
Journal of Mobile Multimedia, Vol. 5, No. 2 (2009) 113–124
c© Rinton Press

FAULT TOLERANCE IN THE MOBILE ENVIRONMENT

DANIEL C. DOOLAN

School of Computing, Robert Gordon University

Aberdeen, AB25 1HG, United Kingdom

d.c.doolan@rgu.ac.uk

SABIN TABIRCA

Department of Computer Science, University College Cork

Cork, Ireland

s.tabirca@cs.ucc.ie

LAURENCE T. YANG

Department of Computer Science, St. Francis Xavier University

Antigonish, NS B2G 2W5, Canada

lyang@stfx.ca

Received April 2, 2008
Revised January 20, 2009

In general it is assumed that a parallel program will execute on reliable hardware. A
fault tolerant program and underlying infrastructure should be capable of surviving fail-

ures such as system crashes and network failures. At the highest level the application
should be capable of automatically recovering from a set of faults without any change
to the apparent behaviour of the program. The process of checkpointing may be used
to allow a program to save its state to persistent storage, abort and restart from the

checkpoint. Several fault tolerant MPI implementations are currently in existence, for
example MPICH-V is considered to be one of the most complete, featuring checkpointing
and message logs to allow aborted processes to be replaced. No matter how sophisti-

cated a fault tolerant system may be, it can never be completely relied upon, as there is
always the possibility of a complete system failure. It is one thing to develop fault toler-
ant applications on high end dedicated clusters and supercomputers, however applying
fault tolerance to the realm of mobile parallel computing presents an entire new series

of challenges that are inexorably linked with the unpredictable nature of wireless com-
munication systems. Two differing strategies for fault tolerance in the mobile Bluetooth
wireless environment will be presented and compared to see which should be adopted
over another.

Keywords: Fault Tolerance, Mobile Message Passing, Bluetooth

Communicated by: D. Taniar & I. Khalil

1 Introduction

The Mobile Message Passing Interface (MMPI) [4] is a library built upon the principles of

MPI and relies on Bluetooth technology to provide the underlying wireless infrastructure for

inter-node communications. Unlike standard Bluetooth networks that are of a Star network

topology (in the case of a Piconet). The MMPI system uses a fully interconnect mesh network

to facilitate intercommunication between each individual node within the network. Thus, just

113



114 Fault Tolerance in the Mobile Environment

as with MPI one can communicate in either a point to point fashion or globally by using a

series of simple communications method calls.

The creation of the world is quite a lengthy process due to the times involved for device

and service discovery. According to the Bluetooth specification the inquiry phase must last

for 10.24 seconds [2], this can take quite a bit longer when executed on a physical device.

The process of service discovery can take just as long in the case that several devices are

found. Finally once all the nodes that are advertising the “mmpiNode” service are detected,

the process of forming the mesh can take place. This can take as little as one to two seconds

depending on the number of nodes. In total one can expect to wait on the order of twenty

seconds for the network formation process to complete.

The library has proven to be very effective in many application domains from parallel

computing and graphics to mLearning and multiplayer games. It is especially useful in the

area of gaming as a well designed single player game can be transformed into a multi-player

game with minimal code changes. One should always anticipate that errors in communications

will occur, especially in the case of a wireless system. Therefore the two strategies for fault

tolerance presented are with respect to this new library for mobile parallel computing.

1.1 Fault Tolerance in MMPI

As previously mentioned a truly fault tolerant system can never be achieved within an MPI

implementation. This is certainly more so true, when nodes are connected over wireless

communication media, as this adds a whole new dimension of possible faults into the system.

To add fault tolerance capabilities to the MMPI system several distinct mechanisms have been

included into the implementation. Checkpointing by the writing of system state to persistent

storage in the form of the Record Management System (RMS), and system reconfiguration

in the form of shrinking or rebuilding the communicator in the event of a failure of a node.

