
Journal of Mobile Multimedia, Vol. 5, No.1 (2009) 064-080
© Rinton Press

DETERMINISTIC TRUST MANAGEMENT IN PERVASIVE COMPUTING

MIESO K. DENKO
Department of Computing and Information Science

University of Guelph, Guelph
denko@cis.uoguelph.ca

TAO SUN
Department of Computing and Information Science

University of Guelph, Guelph
tsun@uoguelph.ca

ISAAC WOUNGANG
Department of Computer Science

Ryerson University, Toronto
iwoungan@scs.ryerson.ca

Received June 2, 2008

Revised September 1, 2008

An effective trust management technique plays a vital role in evaluating relationships among devices in
pervasive computing. In this paper, we propose a deterministic trust management scheme that aims at
establishing trust relationships among devices using direct and indirect computation methods.
Recommendations and trust updating mechanisms are used to increase the reliability of trust computations.
We have carried out performance evaluations using simulation experiments. The results show that trust
management with recommendation outperforms other schemes.

Key words: Trust, trust management, deterministic trust

1 Introduction

Pervasive computing [1] is an emerging research field that brings revolutionary paradigms for
computing models. It integrates the physical world with the information world, and provides ambient
services and applications that allow users, devices and applications in different physical locations to
communicate seamlessly with one another. In a pervasive computing environment, the devices that
are interconnected and embedded in physical objects collect, process and transmit information
without human intervention.

Trust takes on a significant role in pervasive computing security and privacy. As a result, the
importance of security and privacy has risen to an unprecedented level. In such a decentralized open
environment, different devices interact without prior knowledge of each other. These environments
must provide effective security and privacy mechanisms to protect data and ensure the quality of

M. K. Denko, T. Sun and I. Woungang 65

interactions. Without human judgment, devices need to distinguish other peers' identities and
behaviours autonomously in the pervasive computing environment. In such an environment, it is not
merely sufficient to authenticate devices because most of these devices are unknown and usually,
there is no central management mechanism [2].

Trust provides devices with a natural way of judging other devices, similar to how we have been
handling security and privacy in human society. With the help of trust, a device can evaluate or
predict the security and quality of potential interactions with the other devices before those
interactions actually happen. It can draw a conclusion on whether the interaction should take place,
and decide what type of data can be transmitted securely. Trust management enhances security and
privacy for devices in pervasive computing environments. It can also improve the efficiency and
quality of communications among devices.

The main contributions of this paper are: (a) the design of an architecture for distributed trust
management (b) the implementation of various modules for trust computation and maintenance, and
(c) the performance evaluation of the proposed scheme at various parameter settings.

The rest of this paper is organized as follows: Section 2 presents existing related work. Section 3
presents the proposed trust management scheme. Section 4 provides the performance evaluation.
Finally, Section 5 concludes our work and presents some ideas for future works.

2 Related work

Trust is not a concept unique to pervasive computing. It has been widely used in many other
disciplines. Paper [3] discusses the differences and similarities between the concepts of trust in social
networks and in computer networks. Two models, referred to as entropy-based model and probability-
based model, have been proposed to protect the devices in distributed networks from several typical
attacks. The authors in [4] designed a trust model to improve mobile ad hoc networks' collaborations
based on a Bayesian network. This model uses trust as a reference to choose the identity in the mobile
ad hoc network that can provide best quality of service (QoS). The solution proposed in [5] also aims
at providing the best possible QoS to devices in a pervasive computing environment. In paper [6], the
authors introduced a centralized approach termed as Beta Reputation System, which employ the
statistical basis of Beta distributions to build a trust between devices in a network. However, their
proposed centralized approach cannot be used for decentralized applications such as pervasive
computing.

When designing a trust management solution in pervasive computing, one should determine the
specific characteristics of trust in this field. Several important topics related to the role of trust in
pervasive computing were discussed in [7], including how trust in pervasive computing is different
from that in other fields, and how trust solutions should be evaluated correctly. Trust issues that
devices face when communicating with each other in a pervasive computing environment were also
discussed in [8]. In paper [9], the authors proposed a user-centric trust network derived from an
individual’s social network, and they used it to represent the degree of trust and ensure users' privacy
in the pervasive computing environment. However, they do not provide details on how to quantify the
trust. In [10], a trust-based security solution designed for pervasive computing environments was
proposed. This solution uses a chain to transfer trust when providing services, and users can delegate
only to other users that they trust.

