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An effective trust management technique plays a vital role in evaluating relationships among devices in 
pervasive computing. In this paper, we propose a deterministic trust management scheme that aims at 
establishing trust relationships among devices using direct and indirect computation methods. 
Recommendations and trust updating mechanisms are used to increase the reliability of trust computations. 
We have carried out performance evaluations using simulation experiments. The results show that trust 
management with recommendation outperforms other schemes. 
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1 Introduction  

Pervasive computing [1] is an emerging research field that brings revolutionary paradigms for 
computing models. It integrates the physical world with the information world, and provides ambient 
services and applications that allow users, devices and applications in different physical locations to 
communicate seamlessly with one another. In a pervasive computing environment, the devices that 
are interconnected and embedded in physical objects collect, process and transmit information 
without human intervention.  

Trust takes on a significant role in pervasive computing security and privacy.  As a result, the 
importance of security and privacy has risen to an unprecedented level. In such a decentralized open 
environment, different devices interact without prior knowledge of each other. These environments 
must provide effective security and privacy mechanisms to protect data and ensure the quality of 
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interactions. Without human judgment, devices need to distinguish other peers' identities and 
behaviours autonomously in the pervasive computing environment. In such an environment, it is not 
merely sufficient to authenticate devices because most of these devices are unknown and usually, 
there is no central management mechanism [2].  

Trust provides devices with a natural way of judging other devices, similar to how we have been 
handling security and privacy in human society. With the help of trust, a device can evaluate or 
predict the security and quality of potential interactions with the other devices before those 
interactions actually happen. It can draw a conclusion on whether the interaction should take place, 
and decide what type of data can be transmitted securely. Trust management enhances security and 
privacy for devices in pervasive computing environments. It can also improve the efficiency and 
quality of communications among devices.  

The main contributions of this paper are: (a) the design of an architecture for distributed trust 
management (b) the implementation of various modules for trust computation and maintenance, and 
(c) the performance evaluation of the proposed scheme at various parameter settings. 

The rest of this paper is organized as follows: Section 2 presents existing related work. Section 3 
presents the proposed trust management scheme. Section 4 provides the performance evaluation. 
Finally, Section 5 concludes our work and presents some ideas for future works. 

2 Related work  
 

Trust is not a concept unique to pervasive computing. It has been widely used in many other 
disciplines. Paper [3] discusses the differences and similarities between the concepts of trust in social 
networks and in computer networks. Two models, referred to as entropy-based model and probability-
based model, have been proposed to protect the devices in distributed networks from several typical 
attacks. The authors in [4] designed a trust model to improve mobile ad hoc networks' collaborations 
based on a Bayesian network. This model uses trust as a reference to choose the identity in the mobile 
ad hoc network that can provide best quality of service (QoS). The solution proposed in [5] also aims 
at providing the best possible QoS to devices in a pervasive computing environment. In paper [6], the 
authors introduced a centralized approach termed as Beta Reputation System, which employ the 
statistical basis of Beta distributions to build a trust between devices in a network. However, their 
proposed centralized approach cannot be used for decentralized applications such as pervasive 
computing.  

When designing a trust management solution in pervasive computing, one should determine the 
specific characteristics of trust in this field. Several important topics related to the role of trust in 
pervasive computing were discussed in [7], including how trust in pervasive computing is different 
from that in other fields, and how trust solutions should be evaluated correctly. Trust issues that 
devices face when communicating with each other in a pervasive computing environment were also 
discussed in [8]. In paper [9], the authors proposed a user-centric trust network derived from an 
individual’s social network, and they used it to represent the degree of trust and ensure users' privacy 
in the pervasive computing environment. However, they do not provide details on how to quantify the 
trust. In [10], a trust-based security solution designed for pervasive computing environments was 
proposed. This solution uses a chain to transfer trust when providing services, and users can delegate 
only to other users that they trust.  
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As a probability theory, Bayes’ theorem can also be used to construct trust models. In [11], a 
Bayesian trust model is inspired by the probabilistic view of trust. By means of Bayesian learning, the 
model makes predictions based on both the outcomes of interactions and identities' previous trust 
information. In [12], a framework called B-trust is proposed for pervasive computing. A multi-level 
discrete Bayesian theorem-based trust is developed for trust formation and updates. In [13], the authors 
proposed a trust model using the naive Bayes classifier, a probabilistic classifier based on Bayes' 
theorem. In their model, recommendations from peers provide information to enhance the decision-
making regarding trust. The authors also introduced the time's effect on the recommendations' values, 
and they proposed a time-based evaluation strategy accordingly. 

