
Journal of Mobile Multimedia, Vol. 4, No.3&4 (2008) 185-199
© Rinton Press

ON FOUNDATION OF ENGINEERING CONTEXT-SENSITIVE APPLICATIONS

LU YAN

School of Computer Science, University of Hertfordshire

College Lane, Hatfield, Hertfordshire AL10 9AB, UK
lu.yan@ieee.org

Received April 20, 2008
Revised July 10, 2008

The communication environment surrounding our daily experience is more and more characterized by
mobile devices that can exchange multimedia information and provide access to various services of
complex nature. The trend is now clear that future consumer computing experience will be based on
multiple pervasive communication devices and services, where navigability, context-sensitivity,
adaptability and ubiquity are key characteristics. Several issues have been studied, models and
methodologies proposed, and tools and systems implemented. However, when we look at the foundation
and what we are missing in research, some of the most relevant issues probably are a formal model of
context-sensitive and a notion of synthesizing reliable complex systems from vast numbers of unreliable
components. In this paper, we discuss a formal foundation and software engineering techniques for mobile
context-aware and context-dependent service derivation and application development, emphasizing the
relationships between context and system.

Key words: Context, specification, foundation

1 Introduction

With more than two billions terminals in commercial operation world-wide, wireless and mobile
technologies have facilitated in the first wave of pervasive communication systems and applications.
This trend shows several aspects consistent in the evolution of computing including the increasing
miniaturization of the computing units and an increasing emphasis of the role of communication
between them. Significant research work has been done over recent years on these systems at several
levels, from the lowest physical level to the highest information processing level. However, the latter is
less developed than the research at the lower levels. For instance, we think that the most relevant issue
for the future perspective of true ubiquitous computing, context-sensitive has not received justified
attention in the research community.

The term context has been extensively studied since the early 1990s; it was mainly associated with
the concept of location, but it is much richer than this; some works have categorized context into
different aspects, such as computational, user, physical, spatial and temporal context [1, 2, 3, 4, 5, 6].
However, a precise definition of context is yet still missing. In this paper, we interpret context as a
setting in which an event occurs, and this definition, we believe, is suitable for the system software
research.

186 On Foundation of Engineering Context-sensitive Applications

As the previous work [7], we have described a formal approach to context-aware mobile
computing: we offer the context-aware action systems framework, which provides a systematic method
for managing and processing context information, defined on a subset of the classical action systems
[8]. Based on the essential notions and properties of this formalism, we applied this formalism on
deriving context-aware services for mobile applications [9], and implemented a smart context-aware
kindergarten scenario where kids are supervised unobtrusively with wireless sensor networks [10].

Issues that have been considered are both theoretical and practical: modelling the system
requirement rigorously with formal approaches, deriving the software architecture from formal models,
stepwise refinement of the specification, code generation, and verification vs. simulation. While all
these research issues have been individually studied in an extensive way, their interaction within the
final implementation raises new challenges, which constitutes the focus of this paper.

The remainder of the paper is organized as follows: after a short introduction to related work in
Section 2, a design framework for wireless sensor networks is presented in Section 3. In Section 4 we
describe a formal model of context-awareness and context-dependency, and show the relationship
between the model and software architectures. We discuss a case study on applying this model to
software development process in Section 5, and then conclude the paper in Section 6.

2 Related Work

Several related works have noticed the importance of seeking a foundation of context-aware
computing [22]. Roman et al. presented a formal treatment of context-awareness via extending the
mobile UNITY with context handling part into context UNITY [23]. The context UNITY formalism is
similar to our context-aware action systems formalism, but approaching from an agent-like view in
modelling context-sensitive.

Henricksen et al. showed a conceptual framework and software infrastructure that together address
known software engineering challenges in context-aware computing applications [24]. The context
model is built on semantic level with the CML language [25], which can be categorized as an
extension of the Object-Role Modeling in software engineering process.