66 Deterministic Trust Management in Pervasive Computing

As a probability theory, Bayes’ theorem can also be used to construct trust models. In [11], a
Bayesian trust model is inspired by the probabilistic view of trust. By means of Bayesian learning, the
model makes predictions based on both the outcomes of interactions and identities' previous trust
information. In [12], a framework called B-trust is proposed for pervasive computing. A multi-level
discrete Bayesian theorem-based trust is developed for trust formation and updates. In [13], the authors
proposed a trust model using the naive Bayes classifier, a probabilistic classifier based on Bayes'
theorem. In their model, recommendations from peers provide information to enhance the decision-
making regarding trust. The authors also introduced the time's effect on the recommendations' values,
and they proposed a time-based evaluation strategy accordingly.

Pervasive healthcare is one application of pervasive computing. Paper [14] discusses the trust's
role in several typical pervasive healthcare scenarios. For instance, wireless sensors can be used to
monitor patients and transfer health information to remote healthcare providers. It is important to
establish trust among users, providers and medical staff when multiple healthcare providers and
security domains are involved in pervasive healthcare. In [15], a trust negotiation protocol is
implemented for pervasive healthcare. The directed graph concept is used to construct trust relations in
pervasive healthcare. The nodes in the directed graph represent the different types of actions between
entities, and the edges connecting nodes represent the routes by which the action can occur based on
trust relations.

3 Proposed Trust Management Scheme

In this paper, we extend the trust management scheme for the pervasive computing environment that
we proposed in [16] by providing details and improvements to the proposed scheme's principal
components. We compare the distinctions between the theory and current applications in pervasive
computing. Unlike previous works, we rationalize the trust management by connecting the trust
management with the requirements of actual applications in pervasive computing environments.

3.1 Overview of the Proposed Scheme

3.1.1. Definition of Trust

Trust has been defined in several different ways, aimed at different applications [4], [17], [18], [19].
For our trust management scheme, we define trust based on the definitions inherited from papers [4]
and [18]: the trust that device A places in device B is the strength of device A's belief that (1) device B
will behave without malicious intent, and (2) the service or interaction that device B provides will
satisfy device A's request.

This definition shows that, in our proposed trust management scheme, trust is not only a measure
of a device’s faithfulness, but it is also an indicator of the quality of service that a device provides. The
motivation for such a definition of trust is based on the fact that providing adequate quality of service
and preventing malicious attacks are important objectives of pervasive computing. The trust value is
used to determine the level at which one device trust another device. Trust values range from -1 to 1.
TA(B) = 0 indicates that Device A has no trust information on device B, TA(B) > 0 indicates that device
A considers device B trustworthy, and TA(B) < 0 indicates that device A considers device B
untrustworthy. TA(B) = 1 indicates a complete trust, and TA(B) = -1 indicates a complete mistrust.

3.1.2. Main Components of the Proposed Scheme

M. K. Denko, T. Sun and I. Woungang 67

Our proposed trust management scheme is shown in Figure 1.

Figure 1. The proposed trust management architecture

This scheme is composed of four main modules, described as follows:

a) Trust Computation Module: This module performs the trust computation, which is the most
important function of our trust management scheme. This module includes three sub-
modules: (i) the computation method selection, (ii) the direct computation, and (iii) the
indirect computation. The computation method selection sub-module chooses a suitable
method for computing trust values. The direct trust computation is performed when the direct
observation is adequate; otherwise, the indirect trust computation is invoked to obtain the
trust value. Performing trust computations is the responsibility of the direct computation and
indirect computation sub-modules.

b) Trust Records Module: All trust values are stored in this module. Trust values are provided

by the Trust Computation Module, and are maintained by the Trust Record Maintenance
Module.

c) Trust Record Maintenance Module: This module takes on the responsibility of maintaining

the trust values in the Trust Records Module. In this module, the Trust Record Initialization
sub-module sets up a new entry in the Trust Records Module for an unknown device. The
interaction evaluation sub-module performs the evaluation after the interaction. Then, the
Trust Record Updating sub-module updates the corresponding entry in the Trust Records
Module based on the result provided by the Interaction Evaluation sub-module. The Trust
Record Purging sub-module deletes the outdated trust values in the Trust Records Module.

d) Recommendation Management: This module has two principal functions: (i) requesting

recommendations, and (ii) providing recommendations to other devices. The
Recommendation Requesting sub-module is controlled by the Indirect Computation sub-
module within the Trust Computation Module. It broadcasts the request for recommendations
to other devices in the environment. Then, the Recommendation Collecting sub-module

68 Deterministic Trust Management in Pervasive Computing

collects the recommendations. The recommendation value is sent to the indirect computation
process after the received recommendations are processed by the Recommendation
Processing sub-module. Upon the request of other devices, the Recommendation Providing
sub-module picks the desired trust value from the Trust Record Module and sends it out as a
recommendation.

3.2 Trust Computation

3.2.1 Direct Trust Computation

A direct trust is computed when two devices that are attempting to interact with each other have no
experience with each other. The direct trust computation is based on direct observation, which may
come from personal identification or the identity information embedded in devices. A user’s
identification is embedded in the smart device the user is carrying. It can also be obtained from a
specific identification device, such as an electronic badge. If device A can collect enough trust
information about device B through direct observation, it will use its direct observation value as the
trust value it places in B; i.e., TA(B) = OA(B), where OA(B) is the value obtained through the direct
observation.

