initiate sessions with any member o f his peer group, using 

any of his applications that support user-to-user sessions. 

The solution overcomes the problem of isolated applicat ion islands, as any application Ai can be 

used to initiate a session with any user; there is no more a dependency to the receiver’s already 

installed set of applications. The means to install and launch dynamically the applicat ion on the 

receiver terminals can re-use existing system functionalit ies: for installation, the generic application 

installer can be used, and the installed software can be launched by the middleware as easily as any 

locally installed application, of course with a suitable way to provide the parameters for the session. 

From the receiver’s point of view, the decision to install the application is made as effortless as 

possible. The in itiator, in  turn, has the freedom to propose an application session to any of his friends – 

without the need to think does the receiver have the application already or not.  

Automatic start-up of an application session, immediately after the installation, is a significant part 

of the functionality of the solution. After all, a session is what the initiator proposed in the first place, 

and the session is also presented to the receiver as a consequence of accepting the proposal. Correct 

parameters for the to-be-launched session are automatically passed to the application at the receiver’s 

end, so the session can be correctly established. Had the application been already installed on the 

receiver’s terminal, the parameters could be used to initiate a session right away; of course, the 

receiver has the power to accept or deny the session also in that case. 

It is possible that several users try to initiate sessions simultaneously with the same receiver. This 

can be handled by a suitable policy: the solution can be configured to reject new session proposals if 

one is already in progress, or to remember the proposals and provide the receiver the option to “call 

back” the init iators when the current session is finished. 

Naturally, the system should not install anything without the user’s consent. The receiving user 

must be given a clear indication about his ability to accept or deny the installation, about the identity of 

the initiator peer, and about the consequences of accepting the proposal: accepting will, among other 

things, result in a session with the in itiator. It must also be indicated whether a payment is involved or 

not. The session proposal indication should be in the form of a v isual message on the screen, 

preferably accompanied with a sound alert – much like an  ordinary incoming vo ice call is indicated by 

means of audiovisual signals that capture the user’s attention. Blocking of incoming session proposals 

could be implemented based on the receiver’s presence status, e.g. “busy”. 

The exact wording of the message may d iffer, and the phone screen size is a limit ing factor, but 

the message conveyed to the receiver should be essentially this: “<Peername> is proposing a session 

using the application <Application>. If you permit installation of the application, a session of 

<Application> will begin immediately between you and <Peername>. Price of installat ion: <Price>.”  
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This session management solution has been named Agile Content Push Control (ACPC), and it 

was first proposed in [3]. The name derives from the fact that the system, in addit ion to managing 

sessions, factually performs a user-approved content push when installing the missing software. 

Depending on the situation of the receiver, one of three things can happen when an ACPC-based 

session proposal is sent to him. 1) The receiver has the application already running. After the receiver 

accepts the session proposal, init iating a session is triv ial. The resulting session is homogeneous, if the 

applications are identical; it is heterogeneous, if the applications are non-identical but can nonetheless 

communicate. 2) The receiver has the application installed, but not running. After the receiver accepts 

the session proposal, ACPC must dynamically launch the application and init iate a session. 3) The 

receiver has not installed the application. After the receiver accepts the session proposal, ACPC must 

dynamically download the application, launch the installer, and finally launch the application and 

init iate a session. This is the novel part o f the solution. The resulting session is homogeneous, since 

both parties have identical applicat ions after the installation.  

 

 

Figure 7 Sequence diagram for ACPC session start -up. 

In situation 3, the installation package of the application is retrieved from a content repository, 

which is automat ically selected by ACPC and is one o f the following: 1) a content server; 2) a P2P 

storage network; or 3) the disk of the in itiator peer’s terminal. The users do not necessarily know about 

these options at all; they just see that a file  is automat ically downloaded from somewhere.  
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One possible sequence of ACPC action is visible in Figure 7. The sequence depicts a situation 

where the content repository is the initiator’s disk and the session is created successfully.  