UML approach to context models was presented by Hinze et al., where UML diagrams are
combined with discrete event systems to facilitate the development of mobile context-aware systems
[26]. Due to the limitation of UML, which lacks a rigorous mathematic foundation, this approach can
be deemed as a semi-formal one. The similar UML-like approach can be found [27], where a
simulation-based paradigm was presented.

Service computing view on context-aware mobile applications was discussed by Aleksy et al.
They proposed a set of architectural components and principles which allow context-sensitive, mobile
business applications to be assembled in highly flexible and reuse-oriented way based on the principles
of SOA [32]. This approach is mainly focused on software architectural considerations, and context is
usually coded into XML segments [33].

Besides general aspect of context, fragment aspects of context, such as ontology [28], rational
[29], middleware [30], trust [31] were also considered.

L. Yan 187

3 Wireless Sensor Networks

Wireless sensor networks provide perfect platforms to study context-aware systems upon. Wireless
sensor networks have been an area of active research since the early 1990s [11], accelerated by the
advancement of wireless networking and the development of sensors. Only recently, wireless sensor
networks have moved from academic research concepts to commercially available products, increasing
production quantities.

Although significant research work has been undertaken, most of the research is still very
application specific, with security and environmental applications dominating [12]. However, it is
likely that more generic and comprehensive approach is required, where true system level problems in
wireless sensor networks and their applications can be studied. With such a perspective, we developed
a design framework in Figure 1 for wireless sensor networks [13].

Figure 1 The sensornet system framework.

In this framework, we have distinguished between context-provider and context-utilizer; the
former is the reactive part which detects the surroundings and acquires the context, and latter is the
proactive part which interprets and responds to the context. The interaction between the context-
provider and context-utilizer constitute a complete context-sensitive system.

Because the possibly bi-directional communication and the impossibility of restricting context to
be a sensor reading, all nodes can potentially act as context-providers as well as context-utilizers. The
roles are dependent on whether the data is propagating (an inquiry) or composing (a reply).

4 Formalizing Context-sensitive

We start by giving a brief overview of the action system formalism and then present how we model
context-awareness and context-dependency within this formalism. By mapping the formal model back
to the software architecture of wireless sensor networks, we show some realistic implementations of
this model on system software research.

188 On Foundation of Engineering Context-sensitive Applications

4.1 Action systems

The action systems formalism is based on Dijkstra’s language of guarded commands [14]. This
language includes assignment, sequential composition, conditional choice, and iteration. An action is a
guarded command, i.e. a construct of the form Sg → , where g is a predicate, the guard, and S is a
program statement, the body. An action is said to be enabled when its guard is evaluated to true. If an
action does not change the program state it is called a stuttering action. The body S of an action is
defined as follows:

1 2 1 2:: abort | skip | : |{ : ' | } | if then else fi | ;S x e x x R g S S S S= = =

where x is a list of attributes; e is a corresponding list of expressions, x’ is a list of variables standing
for unknown values, and R is a relation specified in terms of x and x’. Intuitively, skip is a stuttering
action, :x e= is a multiple assignment, 1 2if then else fig S S is the conditional composition of

two statements, and 1 2;S S is the sequential composition of two statements. The action abort always

fails and is used to model disallowed behaviours. Given a relation (, ')R x x and a list of attributes x,
we denote by { : ' | }x x R= the non-deterministic assignment of some value ' .x R x∈ to x (the effect
is the same as abort, if .R x =∅).

The semantics of the actions language has been defined in terms of weakest preconditions in a
standard way [14]. Thus, for any predicate p, we define:

1 2 1 2

1 2 1 2

(abort,) false
(skip,)
(: ,) [:]
({ : ' | },) ' . [: ']
(; ,) (, (,))
(if then else fi,) if then (,) else (,) fi

wp p
wp p p
wp x e p p x e
wp x x R p x R x p x x
wp S S p wp S wp S p
wp g S S p g wp S p wp S p

=
=

= = =
= = ∀ ∈ ⋅ =

=
=

where [:]p x e= stands for the result of substituting all the free occurrences of the attributes x in the
predicate p.

