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A number of growing sensor applications such as target tracking and health monitoring
motivate rate-based image transmissions in the Wireless Sensor Network (WSN). In this
paper, we propose a cross layer based optimal approach for image sensors to decide
transmission patterns based on a Rate-Oriented Routing scheme, which achieves both
high energy efficiencies and longer network lifetime. In this approach, a group of image
sensors transmit the images through appropriate rate-based routing paths under the
user requirements. The simulation results show that the proposed image transmission
scheme can achieve considerable gains in terms of the WSN energy efficiency and network
lifetime extension.
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1 Introduction

In Wireless Sensor Networks (WSN), image sensors can provide visual information and sup-
port applications in numerous areas such as field monitoring and surveillance. These appli-
cations may require image sensor array to conduct collaborative image transmissions under
limited sensor resource constraints. For example, in environmental monitoring cases, vast
and inaccessible field area could be visually monitored by correlated image sensors for early
detection of unusual events. Another example is military reconnaissance, where high quality
images can be acquired through image sensors in WSN to improve the field perceptibility and
make accurate estimation about menace.

However, the large amount of image data loads in WSN are the bottlenecks of network
transmission. These burdensome image data transmissions in WSN can significantly degrade
the network performance and network lifetime due to the limited power in the sensor nodes
[1]-[2]. Although a comprehensive joint image compression in the sensor array has reduced
the inter-redundancies for the images, it would require the simultaneous availability of im-
age data from multiple sensors, involving high communication overheads for comprehensive
data exchange. Recently, both cooperative methods [3]-[5] and predictive methods [6]-[7] are
explored in utilizing sensor correlation. These approaches either involves high inter-sensor
communication overheads or require the prior information of the sensor deployment. Further,
how to utilize the sensor correlation model for efficient image transmissions should not only be
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determined by source image sensors themselves, the network parameters such as the routing
pattern has to be included in this study. In this paper, we propose an effective approach
where the data redundancy among correlated image sensors can be considerably reduced in
a simple approach. The communication overhead for data exchange is relatively small to
exploit the correlations in the proposed approach.This paper is an extensive effort to deepen
and enhance our previous related works published in [8].

2 The Optimization Model for Image Transmissions

In this section, we formalize an optimal transmission model with given corresponding routing
paths and deployed sensors with the corresponding energy on each sensor. For simplicity
yet without loosing generality, we listed two assumptions: Each image sensor sends non-
overlapping region and possibly part of overlapping regions shared with other image sensors
within its field of view; The union of non-overlap regions and overlap regions equals the whole
area of view for all correlated image sensors. For example, F1, F2 and F3 are three images
taken by three image sensors, respectively. Each image can be separated into Overlap (O)
regions and Non-Overlap (NO) region. Each image sensor will transmit its NO region and
part of O regions to base station via single-hop or multi-hop path. To save communication
energy, it would be important for each source sensor to send its own NO region and not to
send the portion of O region that has already been sent by another source sensor who shares
this portion of O region.

For example, there are three pictures F1, F2 and F3 captured by three sensors. Each
picture can be denoted as a combination of NO and O regions. 02 and O3 are image
regions overlapped by all three pictures. F1=NO1+01+02, F2=NO2+01+02+03, and
F3=N0O34+02+03. With such region pattern and transmission diversity for different image
regions on multiple paths, we try to look for an optimal solution to achieve higher energy
efficiency and better load balancing under the requirement for image transmission quality,
i.e., image distortion requirement. Let S be a set of nodes from image sensor groups that can
perform cooperative measurements on the target, and N be the total number of nodes in S.
The meanings of other symbols used in the paper are shown in Table 1. We also denote by
E{i=1,2,.... N} the sensors’ residual energy with ¢ as the sensor index. Each NO region
is labelled by NO;, and O region is labelled by O;, {j = 1,2, ...... M).The meaning of symbols
are refereed to table 1. M is the number of overlap regions in the interest scene. We use ; ;

Table 1. Equation Symbols Reference

Symbol Definition

E; Remaining Energy of sensor @

t; Lifetime of sensor ¢

C; Energy Consumption cost per bit of sensor ¢

NO; Non-Overlap area of sensor 4

0O; Overlap area of region j

G; Source Rate of Image Sensor i

CostP; Energy cost on route path of image sensor %

ejT(i) Transmit energy consumption per bit of node j of route path of image sensor 4
ef(i) Receive energy consumption per bit of node j of route path of image sensor i
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to denote the fraction of the overlap region O; that is to be sent by sensor ¢; therefore, the

i*" sensor’s lifetime can be expressed as

E;
ti = i (1)
(NOi + Z Tij - Oj) -C;
=1

j=

where C; is the energy consumption per unit when the i‘* sensor sends image to the next-hop
node, In the network model, the lifetime of all correlated image sensors should be balanced
at the same time to maximize the network lifetime, and be load-balanced to avoid losing the
sensing coverage. Therefore, we have

Z(ti - <o (2)

o is a threshold with small value.C'ost P; denotes the average energy consumption per bit when
sensor 7 sends image data to the base station via a specific routing path, which is the sum of
all energy costs on the route. Each image sensor has a corresponding path transmission cost
Cifi = 1,2,......N} associated with it. Let e] (i) be the transmission energy cost on a hop
from node j to j 4+ 1 on a specific path for sensor node 1. ef(i) is the receive energy cost on
hop j to j + 1, and ege” (¢) is the energy cost for the collision and retransmission. Thus,
HopCount
CostPy = Y (e] (i) + ef (i) + €} (i) (3)