The reconfiguration of the communicator may be suitable for some application domains

but not for others. In the case of mobile gaming for example, the reconfiguration in the case

of shrinking the communicator in the event of the loss of a node, would require minimal time

to carry out the shrinking process. The avatars of the game itself would have to be updated to

reflect the removal of one from the game. In the case of a parallel computation the shrinking

of the communicator may not be an option in the event that global communication methods

such as scatter and gather were used. The data that each node would contain would be

reliant on the overall size of the communicator itself, and thus the data for processing would

have been evenly distributed over a certain number of nodes in the system. Checkpointing

would therefore be an essential element in such systems, as well as the rebuilding of the

communicator to ensure the communicator size remains consistent.

1.2 System Architecture

The addition of fault tolerance to MMPI required the addition of several more classes for

handling the checkpointing mechanism and persistent storage operations (Figure 1). System

reconfiguration and error notification required updates to the main MMPI, BTServer and

BTClient classes. Due to the fact that JSR-82 Bluetooth does not allow low level access to

the HCI layer for the detection of errors, the process is carried out through the use of IO

Exception handling. The CheckPT class carries out the process of checking the worlds state

and initiating the saving and restoration of same. The StateHandler class is use by CheckPT



D.C. Doolan, S. Tabirca, and L.T. Yang 115

for the reading and writing of state information to persistent storage, be it an to File or RMS

database.

The MMPI class is the main interface through which a developer may access the library.

The creation of an instance of this class will instigate the formation of a parallel world. The

MMPI object of each node maintains an array of DataStreams both for input and output

that are connected to every other node in the world. A node may retrieve its particular rank

within the world and the size my using the methods getRank() and getSize(). A job may

then be distributed throughout the nodes of the system based on these values. To achieve

internode communication one may simply call methods of the instantiated object. Methods

such as send(. . .) / recv(. . .) allow for point to point data transfer, while methods such as

bcast(. . .) and scatter(. . .) allow for global communication.

The MMPI class is supported by two further classes, namely BTClient and BTServer.

When the constructor of the MMPI class is called, a parameter is passed to designate whether

is should be activated in either Client or Server mode. This in turn will create an instance of

either the BTClient or the BTServer. These classes allow for the creation of the appropriate

underlying Client / Server architecture necessary for Server registration and Discovery.

Should a developer wish to produce parallel graphics applications they may make use of

the additional classes MMPE and MMPECanvas. The MMPE class provides and interface to

the developer for the drawing of graphic primitives. These can be drawn as with MPI on the

root node of the system, but a broadcast equivalent of each method also exists, allowing for

the graphics to be rendered on all of the devices within the parallel world.

Fig. 1. MIDlet Structure with Fault Tolerance Classes.

1.3 Checkpointing

Checkpointing is a procedure whereby state information is continually saved to persistent

storage to allow restarting of the computation from the checkpoint in the case of a system

failure. The creation of a checkpoint is often considered to be an expensive operation as it

involves slow disk I/O. This requires system time that could otherwise be allocated to the

additional computation of the task at hand. Factors that can impact on the cost of checkpoint-



116 Fault Tolerance in the Mobile Environment

ing include: the cost of creation and writing, the cost to read and restore, the probability of

failure, and the time between checkpoints. Clearly the practically of checkpointing is directly

related to the performance of persistent IO operations.

Two possibilities exist for the creation of checkpoints, that of user-directed and system-

directed checkpointing. In user-directed implementations the programmer is responsible for

creating the checkpoints. Two drawbacks exist with this system, the developer is responsible

for ensuring all necessary state data is saved. Secondly checkpointing should occur at points

within the application where no inter-device communication is necessary. Achieving this can

be difficult for a program that does not have a distinctive iterative structure. One could also

develop for the creation of checkpoints only when a failure is detected. Some work has been

done in regard to system-directed checkpointing, but the extraction of all the necessary state

can prove difficult, and the state may include time segments in which communication is being

carried out. In general user-directed checkpointing is a far more effective scheme. When

the developer is creating checkpoint locations it is necessary to identify what data should be

saved, as data that has not changed from one checkpoint to the next need not be included in

the new checkpoint.

The first attempt at the development of fault tolerant MPI applications made use of check-

pointing and roll back. Co-Check MPI [9] was the first MPI implementation built that used

the Condor [10] library for checkpointing. All process would synchronously checkpoint, this

proved to be a drawback with large infrastructures as the procedure could become expen-

sive from a time concern. The result of this work was the creation of a new version of MPI

called tuMPI as the modification of the original MPICH implementation was considered too

complex. Another similar implementation is Starfish MPI [1] which uses its own system to

achieve checkpointing. The use of atomic group communication calls removed the need as in

the tuMPI implementation to flush the message queues to avoid messages being lost.