The typical usage situation of ACPC cannot be explicitly defined, since it is dependent on the 

application and the session type to be initiated. When a game or other interactive session initiation is 

concerned, we argue that it is likely to happen while having dead time, e.g. travelling by bus. However, 

the user does not know if any of his friends is having dead time at the same exact moment (if not 

revealed by their presence information), which emphasizes the prevalence of physical presence e.g. in 

the gaming situation. This limitation would shrink the potential user group only to a minority if the 

user could not easily retrieve the information about his  friends’ willingness to have e.g. a game session 

with h im. Thus, the users are able to bring forth their willingness (for interactive sessions such as 

games) that is shared by PnPAP among other context informat ion.  

To guarantee a fluent user experience, ACPC must include functionality to react to exceptional 

situations such as the interruption of installat ion on the receiver terminal. The middleware must 

observe these exceptions and indicate them also to the initiator with an appropriate level of detail; the 

init iator must never be left in a state of uninformed waiting.  

ACPC can also be utilized for disseminating non-interactive data objects such as video clips and 

still pictures. Th is usage situation is less tied to time and  physical presence than a session proposal. 

ACPC may take care of finding the appropriate application for consuming the received media; if 

needed, an automatic application search is performed  in the available P2P networks or content servers. 

As with trad itional media delivery  solutions (such as MMS), the ACPC user may react to the received 

media offering right away, later on, or ignore it completely. 

It is intended that ACPC be implemented as a mobile middleware, thus application developers can 

easily access its functionality. Since session management closely interlocks with other networking 

functionality, we deemed it best to incorporate ACPC into the design of the PnPAP middleware. 

Application developers see ACPC functions as part of PnPAP. This integration approach also reduces 

the complexity  of the run-time environment of supernetworked applicat ions, because the programs 

only need to communicate with one piece of middleware.  

A popular mobile content-push solution is WAP push. It is based on text messages that trigger a 

WAP download when opened. Comparison between ACPC and WAP push shows that WAP push 

emphasizes the delivery o f a data object, while ACPC emphasizes the assisted setup of a session and 

close integration with the supported applications. Although ACPC is designed to be IP-based, it could 

also utilize WAP push for the content delivery step, if needed. Another existing content push 

technology is OMA DS push; it is used for synchronizing personal in formation between  a phone and a 

server, and is not suitable for ACPC-like user-to-user pushes. When ACPC is compared within the 

category of content delivery solutions (not just push), it seems to bring certain advantages over the 

common installation methods of mobile software: text -message based subscriptions and WWW 

downloads require explicit action and init iative from the installing user, whereas ACPC does not. 

6.2. Flexible Management of Versions and Extensions 

Despite its benefits, the ability to automatically propagate copies of just a single installation package 

(one per each application Ai) to any peer in the peer group is hardly enough for raising Ps to 1.0. The 
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problem of isolated application islands is further aggravated by the fact that today’s mobile ter minal 

base is very diverse. The same applicat ion-installation package that works on the init iator’s device 

might not work on the receiver’s different kind of device.  

Terminals by different vendors are seldom software-compatible, and also devices by the same 

manufacturer often suffer from breaks in  binary  or source code compatibility  between older and newer 

products, or between parallel differentiated product lines. Concerning the heterogeneous terminal base, 

it is desirable that ACPC can proactively alleviate the problems of incompatibility. This is possible, if 

different installation packages of Ai for different platforms are available in the content repositories. 

When the receiver’s terminal starts to download the application installation package, it  should 

automatically discover the package that is compatible with the local p latform.  

Of course, there is still the issue of mult iple applicat ion versions: different versions of the same 

application might not be compatible. Version information should be attached to the application 

packages in order to provide a fix to the problem. When a receiver has, for example, an older version 

of the application than the in itiator has, he could be given the possibility to dynamically upgrade to the 

more recent version that is available in the content repository, and, when the new version has been 

installed, ACPC init iates a session using the upgraded application. 