Pervasive healthcare is one application of pervasive computing. Paper [14] discusses the trust's 
role in several typical pervasive healthcare scenarios. For instance, wireless sensors can be used to 
monitor patients and transfer health information to remote healthcare providers. It is important to 
establish trust among users, providers and medical staff when multiple healthcare providers and 
security domains are involved in pervasive healthcare. In [15], a trust negotiation protocol is 
implemented for pervasive healthcare. The directed graph concept is used to construct trust relations in 
pervasive healthcare. The nodes in the directed graph represent the different types of actions between 
entities, and the edges connecting nodes represent the routes by which the action can occur based on 
trust relations. 

3     Proposed Trust Management Scheme 
 

In this paper, we extend the trust management scheme for the pervasive computing environment that 
we proposed in [16] by providing details and improvements to the proposed scheme's principal 
components. We compare the distinctions between the theory and current applications in pervasive 
computing. Unlike previous works, we rationalize the trust management by connecting the trust 
management with the requirements of actual applications in pervasive computing environments. 
 

3.1 Overview of the Proposed Scheme 
 
3.1.1. Definition of Trust 

Trust has been defined in several different ways, aimed at different applications [4], [17], [18], [19]. 
For our trust management scheme, we define trust based on the definitions inherited from papers [4] 
and [18]: the trust that device A places in device B is the strength of device A's belief that (1) device B 
will behave without malicious intent, and (2) the service or interaction that device B provides will 
satisfy device A's request.  

This definition shows that, in our proposed trust management scheme, trust is not only a measure 
of a device’s faithfulness, but it is also an indicator of the quality of service that a device provides. The 
motivation for such a definition of trust is based on the fact that providing adequate quality of service 
and preventing malicious attacks are important objectives of pervasive computing. The trust value is 
used to determine the level at which one device trust another device. Trust values range from -1 to 1. 
TA(B) = 0 indicates that Device A has no trust information on device B, TA(B) > 0 indicates that device 
A considers device B trustworthy, and TA(B) < 0 indicates that device A considers device B 
untrustworthy. TA(B) = 1 indicates a complete trust, and TA(B) = -1 indicates a complete mistrust. 

 

3.1.2. Main Components of the Proposed Scheme 
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Our proposed trust management scheme is shown in Figure 1.  
 

 
 

Figure 1. The proposed trust management architecture 
 
 
This scheme is composed of four main modules, described as follows:  
 

a) Trust Computation Module: This module performs the trust computation, which is the most 
important function of our trust management scheme. This module includes three sub-
modules: (i) the computation method selection, (ii) the direct computation, and (iii) the 
indirect computation. The computation method selection sub-module chooses a suitable 
method for computing trust values. The direct trust computation is performed when the direct 
observation is adequate; otherwise, the indirect trust computation is invoked to obtain the 
trust value. Performing trust computations is the responsibility of the direct computation and 
indirect computation sub-modules. 

 
b) Trust Records Module: All trust values are stored in this module. Trust values are provided 

by the Trust Computation Module, and are maintained by the Trust Record Maintenance 
Module. 

 
c) Trust Record Maintenance Module: This module takes on the responsibility of maintaining 

the trust values in the Trust Records Module. In this module, the Trust Record Initialization 
sub-module sets up a new entry in the Trust Records Module for an unknown device. The 
interaction evaluation sub-module performs the evaluation after the interaction. Then, the 
Trust Record Updating sub-module updates the corresponding entry in the Trust Records 
Module based on the result provided by the Interaction Evaluation sub-module. The Trust 
Record Purging sub-module deletes the outdated trust values in the Trust Records Module. 

 
d) Recommendation Management: This module has two principal functions: (i) requesting 

recommendations, and (ii) providing recommendations to other devices. The 
Recommendation Requesting sub-module is controlled by the Indirect Computation sub-
module within the Trust Computation Module. It broadcasts the request for recommendations 
to other devices in the environment. Then, the Recommendation Collecting sub-module 
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collects the recommendations. The recommendation value is sent to the indirect computation 
process after the received recommendations are processed by the Recommendation 
Processing sub-module. Upon the request of other devices, the Recommendation Providing 
sub-module picks the desired trust value from the Trust Record Module and sends it out as a 
recommendation. 