1.4 The Communications World

The essential object in any MPI system is the Communicator or World object through which

all communication is carried out. Therefore programs that use only one communicator are

more fragile as a failure on one node will rule out the possibility of using global communication

routines. In contrast Client/Server architectures are far less prone to a failure having an

impact on the system. The failure of a client should have little or no impact on the server.

In this architecture communication is carried out in a point to point manner. In the event

of a communications failure with a client device, the server can simply cease communication

with the client and close all relevant streams.

SETI@home [8] is a perfect example of this where the client devices are used purely for

computation, whilst communication is only carried out to return results and retrieve another

work unit. Should the server itself go down then the clients can simply try again at a future

point in time. The facilitation of several backup servers can ensure the maximum uptime of

the server system in case faults occur, to the primary. System state in such systems can be

easily maintained. MPI programs may also be structured in a similar manner, this is of course

dependent on the application domain of the problem at hand, and is well suited to embar-

rassingly parallel applications. To achieve this in MPI systems the use of intercommunicators

is necessary, thereby establishing two groups of processes with all communication occurring



D.C. Doolan, S. Tabirca, and L.T. Yang 117

between processes in one group and processes in the other.

The Manager Worker architecture may be applied to several application domains from

climate prediction [3] and protein folding [6] to applications such as SETI [8]. The key with

the architecture is that the Manager maintains a work pool of tasks to be computed, which

are in turn distributed to the worker nodes as they become free. This is a highly suitable

architecture for fault tolerant systems as the worker nodes maintain a small amount of state

information at any instant. A copy of the work assignment may also remain on the Manager

node in case of failure and can therefore be farmed out to another node. Data dependance

between workers is not required and no global communication is unnecessary.

One must always take into consideration that there is a trade off between fault tolerance

and cost. The more fault-tolerant a system, the higher the costs in terms of saving saving

state to persistent storage, error checking and reconstituting the world in the case of system

failures. The combination of all these factors can severely impact the overall performance of

the system, but sometimes this is necessary when system integrity and data consistency are

of utmost importance.

Under standard MPI implementations one typically has high-end reliable hardware, and

example is system RAM with in-built checking for consistency. Even on lower-end systems,

the networking issues are still not so much of a problem as nodes are generally linked over a

high speed wired network. In the wireless domain, network connectivity can be intermittent

with nodes coming and going from the network due to physical proximity, and transmission

interference.

1.4.1 Communicator Reconfiguration

Fagg and Dongerra [5] discuss four possibilities for the recovery of a communicator that has

an error state. To reconstitute a valid communicator it is necessary to rebuild it using mod-

ified versions of one of the MPI communicator build functions such as MPI Comm create,

MPI Comm split or MPI Comm dup. SHRINK allows the communicator to be reduced in

size so that the structure is contiguous, this requires the modification of the ranks. BLANK is

similar to shrink, except the communicator now contains blanks instead of references to nodes

that are now unavailable. Communications with a gap will result in errors, therefore prohibit-

ing the effective use of global communication functions. REBUILD is the most complex mode

available that forces the creation of new processes to fill any gaps until the communicator is

fully reconstituted. This mechanism can either fill gaps in the communicator or shrink the

communicator and add additional nodes so it returns to its original size. The final option is

ABORT which will result in the graceful abortion of the application on detection of an error.

1.5 The Costs of Fault Tolerance

Gropp and Lusk [7] investigated fault tolerance in MPI by dealing with only one probability for

a failure of the system. It is assumed that at most one failure may occur between checkpoints

with the probability α. Therefore the total run time may be defined by

ET =
T

t0
·

(

k0 + t0 + α ·

(

k1 · t0 +
1

2
t20

))

where k0 is the time to create a checkpoint and k1 is the time to read / restore a checkpoint.

Accordingly, the optimal time between checkpoints is given by t0 =
√

2k0

α
therefore the



118 Fault Tolerance in the Mobile Environment

expected computation time is T (1 + α · k1 +
√

2α · k0).