As required in the problem statement, the probability to be able to initiate mult isessions (Pms) can 

also be increased by using ACPC. This is naturally done so that ACPC checks which of the multiple 

required applications have been already installed, and dynamically installs those applications that are 

missing, just like ACPC would do with single -applicat ion session proposals. Moreover, extensions and 

patches to ACPC-supporting applications could be distributed in a similar manner as the applications 

themselves. This could include the distribution of bug fixes and data files such as game levels. Again, 

these installations would be proposed to the user upon session initiation.  

6.3. Security Aspects 

Security is clearly  an important requirement for a solution that enables any kind of installation of 

executable content, especially when dealing with push-type installation of applications. 

In the ACPC solution, only  the members of the same peer group are able to make session 

proposals that could lead to the download and installation of an  application. While peer-group based 

protection alone is not a sufficient countermeasure for dangerous pushes, at least it prevents pushes 

from any malicious user who is not a member of the group. The session proposals must be 

cryptographically signed with the init iator’s identity to protect users from fake-identity pushers.  

Similarly, the installation packages should be digitally signed by their vendors in order to prevent 

the rigging of their applications with malicious code. Thus, ACPC should include cryptographic 

functionality that forces the installation packages to be dig itally signed and thus of verifiable origin. 

ACPC should never open non-signed packages during a content push.  

Security hazards related to ACPC must be taken seriously. For example, a  simple dig ital signature 

is not effective to detect attacks from compromised peers, if the signature is used for verifying that a 

given peer (in the user community) has created a message. However, if the signature is of a trusted 

operator’s server (and never of a peer in the user community), security is significantly stronger: the 

software installat ion package may not be tampered with, if the server is located in  a known, trusted 
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party’s premises and kept secure. Deceptive techniques like malware, Tro jans or phishing are hard to 

detect by common users in practice. For maximal security, ACPC cou ld  only use centralized content 

repositories. It is also interesting to note that, for instance, Linux software is routinely installed from 

remote software repositories that are generally trusted by the users. 

6.4. Potential Positive Implications 

Commercia lly, ACPC appears attractive at least from the viewpoint  of content providers and mobile 

network operators, since the session initiations and the transmission of actual data create revenue 

through both the increased data traffic and content purchasing. When examining the mobile content 

business more closely, ACPC can also be seen as a functional tool for the superdistribution of 

commercial content. In superdistribution, the users distribute the content in their social communities 

legally, provided that the rights for the content are always acquired separately for the each new user 

[23]. We argue that the threshold for licensing new content (now including both applications and static 

content) is lower when recommended by a friend than a literally faceless commercial party. 

In traditional superdistribution, the pusher must think: “I’ll send this file.” In ACPC however, the 

init iator’s actual purpose is not the content push – he is just proposing a session to his friend. If a  

content push happens, it is a side effect o f session proposal. From the pusher’s point of view, the 

triggering of a content push is implicit when using ACPC, whereas traditional superdistribution 

requires exp licit act ions for sending the content. From the receiver’s point of view, the ACPC receiver 

is not just “accepting a file”. The message on the screen is primarily a proposal for a session, and the 

software installation is only a requirement for being able to init iate that session. 

If ACPC provides the possibility to create plugin modules that augment its functionality (for 

example, enabling the middleware to handle new kind of content push situations ), developers can 

easily introduce their own new modules and enhance the functionality of ACPC. These software 

updates can be distributed in the network and ACPC can be updated like any other software.  

Though ACPC is aiming to minimize the effort from the end-users, the users should always be 

aware of the system’s context, and at their will, take part to technical decision-making. This approach 

is called seamfulness and presented in [24]. When the users are also aware of the technical boundaries 

of the system, they have a chance to create and develop new kind of uses for ACPC. 

6.5. Potential Problems 

Technologically, ACPC enables session initiation with any friend in a peer group, but if the user (as 

the init iator) does not understand this, he might never get  the spontaneous idea to propose a session to 

his friend. Thus, the lack of an appropriate mindset among the users could diminish the use of ACPC. 