 

3.2 Trust Computation 

3.2.1 Direct Trust Computation 

A direct trust is computed when two devices that are attempting to interact with each other have no 
experience with each other. The direct trust computation is based on direct observation, which may 
come from personal identification or the identity information embedded in devices. A user’s 
identification is embedded in the smart device the user is carrying. It can also be obtained from a 
specific identification device, such as an electronic badge. If device A can collect enough trust 
information about device B through direct observation, it will use its direct observation value as the 
trust value it places in B; i.e., TA(B) = OA(B), where OA(B) is the value obtained through the direct 
observation. 

 
3.2.2 Indirect Trust Computation 

When OA(B) is smaller than a predefined threshold ThrdDO which is between 0 and 1, the direct 
observation is not enough to satisfy the direct trust computation. Device A needs external assistance to 
obtain enough trust information to perform a trust computation on the unknown device B. Other 
devices in the environment might have experiencing interactions with device B, which is unknown to 
device A, so they have kept trust values on device B in their trust management systems. In this 
situation, device A can make use of the trust information stored in other devices to perform its trust 
computation. In our proposed scheme, this type of external trust information is called a 
recommendation, and this type of trust computation that takes advantage of these so-called 
recommendations is called an indirect trust computation.  

 
An indirect trust computation is performed with inadequate direct observation and 

recommendations as reinforcement. In the situation where the direct observation cannot be initiated, 
the indirect trust computation can totally rely on recommendations. Since the trust information 
contained in recommendations is from the interaction experienced by other devices, it works partially 
in the case of indirect trust computation. Based upon the above considerations, the trust value that 
device A puts on device B can be computed as follows, given that the direct observation and 
recommendation values are taken into account with different weights. 
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In Equation (1), RA(B) is the recommendation value based on recommendations provided by other 

devices in the environment. The recommendation value is computed as follows: 
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Other devices Di provide their trust values on device B as recommendations. The condition TA(Di) > 0 
shows that device A accepts only the recommendations from devices that it has evaluated as somehow 
trustworthy. By doing this, a device can avoid receiving false recommendations, and hence ensure the 
veracity of the trust computation. 
 

The coefficients ω1, ω2 and ω3 are the weights based on which a device scales the direct 
observation and recommendation values. The sum of ω1 and ω2 is equal to 1, and ω1 is greater than ω2 , 
showing that the direct observation is more important than the recommendations issued from other 
devices. The indirect trust computation depends on recommendations when no trust information is 
available through direct observation. The coefficient ω3 is greater than ω2 because recommendations 
are more important in trust computation when the direct observation is not available. 

 
The request for recommendations is broadcast to the whole environment. Considering that a 

pervasive computing environment may have a large number of devices, requests for recommendations 
may not be sent to or received by all devices in the environment immediately. If a device always waits 
for recommendations from all other devices in the environment before computing the trust, it may fall 
into an infinite waiting time. To avoid this scenario to happen and to ensure the validity of the received 
recommendations, we set the minimum number of received recommendations as a percentage of the 
total number of current devices in the environment. When the number of received recommendations 
reaches this desired percentage of current devices in the environment, the device will stop waiting for 
recommendations and will indirectly compute the trust. In the sequel, we present an algorithm for trust 
computation. 
 