Thus, an action system is a construct of the form:

|]
od []...[][] do

;: var
;:export

;import [| A

21

0

0

nAAA
vv
ee

i

=
=

=

where the import section describes the imported variables i that are not declared, but used in A. The
variables i are declared in other action systems, and thus they model the communication between
action systems. The export section describes the exported variables e declared by A. They can be used
within A and also within other action systems that import them. Initially, they get the values 0e . If the

initialization is missing, arbitrary values from the type sets of e are assigned as initial values. The var

L. Yan 189

section describes the local variables of action system A. They can be used only within A. Initially they
are assigned values 0v , or, if the initialization is missing, some arbitrary values from their type set.

Technically, all the used variables in import and export sections are global variables, and only
variables defined in var section are local ones. The do odK section describes the computation
involved in A. Within the loop, 1 nA AK are actions of A.

The behaviour of the action system A is as follows: the execution starts by initialization of all
variables, and then repeatedly, an enabled action from 1 nA AK is nondeterministically selected and

executed. If two actions are independent, i.e., they do not have any variables in common, they can be
executed in parallel [15]. Their parallel execution is then equivalent to executing the actions one after
the other, in either order.

An action system is not usually regarded in isolation, but as a part of a more complex system. A
large action system can be constructed from smaller ones using composition. Consider two action
systems A and B below:

|]
od []...[][] do

;: var
;:export

;import [| A

21

0

0

nAAA
vv
ee

i

=
=

=

|]
od []...[][] do

;: var
;:export

;import [| B

21

0

0

mBBB
ww
ff

j

=
=

=

where v w∩ =∅ . We define the parallel composition of A and B, written A B , to be the
following action system C:

|]
od

[]...[][][][]...[][] do
;:r va
;:export

;import [| B||A

2121

0

0

mn BBBAAA
uu
hh

k

=
=

=

where fehhjik ∪=∪= ,\)(and wvu ∪= . The initial values of the variables and the actions in
A B consist of the initial variables and actions of the original action systems. The binary parallel

composition operator is associative and commutative and thus extends naturally to the parallel
composition of a finite set of action systems. The behaviour of a parallel composition of action systems
is dependent on how the individual action systems interact with each other. The parallel composition
operator can also be used in a reverse direction to decompose one action system into a number of
those.

The underlying basis for stepwise development of action systems is the refinement calculus [16].
In the refinement calculus, program statements are identified with their weakest precondition predicate
transformers. Our treatment of the action system refinement is based on the theory presented there.

190 On Foundation of Engineering Context-sensitive Applications

4.2 Context model

With this formalism, we start modelling the context-sensitive systems by specifying the context-
provider and context-utilizer roles as described in section 3. First we consider a context-dependent
system, modelled by the action system CD:

|]
od

 [] [] do
... var
...export
...import [| CD

βTgSg →¬→

=

where g is the context guard and S is a statement dependent on the context g: Sg → models the
system behaviour with provided context, and Tg →¬ models the system behaviour without provided
context; β stands for the other actions of CD. The context guard g is a predicate on the local and
context variable(s) x. The context variables constitute in a subset of the import and export variables.
The value of g is maintained by some other action system CH, called context-handler. Consequently,
the context variable x is an imported variable to CD and an exported variable in CH.

Hence, we need to introduce the context handler, maintaining g in Figure 2. The context handler is
a context-provider and can potentially be a context-utilizer, depending on the service. If it were not a
context-provider, there would not be anything requiring handling of the context. Thus, the handler is an
independent, but necessary part of the system. The context handler is modelled by action system CH:

|]
od

V
},{'|': do

... var

...export
...import [| CH

→¬
¬∈=→

=

b
ggxxxb

where b is a predicate; and },{'|': ggxxxb ¬∈=→ nondeterministically updates the global context
variable x. The nondeterministic update is later refined to a realistic intelligent algorithms. Hence, it
models the context provided to CD.