3.2.2 Indirect Trust Computation

When OA(B) is smaller than a predefined threshold ThrdDO which is between 0 and 1, the direct
observation is not enough to satisfy the direct trust computation. Device A needs external assistance to
obtain enough trust information to perform a trust computation on the unknown device B. Other
devices in the environment might have experiencing interactions with device B, which is unknown to
device A, so they have kept trust values on device B in their trust management systems. In this
situation, device A can make use of the trust information stored in other devices to perform its trust
computation. In our proposed scheme, this type of external trust information is called a
recommendation, and this type of trust computation that takes advantage of these so-called
recommendations is called an indirect trust computation.

An indirect trust computation is performed with inadequate direct observation and

recommendations as reinforcement. In the situation where the direct observation cannot be initiated,
the indirect trust computation can totally rely on recommendations. Since the trust information
contained in recommendations is from the interaction experienced by other devices, it works partially
in the case of indirect trust computation. Based upon the above considerations, the trust value that
device A puts on device B can be computed as follows, given that the direct observation and
recommendation values are taken into account with different weights.

1 2

1 2

3

3

() ()
() 0, 0 1, 0 1

()
()

() 0, 0 1

A A

A

A

A

A

O B R B
if O B and

T B
R B
if O B where

ω ω
ω ω

ω
ω

∗ + ∗⎧
⎪ ≠ < ≤ < ≤⎪⎪= ⎨
⎪ ∗⎪

= < ≤⎪⎩

 (1)

In Equation (1), RA(B) is the recommendation value based on recommendations provided by other

devices in the environment. The recommendation value is computed as follows:

M. K. Denko, T. Sun and I. Woungang 69

1

1() () () 0
i

n

A D A i
i

R B T B with T D
n =

= >∑ (2)

Other devices Di provide their trust values on device B as recommendations. The condition TA(Di) > 0
shows that device A accepts only the recommendations from devices that it has evaluated as somehow
trustworthy. By doing this, a device can avoid receiving false recommendations, and hence ensure the
veracity of the trust computation.

The coefficients ω1, ω2 and ω3 are the weights based on which a device scales the direct
observation and recommendation values. The sum of ω1 and ω2 is equal to 1, and ω1 is greater than ω2 ,
showing that the direct observation is more important than the recommendations issued from other
devices. The indirect trust computation depends on recommendations when no trust information is
available through direct observation. The coefficient ω3 is greater than ω2 because recommendations
are more important in trust computation when the direct observation is not available.

The request for recommendations is broadcast to the whole environment. Considering that a

pervasive computing environment may have a large number of devices, requests for recommendations
may not be sent to or received by all devices in the environment immediately. If a device always waits
for recommendations from all other devices in the environment before computing the trust, it may fall
into an infinite waiting time. To avoid this scenario to happen and to ensure the validity of the received
recommendations, we set the minimum number of received recommendations as a percentage of the
total number of current devices in the environment. When the number of received recommendations
reaches this desired percentage of current devices in the environment, the device will stop waiting for
recommendations and will indirectly compute the trust. In the sequel, we present an algorithm for trust
computation.

3.3 An Algorithm for Trust Computation

The computation mechanism is activated when a new device enters the environment or when a request
for communication with an unknown device in the environment is initiated. At this point in time, the
device will begin the trust computation process. The pseudo-code of the algorithm is provided in
Figure 2, and works as follows. Initially, device A checks local trust records to look for the trust value
of the unknown device B. If the trust value is found, then no trust computation is necessary, and device
A will use the available stored trust value of B to setup the communication with device B. Otherwise, a
trust computation will be performed. Device A will first attempt to perform a direct trust computation
through a direct observation. The direct observation usually seeks multiple types of trust information
embedded in a device as we have described in Section 3.2. If the desired trust information can be
obtained through the direct observation, then a direct trust computation will be performed. If the trust
information obtained through the direct observation is inadequate or is not available, then device A
will perform an indirect trust computation. In order to run the indirect trust computation, device A will
first broadcast a request for recommendations throughout the environment. Then, a recommendation
value will be calculated based on received recommendations. Finally, based on this recommendation
value, an indirect trust computation will be performed.

 BEGIN

 A checks TA(B) in A’s trust record;
 IF TA(B) is found

 Trust computation ends
 ELSE

70 Deterministic Trust Management in Pervasive Computing

 OA(B) <- Direct observation of B
 IF OA(B) >= ThrdDO

 Direct Computation: TA(B) = OA(B)
 Trust computation ends

 ELSE
 Broadcast request for recommendation

 Gather recommendations
 Compute recommendation value RA(B)

 IF RA(B) = null
 TA(B) = OA(B)

 Trust computation ends
 ELSE

 Indirect Computation TA(B)
 Trust computation ends

 END IF
 END IF

 END IF
 END

 Figure 2 Pseudo-code for trust computation using direct observation and recommendation values.