3.3 An Algorithm for Trust Computation 

The computation mechanism is activated when a new device enters the environment or when a request 
for communication with an unknown device in the environment is initiated. At this point in time, the 
device will begin the trust computation process. The pseudo-code of the algorithm is provided in 
Figure 2, and works as follows. Initially, device A checks local trust records to look for the trust value 
of the unknown device B. If the trust value is found, then no trust computation is necessary, and device 
A will use the available stored trust value of B to setup the communication with device B. Otherwise, a 
trust computation will be performed. Device A will first attempt to perform a direct trust computation 
through a direct observation. The direct observation usually seeks multiple types of trust information 
embedded in a device as we have described in Section 3.2. If the desired trust information can be 
obtained through the direct observation, then a direct trust computation will be performed. If the trust 
information obtained through the direct observation is inadequate or is not available, then device A 
will perform an indirect trust computation. In order to run the indirect trust computation, device A will 
first broadcast a request for recommendations throughout the environment. Then, a recommendation 
value will be calculated based on received recommendations. Finally, based on this recommendation 
value, an indirect trust computation will be performed. 

 
  BEGIN 

   A checks TA(B) in A’s trust record;  
   IF TA(B) is found                      

        Trust computation ends  
   ELSE                                      
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   OA(B) <- Direct observation of B 
   IF OA(B) >= ThrdDO            

            Direct Computation: TA(B) = OA(B) 
    Trust computation ends 

   ELSE 
            Broadcast request for recommendation 

    Gather recommendations 
            Compute recommendation value RA(B) 

    IF RA(B) = null 
    TA(B) = OA(B)               

                Trust computation ends 
            ELSE                               

    Indirect Computation TA(B) 
    Trust computation ends 

            END IF 
   END IF 

   END IF 
  END 
 
 

            Figure 2 Pseudo-code for trust computation using direct observation and recommendation values. 

 

3.4 Updating the Trust Value 

The trust is dynamic since the behaviours of devices are not static. In a pervasive computing 
environment, most devices are mobile. The network traffic status, the surrounding environment and 
many other external factors, can influence the behaviours of these devices. Some devices may 
behave well in a particular time period; however, they may behave poorly in another time period due 
to changes in circumstances in the environment where they operate. Hence, a fixed trust value is by 
no means feasible for reflecting the behaviour of a device.  

Trust values should be updated after each interaction. When a trust value is updated, two factors 
should be taken into account: the device’s current behaviour and the device’s past trust record. Trust 
should not be evaluated only on a device’s current behaviour. A trust updating method should 
consider both the current and past behaviours of a device.  

Based on the above requirements, we have developed a trust value’s updating method in our 
trust management scheme. During each trust update, device A checks device B’s behaviour during 
the previous interaction, and updates the trust value in the following manner: 
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In Equation (3), TA(B) is the new updated trust value, T'A(B) is the current trust value, and CA(B) is the 
adjustment parameter based on the device B’s behaviour. The range of CA(B) is from -1 to 1. In 
addition, CA(B) is a combination of two components, )()()( BNBPBC AAA += , where 
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( ) ( )A AP B WP B P= ⋅ is the summation of device B’s positive actions toward device A, and 

( ) ( )A AN B WN B N= ⋅ is the summation of device B’s negative actions toward device A. 

The column vector of the positive aspects of device B’s behaviour toward device A is denoted by 
P, and the column vector of the negative aspects of device B’s behaviour toward device A is denoted 
by N. WPA(B) and WNA(B) are two vectors that are used to indicate the observation of negative or 
positive actions. WPA(B) and WNA(B) are obtained as 

 

                 
1 2( ) ( ) ( ) ... ( )m

A A A AWP B wp B wp B wp B⎡ ⎤= ⎣ ⎦    (4) 

     
1 2( ) ( ) ( ) ... ( )n

A A A AWN B wn B wn B wn B⎡ ⎤= ⎣ ⎦  
 
3.4.1 Positive Action Pi: This is the positive action of device B toward device A, and 0 < Pi < 1. For i  
= 1 to m, each Pi corresponds to a positive action, and each Pi has a different value according to the 
corresponding action’s importance. The positive actions can be defined according to the actual 
application environment, such as device B relaying traffic for device A with a high level of throughput 
and low packet loss ratio, or device B providing the requested service to device A without delay. 
 