Fortunately, ACPC-supporting applications would probably have menus with clear indications that 

session proposal to a friend is possible. For example, a game could have an option called “play with a 

friend”. Names of users to contact in the current peer group would be listed under that menu. This 

would probably urge the user to try initiating a user-to-user session.  

As with most middleware solutions, any applications on top of ACPC must be aware of the 

underlying middleware and the API. Th is could be an obstacle for the widespread commercial 

adoption of ACPC, if application developers are not eager to add ACPC support to their products. 
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Applications must be written so that they exp licit ly support ACPC, and also existing applications must 

be modified when ACPC support is added to them. A hen-and-egg problem can be recognized: if the 

middleware is not installed  in  a large number of terminals, application developers might not be 

interested in ACPC – and if there are no ACPC-supporting applications, it might be difficult to justify 

the integration of ACPC middleware into mobile terminals. 

Also, if the degree of ACPC penetration in the mass of mobile -terminals is low, those users who 

have ACPC do not have enough peers to init iate sessions with. If the init iator has ACPC but the 

receiver does not, session proposals will fail. As it is crucial that ACPC itself has enough penetration 

among the mobile user community, it should probably be an operator-promoted service or even 

integrated into the handset’s operating system. If ACPC is to be utilized in the real world, operators 

and large content suppliers have a central role in help ing ACPC to pervade among the mobile users.  

7    Implementation of the Session Management Solution  

7.1. Scope 

When implementing ACPC began, it was necessary to define which parts of the functionality to 

realize. Many of the advanced features could be left unimplemented. For instance, the creation of 

different application binaries for several types of terminals, and the related automatic s earch 

capabilit ies for finding the installation package for a specific terminal type, were not implemented. 

Applications access ACPC functionality v ia the ACPC Application Programmer’s Interface (API). 

The ACPC API is part of the PnPAP API and provides the fo llowing session-related functionalities: 

start (propose) a session to a remote user; accept a session being proposed by a remote user; reject a 

session being proposed by a remote user; end an active session. 

All these actions return asynchronously; they involve SIP-based communication with a remote 

ACPC middleware instance over the network. When an asynchronous ACPC act ion returns a status 

value or an ACPC message from a remote peer requires the attention of the application, the ACPC-to-

application messaging is accomplished by using the methods of the ACPC Callback Interface. How 

these events are indicated to the local user, is applicat ion-specific. 

7.2. An Application with ACPC Support 

For the evaluation of the ACPC middleware module, an ACPC-supporting application was needed. 

Fortunately, we already had an application that involved user-to-user sessions and was therefore an 

excellent application for demonstrating ACPC: the Real-Time VoIP application, which is a 

supernetworked P2P voice -call application built on top of PnPAP. 

Real-Time VoIP was modified so that its VoIP functionality remains intact, but its session 

management component is aware of ACPC. Essentially this means that 1) all session -related signalling 

actions are handled using the ACPC API;  and 2) the application is able to start a session automatically 

on the receiver’s terminal, when it has been installed using ACPC’s dynamic download functionality. 

Session parameters for Real-Time VoIP application include the voice codec to use, the sample rate, 

sample size in bits, packet size, and the in itiator’s SIP URI.  
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The voice codec used in the test runs was Adaptive Multi-Rate Narrow Band (AMR-NB), at 

4.75kbit/s (mode 0), with  13 bytes of audio data and a 4- or 8-byte header per frame, being able to 

compress the 16-b it 8000Hz PCM voice samples for half-duplex speech transmission over GPRS. 

7.3. Delay Measurements 

Quantitative information about the performance of the ACPC implementation was gathered by 

measuring the different delays generated during the basic flow. This section describes the measurement 

setup and presents the measurements’ results. 

It is important to notice that during the basic flow, both technology-originated delay (TOD) and 

user-originated delay (UOD) are generated. TOD is any delay caused by technical factors, such as the 

time required for downloading a file. On the contrary, UOD is any delay caused by the user’s human 

slowness: a user might cause UOD for example when he reads a dialog on the screen. 