3.4 Updating the Trust Value

The trust is dynamic since the behaviours of devices are not static. In a pervasive computing
environment, most devices are mobile. The network traffic status, the surrounding environment and
many other external factors, can influence the behaviours of these devices. Some devices may
behave well in a particular time period; however, they may behave poorly in another time period due
to changes in circumstances in the environment where they operate. Hence, a fixed trust value is by
no means feasible for reflecting the behaviour of a device.

Trust values should be updated after each interaction. When a trust value is updated, two factors
should be taken into account: the device’s current behaviour and the device’s past trust record. Trust
should not be evaluated only on a device’s current behaviour. A trust updating method should
consider both the current and past behaviours of a device.

Based on the above requirements, we have developed a trust value’s updating method in our
trust management scheme. During each trust update, device A checks device B’s behaviour during
the previous interaction, and updates the trust value in the following manner:

⎪
⎩

⎪
⎨

⎧

−≤+′−
+′

≥+′

=
1)()(1

)()(
1)()(1

)(
BCBTif

BCBT
BCBTif

BT

AA

AA

AA

A (3)

In Equation (3), TA(B) is the new updated trust value, T'A(B) is the current trust value, and CA(B) is the
adjustment parameter based on the device B’s behaviour. The range of CA(B) is from -1 to 1. In
addition, CA(B) is a combination of two components,)()()(BNBPBC AAA += , where

M. K. Denko, T. Sun and I. Woungang 71

() ()A AP B WP B P= ⋅ is the summation of device B’s positive actions toward device A, and

() ()A AN B WN B N= ⋅ is the summation of device B’s negative actions toward device A.

The column vector of the positive aspects of device B’s behaviour toward device A is denoted by
P, and the column vector of the negative aspects of device B’s behaviour toward device A is denoted
by N. WPA(B) and WNA(B) are two vectors that are used to indicate the observation of negative or
positive actions. WPA(B) and WNA(B) are obtained as

1 2() () () ... ()m

A A A AWP B wp B wp B wp B⎡ ⎤= ⎣ ⎦ (4)

1 2() () () ... ()n

A A A AWN B wn B wn B wn B⎡ ⎤= ⎣ ⎦

3.4.1 Positive Action Pi: This is the positive action of device B toward device A, and 0 < Pi < 1. For i
= 1 to m, each Pi corresponds to a positive action, and each Pi has a different value according to the
corresponding action’s importance. The positive actions can be defined according to the actual
application environment, such as device B relaying traffic for device A with a high level of throughput
and low packet loss ratio, or device B providing the requested service to device A without delay.

• Observed Positive Actions ()i

Awp B : If a positive action corresponding to Pi is observed,

() 1i
Awp B = . Otherwise, () 0i

Awp B = .

3.4.2 Negative Action Nj: This is device B’s negative action toward device A, and -1 < Nj < 0. For j =
1 to n, each Nj corresponds to a negative action, and each Nj has a different value according to the
corresponding action’s importance. The negative actions can also be defined according to the actual
application environment, such as device B refusing to provide the service requested by device A, or
device B presenting a high packet loss ratio when employed as an intermediate node for device A.

• Observed Negative Actions ()j

Awn B : If a negative action corresponding to Nj is observed,

() 1j
Awn B = . Otherwise, () 0j

Awn B = .

Therefore, the adjustment parameter CA(B) is a summation of observations of both device B’s positive
and negative actions toward the device A.

3.5 Purging Trust Values
A device may exist in a certain environment for only a short period of time, and then leave it and not
return. In this case, if other devices in the environment retain its trust value, this action will result in
wasted storage resources and will decrease those devices’ efficiency. In addition, outdated trust records
may provide false trust information. When device A finds that device B has stopped communicating
with him, device A will not update the device B’s trust value until device B tries to communicate with
him again. After a predefined period, if device A finds that device B’s trust value was not updated
during this period of time, then device A will delete device B’s trust value. Later on, if device B

72 Deterministic Trust Management in Pervasive Computing

attempts to establish communication with device A, then device A will treat device B as an unknown
device and will compute device B’s trust value once again.

3.6 Trust Relationship with a New Device

In a pervasive computing environment, the population is dynamic. New devices constantly enter the
environment, and it is necessary to investigate how a new device can build trust relationship with other
devices. A new device is unknown to all other existing devices in the environment, so no
recommendations are available when an existing device wants to run a trust computation about this
new device. In this situation, this new device is given a trust value of 0, as we point out in Section 3.2.
The interactions with this new device can still happen because we defined a device as untrustworthy
when its trust value is negative.