• Observed Positive Actions ( )i

Awp B : If a positive action corresponding to Pi is observed, 

( ) 1i
Awp B = . Otherwise, ( ) 0i

Awp B = . 
 
3.4.2 Negative Action Nj: This is device B’s negative action toward device A, and -1 < Nj < 0. For j = 
1 to n, each Nj corresponds to a negative action, and each Nj has a different value according to the 
corresponding action’s importance. The negative actions can also be defined according to the actual 
application environment, such as device B refusing to provide the service requested by device A, or 
device B presenting a high packet loss ratio when employed as an intermediate node for device A. 
 
• Observed Negative Actions ( )j

Awn B : If a negative action corresponding to Nj is observed, 

( ) 1j
Awn B = . Otherwise, ( ) 0j

Awn B = . 

Therefore, the adjustment parameter CA(B) is a summation of observations of both device B’s positive 
and negative actions toward the device A. 

 

3.5 Purging Trust Values 
A device may exist in a certain environment for only a short period of time, and then leave it and not 
return. In this case, if other devices in the environment retain its trust value, this action will result in 
wasted storage resources and will decrease those devices’ efficiency. In addition, outdated trust records 
may provide false trust information. When device A finds that device B has stopped communicating 
with him, device A will not update the device B’s trust value until device B tries to communicate with 
him again. After a predefined period, if device A finds that device B’s trust value was not updated 
during this period of time, then device A will delete device B’s trust value. Later on, if device B 
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attempts to establish communication with device A, then device A will treat device B as an unknown 
device and will compute device B’s trust value once again. 

3.6 Trust Relationship with a New Device 
 
In a pervasive computing environment, the population is dynamic. New devices constantly enter the 
environment, and it is necessary to investigate how a new device can build trust relationship with other 
devices. A new device is unknown to all other existing devices in the environment, so no 
recommendations are available when an existing device wants to run a trust computation about this 
new device. In this situation, this new device is given a trust value of 0, as we point out in Section 3.2. 
The interactions with this new device can still happen because we defined a device as untrustworthy 
when its trust value is negative.  

 
After the interaction with the new device, an existing device can use the trust value’s update 

mechanism to adjust the trust value on this new device. During the interaction, if it happened that the 
new device behaved well, its trust value will increase, otherwise its trust value will decrease. Later on, 
when other existing devices run trust computations about this new device, they might receive 
recommendations from the devices that have interacted with the new device and use these information 
to perform an indirect trust computation involving this new device. This way, the devices in the 
environment can receive a trust information about the new device. 

In a decentralized and distributed system like pervasive computing, there is usually no central 
management mechanism. The trust between devices is accumulated through actual interactions. Many 
trust management schemes have been proposed for pervasive computing and related fields ([3] and the 
references therein). But, none of them can allow a device to obtain trust information about other 
devices without actual interactions. It is true that a device can calculate the trust information through 
the use of recommendations. However,  the trust information contained in recommendations is actually 
obtained by recommendation providers through interactions. 

 

4     Performance Evaluation 

 
In order to evaluate the performance of the proposed trust management scheme, we conducted a series 
of simulation experiments on an in-home pervasive healthcare environment. There are three 
advantages to using simulations to evaluate the performance of a system. First, a simulation 
environment has the flexibility to allow us to set parameters to different values and observe the results. 
In a real environment, a phenomena or a consequence might be caused by many factors. However, in a 
simulation environment, we can avoid the influence of unwanted factors and perform a more effective 
analysis on the outcome. Second, it is easier to collect the desired data in a simulation environment 
than in a real environment. In the real environment, data need to be collected by means of special 
equipment and techniques. In a simulation environment, all kinds of data are produced and transferred 
in a pure software environment, so we can setup the proper functions to collect the desired data. Third, 
it is convenient to investigate the approach in a simulation environment. In a real environment, all 
hardware and software should be complete, and it can take a lot of time to configure each single unit to 
make them all work together. Some hardware or software might not meet the requirements of the 
proposed approach. On the contrary, it is easier to build our simulation environment in a virtual space. 
All necessary software and hardware exist virtually, and they work just as real software and hardware 
do through appropriate configurations.  
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The simulation experiments are implemented in Java. Several scenarios are used in the 
experiments, and multiple types of data are collected and compared to illustrate the effects of the 
proposed trust management scheme’s main components. 