2 Quantizing the Costs for Mobile Fault Tolerance

Checkpoints may be created at regular intervals to save program state. If T is the total

execution time and t0 is the time between checkpoints then the number of checkpoints is

given by T
t0

. Under standard MPI characteristics a node may fail due to errors on the device

itself, or due to errors related to inter-device communications. In the mobile world these

failures have been classified into three distinct categories.
1. Normal failure with the probability α0.
2. A device fails because it exceeded the Bluetooth range, probability of α1.
3. A device terminates the application with the probability α2.

The accurate detection of errors is only one half of the fault tolerance equation, the other

is to ensure that applications can carry on from a previously valid system state. This may be

achieved through the use of checkpointing. In the case of errors caused by devices moving in

and out of the Bluetooth range (10 meters, for a typical phone), one may attempt to restore

the original connections (DataInput / DataOutput Streams) as the physical address of the

devices in question remains the same. In other cases it may be necessary to re-initialise the

world. This would require the carrying out of device and service discovery once again, and

the reformation of the network based on the presently active nodes detected by the discovery

process. This can be an expensive operation as the combined discovery process can last on the

order of eighteen to twenty seconds. The following classifications may be used to determine

the time constraints of checkpointing and restoration.
k0 = the time to create a checkpoint
k1 = the time to read / restore a checkpoint
k2 = the time to restore the communication channels
k3 = the time to initialise the world

2.1 Single-Point Check and Recovery

There are three distinct cases to be evaluated as mentioned previously with regard to possible

failures. The overall cost of fault tolerance is a combination of these three together. The

process of checkpointing will occur at regular time intervals of t0.

2.1.1 Type 1 Failures (NORMAL FAILURE)

This is when a normal failure occurs. A normal failure may be considered to be a standard

communication error. The costs involved are to create a checkpoint, read the previous check-

point and restore the state hence the equation is exactly as in Gropp & Lusk [7]. For one

checkpoint we have

E1 = (1 − α0 · t0)(k0 + t0) + α0 · t0 ·

(

k0 + t0 + k1 +
1

2
t0

)

=

= k0 + t0 + α0 ·

(

k1 · t0 +
1

2
t20

)

= k0 + t0 · (1 + α0 · k1) +
1

2
α0 · t

2
0

which gives the following cost over T
t0

checkpoints



D.C. Doolan, S. Tabirca, and L.T. Yang 119

Et
1(t0) =

T

t0

[

k0 + t0(1 + α0 · k1) +
1

2
α0 · T

2
0

]

. (1)

2.1.2 Type 2 Failures (RANGE FAILURE)

When a device is outside of the Bluetooth network range. The device should return to within

the network range and consequently re-establish the I/O connections with the MMPI world.

The device will then read the previous checkpoint and restore the system state. Therefore,

the total cost for one checkpoint is

E2 = (1 − α1 · t0)(k0 + t0) + α1 · t0 ·

(

k0 + t0 + k2 + k1 +
1

2
t0

)

=

= k0 + t0 + α1 · t0 · (k2 + k1) +
1

2
α1 · t

2
0 = k0 + t0 · [1 + α1 · (k2 + k1)] +

1

2
α1 · t

2
0

with the total cost given by

Et
2(t0) =

T

t0
·

[

k0 + t0 [1 + α1 · (k2 + k1)] +
1

2
α1 · t

2
0

]

(2)

2.1.3 Type 3 Failures (NODETERM FAILURE)

When the device itself terminates the application for some reason. In this case all the devices

should start the application from scratch which gives the following total cost.

E3 = (1 − α2 · t0)(k0 + t0) + α2 · t0 · (k0 + t0 + T ) = k0 + t0 + α2 · t0 · T. ⇒

Et
3(t0) =

T

t0
· [k0 + t0(1 + α2 · T )] . (3)

Total cost over the three types of failure case is

Et(t0) = Et
1(t0) + Et

2(t0) + Et
3(t0) =

=
T

t0
·

[

3k0 + t0 · [3 + α0 · k1 + α1 · (k2 + k1) + α3 · T ] +
1

2
(α0 + α1)t

2
0

]

=

=
3T · k0

t0
+

T

3
(α0 + α1)t0 + [3 + α0 · k1 + α1 · (k2 + k1) + α2T ] · T.