After the interaction with the new device, an existing device can use the trust value’s update

mechanism to adjust the trust value on this new device. During the interaction, if it happened that the
new device behaved well, its trust value will increase, otherwise its trust value will decrease. Later on,
when other existing devices run trust computations about this new device, they might receive
recommendations from the devices that have interacted with the new device and use these information
to perform an indirect trust computation involving this new device. This way, the devices in the
environment can receive a trust information about the new device.

In a decentralized and distributed system like pervasive computing, there is usually no central
management mechanism. The trust between devices is accumulated through actual interactions. Many
trust management schemes have been proposed for pervasive computing and related fields ([3] and the
references therein). But, none of them can allow a device to obtain trust information about other
devices without actual interactions. It is true that a device can calculate the trust information through
the use of recommendations. However, the trust information contained in recommendations is actually
obtained by recommendation providers through interactions.

4 Performance Evaluation

In order to evaluate the performance of the proposed trust management scheme, we conducted a series
of simulation experiments on an in-home pervasive healthcare environment. There are three
advantages to using simulations to evaluate the performance of a system. First, a simulation
environment has the flexibility to allow us to set parameters to different values and observe the results.
In a real environment, a phenomena or a consequence might be caused by many factors. However, in a
simulation environment, we can avoid the influence of unwanted factors and perform a more effective
analysis on the outcome. Second, it is easier to collect the desired data in a simulation environment
than in a real environment. In the real environment, data need to be collected by means of special
equipment and techniques. In a simulation environment, all kinds of data are produced and transferred
in a pure software environment, so we can setup the proper functions to collect the desired data. Third,
it is convenient to investigate the approach in a simulation environment. In a real environment, all
hardware and software should be complete, and it can take a lot of time to configure each single unit to
make them all work together. Some hardware or software might not meet the requirements of the
proposed approach. On the contrary, it is easier to build our simulation environment in a virtual space.
All necessary software and hardware exist virtually, and they work just as real software and hardware
do through appropriate configurations.

M. K. Denko, T. Sun and I. Woungang 73

The simulation experiments are implemented in Java. Several scenarios are used in the
experiments, and multiple types of data are collected and compared to illustrate the effects of the
proposed trust management scheme’s main components.

4.1 Performance Metrics
We have used three performance metrics: the average throughput, the average packet loss ratio, and the
recommendation overhead. Each performance metric is investigated by varying the network size, the
traffic load, and the length of the simulation. The three performance metrics are described as follows.

• Average Throughput: We define the throughput as the number of packets that an

intermediate node has successfully delivered during a predefined period of time. We evaluate
our proposed trust management scheme’s performance by comparing the average throughput
values in the simulations. The average throughput is defined by the following formula:

•

suc

total

PackAverageThroughput
Time

=
 (5)

where Packsuc is the total number of packets successfully transmitted and Timetotal is the total
interaction time.

• Average Packet Loss Ratio: The average packet loss ratio is the ratio of packets that were lost

during the transmission to the total packets generated in a certain period of time. The average
packet loss ratio is defined by the following formula:

loss

total

PackAverage Packet Loss Ratio
Pack

=
 (6)

where Packetotal is the total number of packets generated by devices and Packelossis the
number of packets that were lost during the transmission.

• Recommendation Overhead: This is the overhead caused when dealing with received

recommendations, the quantity of which is less than the desired number required for
indirectly computing the trust. The recommendation overhead is defined by the following
formula:

unused

network

RecommRecommendationOverhead
Size

=
 (7)

where Recommunused is the total number of received recommendations, and these
recommendations are not sufficient enough to run indirect trust computations. Sizenetwork is the
network size (number of devices) of the environment.

4.2 Simulation Parameters

We use three parameters: the network size, the traffic load, and the length of the simulation. We
change the values of these parameters in the experiments and observe the performance metrics. The
three parameters are described as follows.

74 Deterministic Trust Management in Pervasive Computing

• Length of the simulation: This is the duration of the simulation. In the first experiment, we
need to investigate the performance of the proposed scheme over varying lengths of time
periods. With trust management, a device chooses appropriate devices to communicate with,
based on certain trust values. In the simulation, we change the length of the simulation to see
how the performance metrics are influenced when applying different trust computations.

• Network size: This is the total number of devices in the environment. We set different values
of network size to investigate how performance metrics are influenced by different
percentages of recommendations.

• Traffic load: This is the number of packets that a device generates each time. We change this

parameter to investigate whether a device can update its trust record according to the actual
communication result, and hence, choose appropriate devices to communicate with to get low
average packet loss ratios.

4.3 Simulation Experiments

We have designed three experiments to evaluate our proposed model’s performance in a pervasive in-
home healthcare environment.