This distinction between TOD and UOD was not needed when we measured HCon delays, because 

all the HCon delays were TOD. In ACPC-based content push, however, both types are present, and 

UOD could even be the dominant type of delay. Obviously, the amount of UOD may vary greatly, 

depending on the situation and the user’s level of ACPC experience. The total delay  (all TOD + all 

UOD) should be as low as possible, especially for the convenience of the initiator.  

In the measured ACPC scenario, the pushed software was our Real-Time VoIP application. Two 

phones were involved in  the measurements, but there was only one operating person, acting as both the 

init iator and the receiver. Th is person was an experienced ACPC user. Below, the terminals of the 

init iator and the receiver are called the “in itiator-phone” and the “receiver-phone”, respectively. 

One measurement series of 20 iterat ions was conducted. Each iteration consisted of the following 

steps that reflect the course of the basic flow.  

1.  Real-Time VoIP is manually started on the initiator-phone, and NaviP2P (our navigation 

application) is manually started on the receiver-phone. (NaviP2P is used, because it starts an instance 

of PnPAP. ACPC is part of PnPAP and it must be listening to incoming session proposals.)  

2.   On both phones, the same peer group is manually jo ined to. 

3.  On the initiator-phone, the receiver peer’s name (SIP URI) is manually picked from the peer 

list, and a voice session proposal is selected to be sent from the options menu.  

4.  When the session proposal (the “download or not” query) is shown on the receiver-phone, 

“Yes” is manually selected to accept the proposal. Downloading of the installation package starts.  

5.   When ACPC has opened the installation package that was downloaded, the installation dialog 

is manually gone through on the receiver-phone. When the installation  dialog is over, ACPC 

automatically launches the new application that was installed.  

6.  The receiver’s auto-launched application builds its session state, based on the session 

parameters ACPC gave to it. Then it sends a session-accept message to the initiator’s applicat ion.  

7.   The session starts; the operating person exits the application on both phones. Real-Time VoIP 

is removed from the receiver-phone, thus it can be installed again during the next iteration.   

Each iteration produces seven timestamps. From them, the following delays can be calculated:  
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•  Ttotal = total delay seen by the in itiator, between the moment he sends a session proposal and the 

moment when the actual session initiates. 

• Tsignalling = TOD from all node-to-node signalling, i.e. transmitting ACPC messages over the 

network and processing them in PnPAP.  

•  Tquery = UOD before the receiver selects “Yes” in the download query. 

•  Tdownload = TOD when the installation package is downloaded. 

•  Tinstall = UOD and TOD when the installation dialog is performed  and when the application is 

auto-launched after the installation dialog.  

•  Tfinal accept = TOD between the applicat ion launch and the sending of the final session -accept 

message to the initiator. This is basically  synonymous with “the time required for building the session -

state in the receiver’s application after it has been launched”. 

As the experienced user in this pre-determined usage scenario does not spend time read ing the 

dialogs and thinking what to do, the UOD is near the best possible case, i.e. the min imum UOD. The 

physical connectivity, however, was GPRS; thus, the TOD represents almost a worst -case scenario. 

Again, we stated hypothetical delays before the measurements. The hypothetical average delays were 

as follows: Ttotal = 39.0 s (sum of all other delays); Tsignalling = 3.0 s; Tquery = 2.0 s; Tdownload = 24.0 s; 

Tinstall = 5.0 s; Tfinal accept = 5.0 s. 

The results from the actual measurements are presented in Figure 8. 

 

Figure 8 ACPC delay measurements. 