4.1 Performance Metrics 
We have used three performance metrics: the average throughput, the average packet loss ratio, and the 
recommendation overhead. Each performance metric is investigated by varying the network size, the 
traffic load, and the length of the simulation. The three performance metrics are described as follows. 

 
• Average Throughput: We define the throughput as the number of packets that an 

intermediate node has successfully delivered during a predefined period of time. We evaluate 
our proposed trust management scheme’s performance by comparing the average throughput 
values in the simulations. The average throughput is defined by the following formula: 

•  

   
suc

total

PackAverageThroughput
Time

=
                                                               (5) 

 
where Packsuc is the total number of packets successfully transmitted and Timetotal is the total 
interaction time. 

 
• Average Packet Loss Ratio: The average packet loss ratio is the ratio of packets that were lost 

during the transmission to the total packets generated in a certain period of time. The average 
packet loss ratio is defined by the following formula: 

   
loss

total

PackAverage Packet Loss Ratio
Pack

=
                                                         (6) 

 
where Packetotal is the total number of packets generated by devices and Packelossis the 
number of packets that were lost during the transmission. 

 
• Recommendation Overhead: This is the overhead caused when dealing with received 

recommendations, the quantity of which is less than the desired number required for 
indirectly computing the trust. The recommendation overhead is defined by the following 
formula: 

  
unused

network

RecommRecommendationOverhead
Size

=
                                                              (7) 

 
where Recommunused is the total number of received recommendations, and these 
recommendations are not sufficient enough to run indirect trust computations. Sizenetwork is the 
network size (number of devices) of the environment. 

4.2 Simulation Parameters 
 

We use three parameters: the network size, the traffic load, and the length of the simulation. We 
change the values of these parameters in the experiments and observe the performance metrics. The 
three parameters are described as follows. 
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• Length of the simulation: This is the duration of the simulation. In the first experiment, we 
need to investigate the performance of the proposed scheme over varying lengths of time 
periods. With trust management, a device chooses appropriate devices to communicate with, 
based on certain trust values. In the simulation, we change the length of the simulation to see 
how the performance metrics are influenced when applying different trust computations. 
       

• Network size: This is the total number of devices in the environment. We set different values 
of network size to investigate how performance metrics are influenced by different 
percentages of recommendations. 

 
• Traffic load: This is the number of packets that a device generates each time. We change this 

parameter to investigate whether a device can update its trust record according to the actual 
communication result, and hence, choose appropriate devices to communicate with to get low 
average packet loss ratios. 

4.3 Simulation Experiments 

We have designed three experiments to evaluate our proposed model’s performance in a pervasive in-
home healthcare environment. 
 
4.3.1. The Effects of Simulation Time 

 

In this experiment, we designed three scenarios in order to investigate whether the devices could use 
our proposed trust management scheme to find the proper device to be used as an intermediate node. 
This pervasive computing environment has 50 existing devices and 10 new devices. We assume that 
the traffic load generated by a new device each time is from 1 to 1000 packets, and new devices 
choose an existing device as an intermediate node to transmit these packets. The simulation 
experiments are conducted in three scenarios as follows. 

 

• Experiment without Trust Management: In this scenario, new devices use no trust management 
scheme. New devices have no prior knowledge about the behaviour or performance of other 
devices in the environment. Since no trust management scheme is applied, new devices do not 
have any trust values to use when choosing another device to communicate with. When new 
devices need to transmit packets, they randomly choose a device in the environment as an 
intermediate node. 