4.3.1. The Effects of Simulation Time

In this experiment, we designed three scenarios in order to investigate whether the devices could use
our proposed trust management scheme to find the proper device to be used as an intermediate node.
This pervasive computing environment has 50 existing devices and 10 new devices. We assume that
the traffic load generated by a new device each time is from 1 to 1000 packets, and new devices
choose an existing device as an intermediate node to transmit these packets. The simulation
experiments are conducted in three scenarios as follows.

• Experiment without Trust Management: In this scenario, new devices use no trust management
scheme. New devices have no prior knowledge about the behaviour or performance of other
devices in the environment. Since no trust management scheme is applied, new devices do not
have any trust values to use when choosing another device to communicate with. When new
devices need to transmit packets, they randomly choose a device in the environment as an
intermediate node.

• Experiment without Recommendations: In this scenario, new devices use the trust management
method when choosing a node. Initially, in new devices’ trust records, all 50 devices’ trust values
are 0 because new devices have no trust information about each others. After every interaction,
any new device will update its trust record based on the throughput value obtained from its
previous interaction. In Section 3.3, we introduced a method for updating the trust value. In every
interaction, the new device interacts only with devices whose trust values in the new device’s trust
record is non-negative

• Experiment with Recommendations: In this scenario, we try to solve the problem of choosing the
first device to interact with by using the trust management scheme with recommendations. When
the new device attempts to interact with an existing device, it requires recommendations from
other devices. New devices run the trust computation that we introduced in Section 3.2. After each
interaction, new devices update their trust records. New devices’ trust records may include
multiple devices with non-negative trust values. When a new device chooses a device from its

M. K. Denko, T. Sun and I. Woungang 75

trusted list to interact with, it picks a device with a non-negative trust value. However, this does
not mean that the device with the highest trust value is always chosen, but the higher the trust
value a device has, the higher the probability that it will be chosen. When the chosen device is
busy interacting with another device, new devices need to choose another device with the next
highest non-negative trust value.

Figure 3 depicts the average throughput of the above three scenarios as a function of simulation

time. The average throughput without trust management (no-trust) remains constant over time, which
means that new devices cannot find devices with acceptable throughput. With increasing time, the
average throughputs with trust management (without-recomm and trust-recomm) become stable and
are much higher than the average throughput without trust management. This means that the trust
management method helps the new device to choose devices with acceptable throughput, and hence
gets a good average throughput.

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400 450
Simulation Time

A
ve

ra
ge

 T
hr

ou
gh

pu
t

No-trust
Without-recomm
Trust-recomm

 Figure 3 Throughput as a function of simulation time

The initial average throughput with recommendations is higher than the average throughput without
recommendations. However, with increasing time, the two average throughputs merge because without
recommendations, a device needs to update its trust record from actual interactions. Therefore, new
devices may interact at the beginning of the simulation with devices that have low performance, and
hence receive a low throughput.

With recommendations, however, new devices can predict a device’s performance before the first
interaction, and then decide whether or not to interact. In other words, with the help of
recommendations, devices with high throughput can be found faster than they can be found without
recommendations. In this way, new devices avoid interacting with devices that have low performance,
hence, they gain higher throughput. With increasing time, new devices build proper trust records on
existing devices under trust management, with or without recommendations. Therefore, the
throughputs with or without recommendations tend to be similar to each other.

4.3.2 The Effects of Traffic Load

76 Deterministic Trust Management in Pervasive Computing

We used this experiment to show the importance of the trust value’s updating mechanism in the
proposed trust management scheme. In a pervasive computing environment, devices perform
differently from each other when used as intermediate nodes. Among all parameters that are used to
evaluate a device’s performance, the packet loss ratio is an important one. When the transmitted traffic
load is light, devices may provide acceptable packet loss ratios. However, when the traffic load
increases, the packet loss ratio also increases. As a result, the packet loss ratio of some devices with
low performance may reach an unacceptable high level when the traffic load increases to a certain
amount. The trust value updating mechanism is designed to ensure that the trust value accurately
reflects the device’s performance. The trust management scheme needs to preserve communication
quality, no matter how heavy the traffic load is.