The average measured Ttotal is 51.0 s (std. dev.: 5.8 s). Th is average total delay is a little  higher 

than the corresponding hypothetical value (39.0 s). Downloading (Tdownload) took approximately the 

expected amount of time, but the ACPC-to-ACPC signalling delay (Tsignalling) and session setup delay at 

the receiver (Tfinal accept) were higher than expected. The signalling delays are exp lained by network 

roundtrip time and the internal processing of the middleware and applications; they took more time 

than was expected. In real superdistribution, there would also be delay from DRM service access. 
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7.4. Recognized Issues on Usability 

During testing it was understood that the initiator might start to feel bored during a  content push. The 

receiver’s attention is occupied when he sees the dialogs and other push -related action on his 

terminal’s screen, but the init iator may get bored if he just passively waits for things to get done by the 

remote receiver. If the receiver’s  slowness introduces a lot of UOD, the in itiator’s waiting time could 

be several minutes. The wait ing time could be made more pleasant by providing some kind of waiting -

time activ ity, such as a min i-game to play or an animat ion to watch, for the init iator.  

The content push situation also highlighted the importance of t rial-period functionality fo r 

commercial content. Indeed, it would feel somewhat unnerving to pay for a new application before 

trying it out. A free evaluation period fo r applications is an essential feature for commercial ACPC. 

8     Discussion and Future Work  

The efforts behind this paper focused on creating clean abstract designs of the two components and 

then implementing a relevant sub-set of the designed functionalities. The main goals of the work were 

attained: the systems realized are functional, even though the measured delay t imes reminded us of the 

fact that the performance of p roof-of-concept solutions is often far from optimal.  

Future work with HCon includes its evaluation with a greater number of versatile entit ies. A 

greater number of P2P protocols, such as JXTA, Gnutella, and FastTrack could be implemented as 

changeable modules for HCon-based protocol management. The aforementioned P2P protocols were 

studied in the beginning phase of the All-IP project, when the key decisions about technologies to 

implement were made. Only DC++ and VSP were actually implemented for PnPAP.  

The issue of IP mobility has not been emphasized in the work for HCon yet. The design of HCon 

does not feature any specific mechanisms for IP mobility management as we have concentrated on 

realizing the p roof-of-concept decision-making framework. In  the future, HCon should be optimized 

with regard to mobility management. The anticipated triumph of IPv6, also in th e mobile realm, makes 

it desirable to add MIPv6 support into HCon so that the networking resources can take advantage of IP 

mobility in vert ical handoffs. 

Evaluation  of HCon showed that the implemented system was reasonably efficient, although more 

optimization could be done. Future work with HCon may include implementing the system from 

scratch on a different p latform, using d ifferent tools and a more effective approach to implementation. 

It would be interesting to compare HCon’s decision -making performance with earlier solutions. 

However, none of the related publications discussed in section 3.1 provided any kind of measurements 

of decision-making delays. Vertical handoff delays were often discussed, but they are an entirely 

different thing from the delays  of the decision-making logic itself. 

In the future, specialized responsibilities for HCon could also be studied in detail. For instance, 

HCon-based connectivity management could be used to control power-consumption on the mobile 

platform. Wireless network access, the very thing controlled by HCon, is a major power drain in 

phones. Research on battery saving [25] suggests that significant energy savings can be attained by 

dynamically adjusting the fidelity of media rendit ion in applications. In a similar fashion, HCon could 

observe the entity stack for parameters subject to optimizat ion in order to save the battery. Battery 

saving is just one example of the special responsibilities of HCon requiring further study. 
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HCon could be adapted to concurrent multi-interface data transmission for the needs of very 

bandwidth-intensive applications; this would involve several TDCPs for a single logical channel of 

communicat ion. Stream Control Transmission Protocol (SCTP) is a protocol intended to replace TCP 

for real-t ime communications, and M2-SCTP [26] is a proposed mobile SCTP-variant that uses more 

than one connectivity concurrently to enable higher aggregate bitrate. Applying M2-SCTP in HCon 

could provide higher-capacity connections for the applications on top of HCon. 

For ACPC, session mobility support can be seen as an important future extension. The design 

work behind application supernetworking has not yet precisely  decided how to implement session 

mobility. A generic session-mobility solution must be provided to be used by versatile applications; 

this functionality could be incorporated into ACPC that is currently the session -management 

component for supernetworked applications. Of course, a  collaborating middleware solution must be 

deployed on any device that is intended to be a party in session handoffs. 