Now, the parallel composition of action systems CD and CH, i.e. CD CH is a complete
context-aware model, and it models interactions between the context-provider and context-utilizer. The
implication of this model in the software architecture design can be explained in Figure 1, where the
grey-shaded areas illustrate the main responsibility for the nodes belonging to them. The dark grey area
constitutes the sensing nodes, the grey the en route nodes and the light-grey the gateway node.
Moreover, it should be interpreted so that each item is considered belonging primarily to layer and
secondarily to segment.

L. Yan 191

One merit of our model is that we intentionally separate the origin of the context from the whole
context-aware system. This separation has one important consequence: the context is the result after
processing within the context-provider; i.e. the action system CH differentiates between data and
relevant data and context is therefore always refined raw data.

Figure 2 Data propagation and composition.

As the realistic implication, the above idea contributes to a further classification of sensor nodes in
wireless sensor networks as Figure 2. In this service oriented view, all sensors do not necessarily
provide data needed for replying a query, nor does all function as en route nodes. Consequently, if
possible the en route nodes decide based on the context whether their underlying sensing nodes can
provide relevant information and thereby, forward or not. The en route nodes can also, if implemented,
compose data for providing relevance and because energy efficiency reasons. In the end, the context
information is fused in the gateway node from the en route nodes to provide relevant and accurate
answers for the propagated query.

4.3 Context refinement

In this section we discuss how the refinement principles can be used together with a parallel
composition rule in our model. We show how to refine an abstract specification towards a detailed one,
as well as the realistic implications of these refinements in system software design.

First, we consider one simple refinement scenario:

RCD||CH CD'||CHô

where CD’ is the refinement result of CD. The realistic implication of this scenario is upgrading the
sensor application without touching the sensing part. This kind of refinement could mean: suppose we
have a supervisory software CD running on top of the wireless sensor network infrastructure, now we
update the existing software to a later version with more features CD’.

192 On Foundation of Engineering Context-sensitive Applications

Since this category of refinement only concerns individual action systems, there should not be any
change in the aggregated behaviour of the whole system. Thus, we give the refinement rules as
follows. Consider two actions systems CD and CD’:

|]
od

 []...[][] do
;: var
;:export

;import [| CD

21

0

0

nAAA
aa
ee

i

=
=

=

|]
od

[]...[][][]'[]...[]'[]' do
;':' var

;:export
;import [| CD'

2121

0

0

mn XXXAAA
aa
ee

i

=
=

=

where the local variables a in CD are replaced with new local variables a’ in CD’. The actions iA in

CD are replaced with 'iA in CD’, and auxiliary actions jX are added into CD’.

R is mapping a relation between the new local variable a’ and the old variable a. Consequently, we
can say that the action system CD is refined by the action system CD’, if there exists an abstraction
relation (, ')R a a such that the following conditions hold:

1. Initialization:)',(00 aaR

2. Main actions: ', for 1,...,i R iA A i n=ô

3. Auxiliary actions: skip , for 1,...,R jX j m=ô

4. Continuation condition: 'gCDgCDR ⇒∧

5. Internal convergence:) trueod, []...[][] do(21 mXXXwpR ⇒

where the first condition says that the abstraction is established by the initializations. The second
condition requires that each action iA is refined by the corresponding action 'iA using (, ')R a a .

The third condition states that the auxiliary actions jX behave like skip with respect to the global

variables i e∪ while preserving (, ')R a a . The fourth condition requires that an action in CD’ is
enabled whenever an action in CD is enabled and (, ')R a a holds. The last condition stipulates that
the execution of the auxiliary actions taken separately cannot continue forever whenever (, ')R a a
holds.