The optimal time t0 between checkpoints can be calculated as follows

dEt

dt0
= −

3T · k0

t20
+

T

2
· (α0 + α1) = 0 ⇒

3T · k0

t20
=

T

2
· (α0 + α1)

⇒ t20 =
6k0

α1 + α2

⇒ t0 =

√

6k0

α1 + α2



120 Fault Tolerance in the Mobile Environment

which gives the following optimal run time

Et(t0) =
3T · k0
√

6k0

α1+α2

+
T

2
· (α1 + α2) ·

√

6k0

α1 + α2

+T · [3 + α0 · k1 + α1 · (k2 + k1) + α2 · T ]

=

√

3

2
·
√

k0 · (α1 + α2) · T +

√

3

2
·
√

k0 · (α1 + α2) · T

+T · [3 + α0 · k1 + α1 · (k2 + k1) + α2 · T ]

=
[

√

6k0(α1 + α2) + 3 + α0 · k1 + α1 · (k1 + k2) + α2 · T
]

· T.

Et(t0) represents the minimal time that may be achieved with mobile fault tolerance.

Consequently as α0, α2 ≃ 0 the highest probability for error is that of a device moving

outside of the range α1 therefore the optimal time in this case may be given by Et(t0) =
[√

6k0 · α1 + 3 + α1 · (k1 + k2)
]

· T .

2.2 Multi-Point Check and Recovery

Due to the probability that different failures can occur with varying degrees of certainty the

process of checkpointing and recovery may be carried out at different time intervals according

to the type of failure and the likelihood of the failure occurring. The three cases in question are

Normal failures such as general I/O errors, Range failures where by a node may move outside

the range of another device and Node Termination failures that result in the application or

the device itself being shut down.
Type 1 Failures (NORMAL FAILURE) ⇒ α0 probability of a failure

⇒ t0 time to test
Type 2 Failures (RANGE FAILURE) ⇒ α1 probability of a failure

⇒ t1 time to test
Type 3 Failures (NODETERM FAILURE) ⇒ α2 probability of a failure

⇒ t2 time to test

2.2.1 Type 1 Failures (NORMAL FAILURE)

A failure such as this could easily happen in the wireless environment, where the transmission

of a message could be disrupted by interference from the environment, resulting in the loss of

the message data. The estimated cost for this operation can be defined by

E1 = (1 − α0 · t0)(k0 + t0) + α0 · t0 ·

(

k0 + t0 + k1 +
1

2
t0

)

=

= k0 + t0 · (1 + α0 · k1) +
1

2
α0 · t

2
0

which gives the following cost over T
t0

checkpoints

Et
1(t0) =

T

t0
·

[

k0 + t0 · (1 + α0 · k1) +
1

2
α0 · T

2
0

]

. (4)



D.C. Doolan, S. Tabirca, and L.T. Yang 121

2.2.2 Type 2 Failures (RANGE FAILURE)

When a few devices are used in conjunction with one another the probability of a range failure

is usually very small as the people who initiated the application typically remain within close

proximity to one another. Examples of this interaction could be a few people playing a

multiplayer game while waiting for a bus, another example could be the exchange of contact

details between business men at a board meeting. In general connections between Bluetooth

computing devices last for a limited time period. In the case of peripheral devices such as

keyboards and mice, they almost always remain within a few feet of the controlling system.

The time in this case is a combination of the time to create a checkpoint, the time to test

for a range failure, the restoration time of the lost communication channel as well as the time

to read / restore a checkpoint, which is determined by the following equation

E2 = (1 − α1 · t1)(k0 + t1) + α1 · t1 ·

(

k0 + t1 + k2 + k1 +
1

2
t0

)

=

= k0 + t1 · [1 + α1 · (k2 + k1)] +
1

2
α1 · t

2
0

with the total cost given by

Et
2(t1) =

T

t1
·

[

k0 + t1 [1 + α1(k2 + k1)] +
1

2
α1 · t

2
0

]

(5)

2.2.3 Type 3 Failures (NODETERM FAILURE)

Type 3 failures indicate the complete cessation of an application / device. Some of the causes

of this could be user intervention, the termination of Bluetooth communications on the device

to conserve power, or even a complete power loss.