In this experiment, we setup 10 new devices and 50 existing devices in a pervasive computing

environment. Through trust computations, the new devices are initialized with the trust values of all
existing devices. All of these existing trust values were non-negative, which means that any new
devices treated all of them as trustworthy when attempting to interact with one of them. The 50
existing devices provided different packet loss ratios when acting as intermediate nodes. We set the
maximum acceptable packet loss ratio as 0.2. A device was considered trustworthy when its packet
loss ratio was not higher than this value during the interaction; otherwise, it was not considered
trustworthy. The devices’ packet loss ratios increased with increasing traffic load. Some of their packet
loss ratios climbed higher than the maximum acceptable level when the traffic load increased. Others
could maintain packet loss ratios below the maximum acceptable level. In this experiment, we increase
the number of packets (i.e., traffic loads) generated from new devices, in order to study whether the
trust value’s updating mechanism could help new devices to find a device with good performance to
interact with when the traffic load varied.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000

Traffic Load

A
ve

ra
ge

 P
ac

ke
t L

os
s

R
at

io

Without-update
With-update

 Figure 4 Packet loss tatio as a function of traffic load

Figure 4 shows the average packet loss ratio as a function of traffic load. It illustrates that the

average packet loss ratios in both scenarios tend to increase with an increase in the traffic load.
However, the average packet loss ratio without trust value update exceeds the threshold value of 0.2
when the traffic load rises to 1200 packets. The average packet loss ratio of the scenario that updates
trust values stays under the threshold, although it also increases.

M. K. Denko, T. Sun and I. Woungang 77

0
20
40
60
80

100
120
140
160
180
200

0 500 1000 1500 2000 2500 3000

Traffic Load

A
ve

ra
ge

 T
hr

ou
gh

pu
t

Without-update
With-update

Figure 5 Throughput as a function of traffic load

Figure 5 depicts the average throughput as a function of traffic load. The average throughputs of
both scenarios tend to decrease with an increase in the traffic load. However, when the traffic load is
higher than 1000, the average throughput without the trust value update mechanism is lower than that
obtained using the trust value update mechanism.

Without the trust value updating mechanism, a device checks the trust values in its trust record only
when it attempts to interact with another device. After each interaction, the device does not update the
trust value according to the device’s performance change during the interaction. As a result, devices
still interact with a device even when that device’s packet loss ratio is above the threshold due to the
increased traffic load. Therefore, devices suffer high packet loss ratios when the traffic load is high.

With the trust value updating mechanism, devices update the trust values according to a device’s

performance change during the interaction. Therefore, when the traffic load increases, devices can find
an appropriate device to interact with by checking their updated trust records. Consequently, the trust
value updating mechanism helps to keep the average packet loss ratio at an acceptable level when the
traffic load increases.

4.3.3 The Effects of Network Size

In this experiment, we investigated how to set the proper percentage of the number of received
recommendations and the network size for indirect trust computation. In order to carry out this
experiment, we varied the number of existing devices from 5 to 50, and the simulation time was set at
30 seconds. We assumed that the traffic load from a device was from 1 to 1000 packets. An interval of
0 to 1 second separates two communications. If a device always waits for recommendations from all
other devices in the environment, the danger of infinite wait time arises. To avoid this, it is necessary
to set a minimum percentage, as we have presented in Section 3.2. After a device broadcasts a request
for recommendations, it waits until the desired percentage of recommendations has been received, and
then uses these recommendations to indirectly compute the trust. Otherwise, it treats recommendations
as 0. In the scenario of trust management using recommendations, we varied the percentage values
from 20% to 50% to illustrate the scheme’s performance with different numbers of devices. We also
investigated the recommendation overhead under different percentage values.

78 Deterministic Trust Management in Pervasive Computing

0

50

100

150

200

250

300

0 10 20 30 40 50 60
Network Size

Av
er

ag
e

Th
ro

ug
hp

ut

Percentage = 20%
Percentage = 30%
Percentage = 40%
Percentage = 50%

 Figure 6 Throughput as a function of network size

Figure 6 illustrates the average throughput as a function of network size, and Figure 7 shows the
recommendation overhead as a function of the network size. Figure 6 demonstrates that when the
percentage value is 20% or 30% in all environments with network size from 5 to 50, devices can
receive a good level of throughput during interactions. Also, graphs with 20% and 30% in Figure 7
show low levels of overhead. This shows that with 20% or 30%, devices can receive the desired
number of recommendations needed to indirectly compute trust. In this situation, devices may choose
the right device as an intermediate node with the help of properly created trust values.

0

20

40

60

80

100
120

140

160

180

200

0 10 20 30 40 50 60
Network Size

R
ec

om
m

en
da

tio
n

O
ve

rh
ea

d

Percentage = 20%
Percentage = 30%
Percentage = 40%
Percentage = 50%

 Figure 7 Recommendation overhead as a function of network size

However, when the percentage value exceeds 40%, we observe a decrease in throughput during

interactions. Figure 7 shows that the overhead increases with a network size of 10 or more. When the
percentage is at 40% or 50%, devices often fail to receive enough recommendations to indirectly
compute trust; hence, devices have to manage trust without recommendations, and update their trust

M. K. Denko, T. Sun and I. Woungang 79

records based on their experience with actual interactions. Devices may interact with devices that have
low performance before the proper trust values are computed and updated. This results to a low
average throughput for the length of the simulation. Therefore, the experimental results show that 20%
and 30% are good percentage values. By considering both the recommendation overhead and the
throughput, the experimental results show that receiving recommendations from more than 30% of the
devices do not result in performance gains when indirectly computing trust values.