The second simple refinement scenario considers the context-provider itself:

RCD||CH CD||CH'ô

where CH’ is the refinement result of CH. The realistic implication of this scenario is improving the
context processing unit without touching the upper layer sensor applications. This kind of refinement
could be exemplified by for example: suppose we have a supervisory software running on top of the
wireless sensor network infrastructure, now we improve the wireless sensor network infrastructure to
provide more relevant and precise context information.

L. Yan 193

This category of refinement also concerns individual action systems and there is no change in the
aggregated behaviour of the whole system. Therefore, we can use the refinement rules described above
as well.

Here we consider one common refinement example on refining the context handling algorithm. In
our initial model, the context handling algorithm is rudimentally expressed as },{'|': ggxxxb ¬∈=→ .
Later we further refined this algorithm into a realistic intelligent algorithm such as [21]. Usually this
kind of refinement only refines local actions.

The last refinement scenario is a complex one, where the context-provider and context-utilizer co-
refines together:

RCD||CH CD'||CH'ô

where CD’ is the refinement result of CD, and CH’ is the refinement result of CH. The realistic
implication of this scenario is refining the sensing part and application part simultaneously, interacting
with each other. This kind of refinement could be exemplified as: suppose we have a supervisory
software running on top of the wireless sensor network infrastructure, now we redesign the whole
system, touching both the existing upper layer software and lower layer wireless sensor network
infrastructure.

Obviously, this category of refinement is complex, because it concerns not only the individual
behaviour of each action system but also the aggregated behaviour of the whole system. We can use
the compositional refinement rules [19], to refine this kind of scenario. However, due to the
complexity of this kind of refinement, we do not list down the complete refinement rules (more on
compositional refinement can be found [19]). We instead present an intuitive illustration for
understanding this kind of refinement in Figure 3, where an arrow represents a refinement step and a
line represents an abstraction relation.

Figure 3 Individual refinement process vs. compositional refinement process.

We further show an example on introducing new context to the whole system via compositional
refinement: suppose we have the original system modelled as CD CH , where CD and CH are
defined in the previous section. In this original setting, we have only g as our context. Now we would
like to extend the context part by introducing a new context to the whole system. In reality, this
scenario implies the case as utilizing additional data in the system which usually compels to
redesigning of the system.

194 On Foundation of Engineering Context-sensitive Applications

Using the compositional refinement, we can approach the problem as follows. First we consider
the CD’, which is the refinement result of CD. Let this new extra context be d. Assume d is a subset of

g¬ , i.e. gd ¬⊆ . Applying the individual refinement rules, we can refine the original action
Tg →¬ in into two new actions:

[] (\) ' \ 'd R g d T b d V→ ¬ → ∧¬ →

where R and T’ are refined statements satisfying:

and 'R RT R T Tô ô

Then the new context is evaluated in CH’, which is the refinement result of CH. Now ' 'CD CH is
the refinement result of CD CH .

Actually this is an effective way of stepwise adding new features to the system, when
simultaneously touching both the sensing part and the application part is inevitable. If we limit the
context to system failure, this approach is similar to the work done [20] in the fault tolerant direction to
provide means to handle certain faults.

5 Case Study

We have implemented a smart kindergarten (nursery school) scenario as a case study for the proposed
context-role categorization approach. The core concept of this application is illustrated in Figure 4, as
a smart surveillance system for a kindergarten. The system consists of stationary base stations, mobile
sensor nodes which are attached to the children, and the supervisory application. The children are
allowed to move freely in a predefined area (playground), and the supervisor is able to get the location
information of all nodes (visually). When a child leaves the predefined area, the alertness level of the
system increases, and the supervisor is informed. Higher alertness level implies intensified
communication. Moreover, intensified location reporting, by the distinct node, is conducted when
vibration is detected (the child can be assumed to move).

Figure 4 Smart kindergarten case study.

L. Yan 195

This scenario is a typical context-sensitive example consisting of a context-provider and a context-
utilizer. The system behaviour, the context-utilizer, is critically dependent on different contexts
provided by the context-provider, i.e. for supervision and localization. Moreover, in this particular
example the base stations function as context-providers, the beacon, as well as context-utilizers,
calculating the position and raising the alertness level.