E3 = (1 − α2 · t2)(k0 + t2) + α2 · t2(k0 + t2 + T ) = k0 + t2 + α2 · t2 · T. ⇒

Et
3(t2) =

T

t2
· [k0 + t2 · (1 + α2 · T )] . (6)

The overall cost is a combined estimated running time for the previous three tests to run

in conjunction within the application

Et(t0, t1, t2) = Et
1(t0) + Et

2(t1) + Et
3(t2).

The minimum overall costs involved for the testing of the three distinct possibilities of

failure may be defined as the minimum time for each individual operation combined. It is

clear that

min
t0,t1,t2

= Et(t0, t1, t2) = min
t0

Et
1(t0) + min

t1
Et

2(t1) + min
t2

Et
3(t2).

In the following the three minimum values are evaluated.

Lemma 1



122 Fault Tolerance in the Mobile Environment

The minimum of Et
1(t0) is

min
t0

Et
1(t0) = T ·

(

1 + α0 · k1 +
√

2 · α0 · k0

)

and is achieved by

t0 =

√

2k0

α0

This is very like the optimal time between checkpoints calculated by Gropp & Lusk [7] in

which they differentiated with respect to t0, yielding a result of t0 =
√

2k0

α
.

Lemma 2

min
t1

Et
2(t1) = T ·

[

1 + α1 · (k1 + k2) +
√

2 · α1 · k0

]

t1 =

√

2k0

α1

Proof 3

We can differentiate to find the minimum t1.

dEt
2(t1)

dt1
=

[

T · k0

t1
+ T · (1 + α1 · (k1 + k2)) +

T · α1 · t1
2

]

= −
T · k0

t21
+

T · α1

2
= 0 ⇒

⇒
k0

t21
=

α1

2
⇒ t21 =

2k0

α1

⇒ t1 =

√

2k0

α1

The minimum value of Et
2(t1) is given by

min Et
2(t1) = Et

2

(

√

2k0

α1

)

==
T · k0
√

2k0

α1

+ T · (1 + α1 · (k1 + k2) +
T · α1

2
·

√

2k0

α1

=

= T ·
k0 · α1

2
+ T · [1 + α1 · (k1 + k2)] + T ·

√

α1 · k0

2
= T ·

[

√

2k0 · α1 + 1 + α1 · (k1 + k2)
]

=

= T ·
[

1 + α1 · (k1 + k2) +
√

2α1 · k0

]

Lemma 4

The minimum value of Et
3(t2) is

min
t2

Et
3(t2) = k0 + T · (1 + α2 · T )

and is given by t2 = T .

Proof 5

Differentiating Et
3(t2) we find

dEt
3(t2)

dt2
=

[

T · k0

t2
+ T · (1 + α2 · T

]

′

= −
T · k0

t22
< 0



D.C. Doolan, S. Tabirca, and L.T. Yang 123

so Et
3(t2) is decreasing. This means that the minimum value is achieved for t2 = T , hence

min
t2

Et
3(t2) = E3(T ) = k0 + T · (1 + α2 · T ).

In conclusion the overall minimal cost becomes

min
t0,t1,t2

Et(t0, t1, t2) = T ·
[

1 + α0 · k1 +
√

2α · k0

]

+T ·
[

1 + α1 · (k1 · k2) +
√

2α1 · k0

]

+ k0 + T · (1 + α2 · T ).

The overall minimum times between the Single-Point and Multi-Point Check and Recovery

systems are compared to determine the most efficient approach. Thus providing a basis for

the selection of the best approach for a particular application requiring fault tolerance.

E1 = T

[

√

6k0 · (α0 + α1) + 3 + α0 · k1 + α1(k1 + k2) + α2 · T
]

E2 = k0 + T ·
[

3 + α0 · k1 + α1 · (k1 + k2) + α2 · T +
√

2k0 · [
√

α0 +
√

α1 ]
]

E2 − E1 = k0 + T ·
[

√

2k0 [
√

α0 +
√

α1 ] −
√

6k0 · (α0 + α1)
]

= k0 + T ·
√

2k0 ·
[√

α0 +
√

α1 −
√

3 · (α0 + α1)
]

.