Currently the two novel components, HCon and ACPC, are not optimally orchestrated to perform 

as a whole. For example, HCon is not aware of the special needs of an ACPC-based download. HCon 

and ACPC should be more closely integrated together. In order to realize the application 

supernetworking paradigm, its components must collaborate in a t ruly seamless manner. This speaks in 

favor of a single-middleware solution, rather than a disparate array of single-purpose middleware 

programs with limited awareness of each other and no common operational logic.  

Hybrid cases for ACPC and HCon are an additional justification fo r integrating both solutions 

more tightly into a single middleware. For example, consider PnPAP’s dynamic  protocol installation 

capability. Integrating this ACPC-style functionality with HCon would enable the seamless acquisition 

of new protocol implementations, when the SM-based decision procedure indicates that a specific 

protocol is optimal for the TDCP but the protocol has not been installed yet. This could be specified as 

a hybrid functionality of ACPC and HCon. This functionality adds freedom to TDCP decisions: a 

larger set of TDCPs is available when dynamic installation of new protocols is possible. Optimization 

of TDCPs for multisessions and rich calls is another hybrid case for ACPC and HCon.  

Collaboration between HCon and ACPC could be achieved by a layered solution, where ACPC is 

on top of HCon and, knowing the most about the session details, is ab le to translate that information 

into parameters for HCon. Changes in session state or expected data transmission patterns would 

trigger HCon-level decisions about the networking resources for different sessions: for example, when 

a jitter-tolerant file -sharing session changes into a VoIP session, HCon might abandon a low-quality 

WLAN connectivity currently in use and switch to a low-jitter 3G connection.  

Future work with HCon especially  involves the consideration of terminal mobility  support and the 

creation of more capable state machines. Future work with  ACPC must more thoroughly deal with the 

security of software installations  and the details of the user experience. In addit ion, more efficient, 

practical implementation and realistic evaluation are needed for both, HCon and ACPC.  

Disruption points, such as the emergence of a new set of technologies, could give a foothold to 

innovative solutions like ACPC and HCon, contributing to their large-scale adoption. It is easier to 

take new solutions into use when old paradigms are being abandoned. When the revolution starts, the 

possibilit ies provided by intelligent mobile middleware solutions will hopefully be recognized.  
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9    Conclusions  

This paper discussed the design and implementation of two solutions, one for connectivity 

management and the other for session management, which are building  blocks for mobile systems that 

realize the applicat ion supernetworking paradigm. First, an overview of the current and future trends of 

mobile networking was provided. Then the conceptual framework behind this paper was explained. 

The state-of-the-art of the problem area was presented, and the research questions to be answered in 

this paper were stated.  

The design of the connectivity management solution, Holistic Connectiv ity, was presented. It was 

required that the solution would  be implemented as a mobile middleware that manages the networking 

resources used by applications. The design featured cross -layer decisions controlled by replaceable 

state machines that contain the decision rule-bases. Context informat ion and user preferences can be 

used as parameters for the connectivity management decisions.  

After its design, a proof-of-concept implementation of Holistic Connectivity was presented. The 

technical choices made during the implementation work were discussed and the performance of the 

system was evaluated with delay measurements.  

Then, the design of the session management solution, ACPC, was discussed. The solution enables 

the semi-automatic installat ion of missing software on the target terminal of a session request. If the 

application required fo r a session has not been installed on the receiver’s terminal, it  can be 

dynamically downloaded and installed; the need to perform this installation is proactively detected by 

the ACPC middleware. Application installat ion is thus seen just as a side effect of session initiat ion. 

Apparently ACPC could enable efficient commercial user-to-user content push for applications, 

because the solution makes content-sending implicit and motivates content-accepting. 

A working implementation of ACPC was then presented, as part of the PnPAP middleware. Delay 

measurements were conducted to obtain suggestive information about the technology -originated and 

user-originated delays during a content push.  

Finally, the results and experiences from the work were summarized and the implications of the 

two novel technologies were discussed along with the related future challenges.  
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