Figure 5 Refined software architecture of the system.

Using the proposed context model in Section 4 and formalism [7], we implemented a variant of
ROCRSSI [21] for the localizing service. Here we show a final model of the system in Figure 5, which
is the stepwise developed result of Figure 1. This model follows the Lyra process [17] and works as the
basis of the kindergarten application. The conclusion drawn was that the system is hierarchically
pushing/pulling context information.

We then take a fraction of the model and show the specification. For instance, some specification
of the tracking part:

196 On Foundation of Engineering Context-sensitive Applications

where the context can be viewed as the guard, in this case the variables getPos, checkState and
tracking. The imported variables are the services for which this fraction is a context-utilizer for. The
exported variables constitute in the context-provider role of the fraction and hence, checkState and
tracking can appear in the guards of systems importing them.

Figure 6 Implemented prototype of the system.

We don’t elaborate the full system specification here. A complete specification of the kindergarten
application and some of its implementation details are available [10]. Most refinement steps were
subsequently conducted with Event-B and the Rodin platform [18]. A segment of final code generated
from the above specification is listed below, and some snapshots of the running prototype system are
shown in Figure 6.

L. Yan 197

6 Concluding Remarks

In this paper, we discussed a formal foundation and software engineering techniques for context-
sensitive service derivation and application development, emphasizing the relationships between
context and system. As stated in the abstract, there is a definite lack of formal support for modelling
realistic context-awareness in mobile computing applications. The context-sensitive action systems
presented in this paper provides mechanisms for modelling complex and interwoven sets of context-
information by extending traditional software engineering models with new constructs and capabilities.
We believe this formal model is a giant leap forward in the direction of making formal methods
applicable in the area of mobile computing.

References

1. A. K. Dey and G. D. Abowd. Towards a better understanding of context and context-awareness.
Proc. CHI 2000 Workshop on the What, Who, Where, When, and How of Context-Awareness, The
Hague, The Netherlands, 2000.

2. Mika Raento, Antti Oulasvirta, Renaud Petit, Hannu Toivonen. ContextPhone - A prototyping
platform for context-aware mobile applications. IEEE Pervasive Computing, 4 (2): 51-59, 2005.

3. Special issue on Context-Aware Computing. IEEE Pervasive Computing, 2002.
4. H. Chen, T. Finin, and A. Joshi. An ontology for contextaware pervasive computing

environments. Special Issue on Ontologies for Distributed Systems, Knowledge Engineering
Review, 18(3):197-207, 2004.

5. A. Schmidt, M. Beigl, and H.-W. Gellersen. There is more to context than location. Computers &
Graphics, 23(6): 893-901, 1999.

6. G. Chen and D. Kotz. A survey of context-aware mobile computing. Technical Report TR2000-
381, Dartmouth College, Department of Computer Science, 2000.

7. L. Yan and K. Sere. A Formalism for Context-Aware Mobile Computing. Proc. Third
International Symposium on Parallel and Distributed Computing/Third International Workshop
on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks, 2004.

8. R.J.Back and K. Sere. From Action Systems to Modular Systems. Software - Concepts and Tools.
(1996) 17: 26-39.

198 On Foundation of Engineering Context-sensitive Applications

9. Mats Neovius and Christoffer Beck. From requirements via context-aware formalisation to
implementation. Proc. the 17th Nordic Workshop on Programming Theory, Copenhagen,
Denmark, 2005.

10. Christoffer Beck. An application and evaluation of Sensor Networks. Master thesis, Åbo
Akademi, Finland, 2005.

11. S. Sitharama Iyengar and Richard R. Brooks. Distributed Sensor Networks. Chapman &
Hall/CRC, 2004.

12. E. Yoneki and J. Bacon. A survey of Wireless Sensor Network technologies: research trends and
middleware’s role. Technical Report UCAM-CL-TR-646, University of Cambridge.