 

• Experiment without Recommendations: In this scenario, new devices use the trust management 
method when choosing a node. Initially, in new devices’ trust records, all 50 devices’ trust values 
are 0 because new devices have no trust information about each others. After every interaction, 
any new device will update its trust record based on the throughput value obtained from its 
previous interaction. In Section 3.3, we introduced a method for updating the trust value. In every 
interaction, the new device interacts only with devices whose trust values in the new device’s trust 
record is non-negative 

 

• Experiment with Recommendations: In this scenario, we try to solve the problem of choosing the 
first device to interact with by using the trust management scheme with recommendations. When 
the new device attempts to interact with an existing device, it requires recommendations from 
other devices. New devices run the trust computation that we introduced in Section 3.2. After each 
interaction, new devices update their trust records. New devices’ trust records may include 
multiple devices with non-negative trust values. When a new device chooses a device from its 
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trusted list to interact with, it picks a device with a non-negative trust value. However, this does 
not mean that the device with the highest trust value is always chosen, but the higher the trust 
value a device has, the higher the probability that it will be chosen. When the chosen device is 
busy interacting with another device, new devices need to choose another device with the next 
highest non-negative trust value. 

 
Figure 3 depicts the average throughput of the above three scenarios as a function of simulation 

time. The average throughput without trust management (no-trust) remains constant over time, which 
means that new devices cannot find devices with acceptable throughput. With increasing time, the 
average throughputs with trust management (without-recomm and trust-recomm) become stable and 
are much higher than the average throughput without trust management. This means that the trust 
management method helps the new device to choose devices with acceptable throughput, and hence 
gets a good average throughput. 
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   Figure 3 Throughput as a function of simulation time 
 
 
The initial average throughput with recommendations is higher than the average throughput without 
recommendations. However, with increasing time, the two average throughputs merge because without 
recommendations, a device needs to update its trust record from actual interactions. Therefore, new 
devices may interact at the beginning of the simulation with devices that have low performance, and 
hence receive a low throughput.  
 

With recommendations, however, new devices can predict a device’s performance before the first 
interaction, and then decide whether or not to interact. In other words, with the help of 
recommendations, devices with high throughput can be found faster than they can be found without 
recommendations. In this way, new devices avoid interacting with devices that have low performance, 
hence, they gain higher throughput. With increasing time, new devices build proper trust records on 
existing devices under trust management, with or without recommendations. Therefore, the 
throughputs with or  without recommendations tend to be similar to each other. 

 
 

4.3.2 The Effects of Traffic Load 
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We used this experiment to show the importance of the trust value’s updating mechanism in the 
proposed trust management scheme. In a pervasive computing environment, devices perform 
differently from each other when used as intermediate nodes. Among all parameters that are used to 
evaluate a device’s performance, the packet loss ratio is an important one. When the transmitted traffic 
load is light, devices may provide acceptable packet loss ratios. However, when the traffic load 
increases, the packet loss ratio also increases. As a result, the packet loss ratio of some devices with 
low performance may reach an unacceptable high level when the traffic load increases to a certain 
amount. The trust value updating mechanism is designed to ensure that the trust value accurately 
reflects the device’s performance. The trust management scheme needs to preserve communication 
quality, no matter how heavy the traffic load is.  

 
In this experiment, we setup 10 new devices and 50 existing devices in a pervasive computing 

environment. Through trust computations, the new devices are initialized with the trust values of all 
existing devices. All of these existing trust values were non-negative, which means that any new 
devices treated all of them as trustworthy when attempting to interact with one of them. The 50 
existing devices provided different packet loss ratios when acting as intermediate nodes. We set the 
maximum acceptable packet loss ratio as 0.2. A device was considered trustworthy when its packet 
loss ratio was not higher than this value during the interaction; otherwise, it was not considered 
trustworthy. The devices’ packet loss ratios increased with increasing traffic load. Some of their packet 
loss ratios climbed higher than the maximum acceptable level when the traffic load increased. Others 
could maintain packet loss ratios below the maximum acceptable level. In this experiment, we increase 
the number of packets (i.e., traffic loads) generated from new devices, in order to study whether the 
trust value’s updating mechanism could help new devices to find a device with good performance to 
interact with when the traffic load varied. 
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   Figure 4 Packet loss tatio as a function of traffic load 
 
Figure 4 shows the average packet loss ratio as a function of traffic load. It illustrates that the 

average packet loss ratios in both scenarios tend to increase with an increase in the traffic load. 
However, the average packet loss ratio without trust value update exceeds the threshold value of 0.2 
when the traffic load rises to 1200 packets. The average packet loss ratio of the scenario that updates 
trust values stays under the threshold, although it also increases.  
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Figure 5 Throughput as a function of traffic load 
 

Figure 5 depicts the average throughput as a function of traffic load. The average throughputs of 
both scenarios tend to decrease with an increase in the traffic load. However, when the traffic load is 
higher than 1000, the average throughput without the trust value update mechanism is lower than that 
obtained using the trust value update mechanism. 
 