If E2 − E1 > 0 is evaluated we find.

k0 + T ·
√

2k0 ·
[√

α0 +
√

α1 −
√

3 · (α0 + α1)
]

> 0.

k0 + T ·
√

2 ·
[√

α0 +
√

α1 −
√

3 · (α0 + α1)
]

> 0.

√

k0 > T ·
√

2 ·
[

√

3 · (α0 + α1) −
√

α0 −
√

α1

]

Theorem 6

If the overall execution time T satisfies

T <

√
k0

√
2
[

√

3 · (α1 + α2) −
√

α0 −
√

α1

] (7)

then E2 > E1 hence the Single-Point Check and Recovery strategy is better. This theorem

says that if the execution time is smaller than a threshold then the first approach is more

effective.

Theorem 7

If the overall execution time is greater

T >

√
k0

√
2
[

√

3 · (α1 + α2) −
√

α0 −
√

α1

] (8)

then E2 < E1 hence the Multi-Point Check and Recovery strategy should be chosen over

the latter approach.



124 Fault Tolerance in the Mobile Environment

3 Conclusion

A principle requirement for the creation of a fault-tolerant system is the ability to detect

errors. Fault tolerance in relation to ad-hoc wirelessly interconnected mobile devices is a

far more complex task than fault tolerance for high end clusters and parallel machines with

fixed cabled infrastructure. Within the Bluetooth world the detection of a failure does not

immediately mean that a node has completely failed / terminated. It is highly possible for

a node to simply move out of the range of the Bluetooth Radio of another device, and as it

moves out it can just as easily move back into range. Therefore it is necessary to allow for

this eventuality, and attempt to re-establish the connection. If however, after a number of

attempts to re-establish the connection, one must consider that the node in question has had

a critical system failure, rendering the node completely cut off from the interconnect of the

mobile parallel world. Hence this eventuality must be reported to the parallel world, so it can

be reconfigured as appropriate, be it in the form of a recovery mechanism or termination of

the parallel application.

Given the two checkpointing strategies previously described a developer may opt for one

strategy over another based on the expected overall execution time of the application in

question. If E2 > E1 then the Single-Point Check and Recovery strategy is best, otherwise

the Multi-Point approach is more suitable.

Acknowledgements

This research project was funded under the “Irish Research Council for Science, Engineering

and Technology” funded by the “National Development Plan”.

References

1. A. Agbaria and R. Friedman (1999), Starfish: Fault-Tolerant Dynamic MPI Programs on Clusters
of Workstations, The Eighth International Symposium on High Performance Distributed Com-
puting, pp. 167–176.

2. Bluetooth-SIG (2001), Annex A (Normative): Timers and Constants Bluetooth Specification Ver-
sion 1.1.

3. Climate Prediction.net (2008), http://climateprediction.net
4. D. C. Doolan, S. Tabirca, and L. T. Yang (2006), Mobile Parallel Computing, 5th International

Symposium on Parallel and Distributed Computing (ISPDC06), pp. 161–167.
5. G. E. Fagg and J. J. Dongarra (2000), FT-MPI: Fault Tolerant MPI, Supporting Dynamic Appli-

cations in a Dynamic World, Lecture Notes in Computer Science, Vol. 1908, pp. 346-353.
6. Folding@home (2008), Distributed Computing, understand protein folding, misfolding, and related

diseases, http://folding.stanford.edu
7. W. Gropp and E. Lusk (2002), Fault Tolerance in MPI Programs, Cluster Computing and Grid

Systems Conference, http://www-unix.mcs.anl.gov/~gropp/bib/papers/2002/mpi-fault.pdf
8. SETI@Home (2008) The Search for Extra Terrestial Intelligence at Home, http://setiathome.

ssl.berkeley.edu

9. G. Stellner (1996), CoCheck: Checkpointing and Process Migration for MPI, Parallel Processing
Symposium, pp. 526–531.

10. T. Tannenbaum and M. Litskow (1995), Checkpoint and Migration of Unix Processes in the Condor
Distributed Processing System, Dr. Dobbs Journal, vol. 227, pp. 40–48.