13. M. Neovius and L. Yan. A Design Framework for Wireless Sensor Networks. Proc. of IFIP 1st
International Conference on Ad-Hoc Networking, Santiago De Chile, Chile. 2006.

14. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
15. R.J. Back and K. Sere. Stepwise Refinement of Action Systems. Structured Programming, 12(1):

17-30, 1991.
16. R.-J. Back, J. Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts in

Computer Science, Springer-Verlag, 1998.
17. J. Honkola, S. Leppanen, P. Rinne-Rahkola, M. Soderlund, M. Turunen, K. Varpaaniemi. A Case

Study: Applying Lyra in Modeling S60 Camera Functionality. Proc. 14th Annual IEEE
International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS),
Tucson, USA, 2007.

18. J.-R. Abrial. A System Development Process with Event-B and the Rodin Platform. Proc. 9th
International Conference on Formal Engineering Methods (ICFEM), FL, USA, 2007.

19. R. J. Back and J. Wright. Compositional action system refinement. Formal Aspect of
Computing,15(2-3): 103-117, 2003.

20. J. Xu, B. Randell, A. Romanovsky, R.J. Stroud, A.F. Zorzo, E. Canver, F. Henke. Rigorous
development of an embedded fault-tolerant system based oncoordinated atomic actions. IEEE
Transactions on Computers, vol. 51, issue 2, pp. 164-179, 2002.

21. C. Liu, K. Wu, and T. He. Sensor localization with Ring Overlapping based on Comparison of
Received Signal Strength Indicator. Proc. IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS), Oct. 2004.

22. P. Dourish. Where The Action Is: The Foundations of Embodied Interaction. MIT Press, 2001.
23. G.-C. Roman, C. Julien, and J. Payton. A Formal Treatment of Context-Awareness. Proc. 7th

International Conference Fundamental Approaches to Software Engineering (FASE), Lecture
Notes in Computer Science 2984, Springer 2004.

24. K. Henricksen and J. Indulska. A Software Engineering Framework for Context-Aware Pervasive
Computing. Proc. 2nd IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2004.

25. K. Henricksen. A framework for context-aware pervasive computing applications. PhD thesis,
University of Queensland, Sept. 2003.

26. A. Hinze, P. Malik, and R. Malik. Interaction design for a mobile context-aware system using
discrete event modelling. Proc. Twenty-nineth Australian Computer Science Conference (ACSC),
Hobart, Australia, 2006.

27. P. Guo and R. Heckel. Modeling and Simulation of Context-Aware Mobile Systems. Proc. 19th
IEEE International Conference on Automated Software Engineering (ASE), 2004.

28. A. Pappas, Stephen Hailes, and Raffaele Giaffreda. A design model for context-aware services
based on primitive contexts. Proc. UbiComp, 2004.

29. Y. Roussos and Y. Stavrakas. Towards a Context-Aware Relational Model. Technical Report TR-
2005-1, National Technical University of Athens, 2005.

L. Yan 199

30. E. Katsiri. Middleware support for context-awareness in distributed sensor-driven systems. Ph.D.
Thesis, University of Cambridge, Feb. 2005.

31. M. Carbone, M. Nielsen, and V. Sassone. A Formal Model for Trust in Dynamic Networks.
BRICS Report RS-03-4, 2003.

32. T. Butter, M. Aleksy, P. Bostan, M. Schader. Context-aware User Interface Framework for Mobile
Applications. Proc. 27th International Conference on Distributed Computing Systems Workshops
(ICDCSW), Toronto, Canada, June 2007.

33. M. Aleksy, C. Atkinson, P. Bostan, T. Butter, M. Schader. Interaction Styles for Service
Discovery in Mobile Business Applications. Proc. 17th International Conference on Database
and Expert Systems Applications (DEXA), Krakow, Poland, Sep. 2006.