Without the trust value updating mechanism, a device checks the trust values in its trust record only 
when it attempts to interact with another device. After each interaction, the device does not update the 
trust value according to the device’s performance change during the interaction. As a result, devices 
still interact with a device even when that device’s packet loss ratio is above the threshold due to the 
increased traffic load. Therefore, devices suffer high packet loss ratios when the traffic load is high. 

 
With the trust value updating mechanism, devices update the trust values according to a device’s 

performance change during the interaction. Therefore, when the traffic load increases, devices can find 
an appropriate device to interact with by checking their updated trust records. Consequently, the trust 
value updating mechanism helps to keep the average packet loss ratio at an acceptable level when the 
traffic load increases. 

 
4.3.3 The Effects of Network Size 
 

In this experiment, we investigated how to set the proper percentage of the number of received 
recommendations and the network size for indirect trust computation. In order to carry out this 
experiment, we varied the number of existing devices from 5 to 50, and the simulation time was set at 
30 seconds. We assumed that the traffic load from a device was from 1 to 1000 packets. An interval of 
0 to 1 second separates two communications. If a device always waits for recommendations from all 
other devices in the environment, the danger of infinite wait time arises. To avoid this, it is necessary 
to set a minimum percentage, as we have presented in Section 3.2. After a device broadcasts a request 
for recommendations, it waits until the desired percentage of recommendations has been received, and 
then uses these recommendations to indirectly compute the trust. Otherwise, it treats recommendations 
as 0. In the scenario of trust management using recommendations, we varied the percentage values 
from 20% to 50% to illustrate the scheme’s performance with different numbers of devices. We also 
investigated the recommendation overhead under different percentage values.  
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                 Figure 6 Throughput as a function of network size 
 

Figure 6 illustrates the average throughput as a function of network size, and Figure 7 shows the 
recommendation overhead as a function of the network size. Figure 6 demonstrates that when the 
percentage value is 20% or 30% in all environments with network size from 5 to 50, devices can 
receive a good level of throughput during interactions. Also, graphs with 20% and 30% in Figure 7 
show low levels of overhead. This shows that with 20% or 30%, devices can receive the desired 
number of recommendations needed to indirectly compute trust. In this situation, devices may choose 
the right device as an intermediate node with the help of properly created trust values. 
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            Figure 7 Recommendation overhead as a function of network size 
 
However, when the percentage value exceeds 40%, we observe a decrease in throughput during 

interactions. Figure 7 shows that the overhead increases with a network size of 10 or more. When the 
percentage is at 40% or 50%, devices often fail to receive enough recommendations to indirectly 
compute trust; hence, devices have to manage trust without recommendations, and update their trust 
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records based on their experience with actual interactions. Devices may interact with devices that have 
low performance before the proper trust values are computed and updated. This results to a low 
average throughput for the length of the simulation. Therefore, the experimental results show that 20% 
and 30% are good percentage values. By considering both the recommendation overhead and the 
throughput, the experimental results show that receiving recommendations from more than 30% of the 
devices do not result in performance gains when indirectly computing trust values. 

5     Conclusions and Future Work 
 
In this paper, we have proposed a deterministic trust management scheme for pervasive computing. 
The proposed scheme has two main features. First, it is distributed. The distributed trust management 
makes the devices independently handle the trust issues under the absence of a central management. 
Second, the proposed scheme involves two methods for trust computation, direct computation and 
indirect computation. Recommendations are also used to assist when adequate first hand information is 
not available. The proposed scheme was evaluated using simulation experiments to investigate its 
performance in terms of throughput and packet loss at various parameter settings. Future research 
works will focus on probabilistic trust management using Markov and other mathematical models.  
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