5 Conclusions and Future Work

In this paper, we have proposed a deterministic trust management scheme for pervasive computing.
The proposed scheme has two main features. First, it is distributed. The distributed trust management
makes the devices independently handle the trust issues under the absence of a central management.
Second, the proposed scheme involves two methods for trust computation, direct computation and
indirect computation. Recommendations are also used to assist when adequate first hand information is
not available. The proposed scheme was evaluated using simulation experiments to investigate its
performance in terms of throughput and packet loss at various parameter settings. Future research
works will focus on probabilistic trust management using Markov and other mathematical models.

References

1. Weiser, M, The Computer for the 21st Century, Scientific American, vol. 265, 1991, pp. 66-75.
2. Kagal, L., Finin, T. and Joshi, A., Moving from Security to Distributed Trust in Ubiquitous

Computing Environments. In LNCS 2867, 2003.
3. Sun, Y. L., Han, Z., Yu, W. and Liu, K. J. R., A Trust Evaluation Framework in Distributed

Networks: Vulnerability Analysis and Defence Against Attacks. In 25th IEEE International
Conference on Computer Communications (INFOCOM 2006), 2006, pp. 1-13.

4. Nguyen, C. T., Camp, O., and Loiseau, S., A Bayesian network based trust model for improving
collaboration in mobile ad hoc networks. In 2007 IEEE International Conference on Research,
Innovation and Vision for the Future, 2007, pp. 144-151.

5. McNamara, L., Mascolo, C. and Capra, L., Trust and Mobility Aware Service Provision for
Pervasive Computing. In First International Workshop on Requirements and Solutions for
Pervasive Software Infrastructures (co-located with Pervasive 2006), Dublin, Ireland, May 2006.

6. Jøsang, A., and Ismail, R., The Beta Reputation System. In Proceedings of the 15th Bled
Conference on Electronic Commerce, June 2002, pp. 17-19.

7. Langheinrich, M., When Trust Does Not Compute - The Role of Trust in Ubiquitous Computing.
In the Proceedings of Privacy Workshop in Ubicomp'03, 2003.

8. Ranganathan, K., Trustworthy Pervasive Computing: The Hard Security Problem. In Proceedings
of the 2nd IEEE Annual Conference on Pervasive Computing and Communications Workshops,
14-17, March 2004, pp: 117 - 121.

9. Goecks, J., and Mynatt, E., Enabling Privacy Management in Ubiquitous Computing
Environments Through Trust and Reputation Systems. In Workshop on Privacy in Digital
Environments: Empowering Users. In the Proceedings of CSCW 2002, 2002.

10. Kagal, L., Finin, T., and Joshi, A., Trust-based Security in Pervasive Computing Environments. In
Computer, 2001, vol. 34, issue 12, pp. 154-157.

11. Nielsen, M., and Krukow, K., A Bayesian Model for Event-based Trust. In Electronic Notes in
Theoretical Computer Science (ENTCS), 2007, vol. 172, pp. 499-521.

12. Quercia, D., Hailes, S., and Capra, L., B-Trust: Bayesian Trust Framework for Pervasive
Computing”. In Lecture Notes in Computer Science, 2006, vol. 3986, pp. 298- 312.

80 Deterministic Trust Management in Pervasive Computing

13. Yuan, W., Guan, D., Lee, S., and Lee, Y.-K. A Dynamic Trust Model Based on Naive Bayes
Classifier for Ubiquitous Environments. In the 2006 International Conference on High
Performance Computing and Communications (HPCC-06), Munich, Germany, Sept. 13-15, 2006.

14. Yuan, W., Guan, D., Lee, S., and Lee, Y. K., The Role of Trust in Ubiquitous Healthcare. In the
Proceedings of the 9th International Conference on e-Health Networking, Application and
Services, 2007, 312-315.

15. Dong, C., and Dulay, N., Privacy Preserving Trust Negotiation for Pervasive Healthcare. In the 1st
International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth
2006), 2006, 1-9.

16. Sun, T., and Denko, M. K., A Distributed Trust Management Scheme in Pervasive Computing
Environment. In the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE
2007), 2007, 1219-1222.

17. Gambetta, D., Can We Trust? In Trust: Making and Breaking Cooperative Relations, 1988, pp.
213-237.

18. Jøsang, A., The Right Type of Trust for Distributed Systems. In the Proceedings of the 1996
Workshop on new security paradigms, NSPW '96, ACM Press, 1996, pp. 119-131.

19. Varshney, U. Pervasive Healthcare, Computer, vol. 36, Issue 12, 2003, pp. 138-140.