J=1

The transmission energy on hop j to j+1 is directly related to the transmission rate expressed
in Equation (4). m is constant parameter, « relates to channel condition, which determined
by BER requirements. d; 11 denotes the distance between node j and j + 1. R;(7) is the
transmission data rate on hop j to j + 1 on route path of image sensor 1.

ey (i) = a- (Rj(i)™ - dj j41(i)?
o (1)

The receive energy of hop j to j + 1 is also related to the transmission rate and can be

i) =5

expressed in Equation (4) with § as a constant parameter. So the energy consumption for
sensor 4 to transmit its image to the sink node can be expressed as the following;:

M
EPU (i) = (NOi + > @i - 0;) - CostP;

Jj=1

N
Etotal = Z EPath (Z) (5)
=1

FEiotar is the total energy consumption. We follow the convention to use the MSE parameter
to measure the image quality distortion To form a performance metric for the overall image
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sensor transmissions, a possible approach is to use the Minkowski summation:

| X g | X 3
To — ) To\b No — ) No\b
e S R E el ©)
i=1 n=1
where N is the number of correlated image sensors. DS is the expected average Non-overlap

region distortion,and D¢ is the expected average overlap region distortion. Thus the optimal
transmission problem can be expressed to find an optimal set{z; ;} such that

{xfst} = argmin{ Fiotai } (7)
T, j
subject to (2). The image sensor captures image at frequency f (Per Frame/second). So each
image sensor has a source rate

M
Gi:(NOi-FZ:L'i’j'O]‘)'f (8)

Jj=1

On the multi-hop route path for node ¢, due to buffer limitation, the constraint expressed in
(9) also has to be satisfied.
min(R; (7)) > G; (9)

In order to utilize the route path diversity in sending NO/O regions to the sink, a special link
and physical layer design would be very important to achieve energy efficiency, longer life time
and required image quality. We use R,, , to denote the transmission rate between node v and
v, and P, , to denote the packet error probability between node u and v. Delay,, , denotes
the minimum delay between nodes u and v, which is a sum of processing, transmission and
propagation delays, and varying queuing delay. To achieve good reconstructed image quality,
there is a function F that determines the average image region distortion D (O region) and
W (NO region) at the sink node based on the link parameters including transmission rate,
packet error probability, and minimum delay between nodes.

D_lo = F(Ryw, Puv, Delay, ), Yu,v € Path(i)

S 10
DlNO = F(Ru,v; Py v, Delayu,v) , YVu,v € Path(i) (10)

where Path(i) is denoted as an individual multi-hop routing path for image sensor ¢, u,v are
the end nodes of each hop on the Path(i). The probability of packet error for L size packet
transmission in Path(i) can be expressed in (11).

HopCount
P(L)=1- _1:[1 (1= Pjj41(0))
HZ;Count (11)
=1- I - BER;j1)"]
]:

where P; j11(l) is the packet error probability at the j¢" hop link on routing path I , which can
be calculated by BER value at each hop in (11) . Different BER requirements at the link layer
affect packet error probability on the routing path, and hence the image distortion level. The
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link transmission rate R, , in (10) can be adjusted by using AMC technique, and dynamic
power control can offer lower BER on the wireless link. There is a relationship between the
power, transmission rate, and BER in (12) with the QAM modulation scheme analyzed in
[10].

1 1

1 -t N,
PsM=QAM _ ~  po.p. (b2 —1) - (2. (1-=) .BE 0
S 3 Rs-b (b ) lerfc (2 ( b) R)

I (12)

In (12), PsM~QAM g the transmission power of the transmission node. When modulation
scheme is determined, symbol rate Rs and constellation size b are also determined accordingly.
Desirable BER is a system parameter, pre-defined by the system. Gaussian noise power inten-
sity is a system constant value. Channel attenuation with antenna gain A can be calculated
from lower layer. The detail descriptions in (12) can be referred to [10]-[11].

3 The Proposed Image Transmission Design
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Fig. 1. Architecture design for image transmission utilizing both region and path diversities

With consideration of the diversities of both regions and multiple routing paths, we design
an effective framework of image transmissions in multi-rate WSN as shown in Figure 1. In
Figure 1, Component 1 allocates an appropriate source rate to each image sensor by allowing
it to transmit different portion of O regions at different rates with BER requirements. In
Component 2, “Rate Distributor” is to select appropriate routing paths for image transmis-
sions with respect to source rates of sensors and image region importance. In Component 3,
multiple routing paths are discovered by Rate oriented Routing (RR) component. We have
proposed the details of RR scheme in [11]. Also, the transmission diversity on multiple paths
is implemented in Component 3 by setting different network and link parameters such as
transmission rate, BER, delay bounds and transmission power. However, packets received
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at the sink might be out of sequence due to multiple path transmissions, and multiple paths
compete for the common medium at sink node due to their convergence there. Therefore, an
effective polling sequencer in this bottleneck area is needed to relieve the collision and out of
sequence problem. Polling Sequencer in Component 4 is specially designed for this purpose.
After packets are received at the sink, they have to be decoded to reconstruct the whole
image with the required image distortion, which is described in Component 5. In Figure 1,
(G1, G2, Gs,Gy)is a rate vector that includes the individual source rates of image sensors, and
the value of source rate of each image sensor is within the range of (Gmin, Gmax )-

Data Rate Application
Layer
\
Y
Rate-Based Routing(RR) Network
Layer
\
Y
o MAC/Link
Rate-Energy Optimization Layer
\
Y |
Power Control and AMC Physical
Layer

Fig. 2. Network layer Protocol architecture

As shown in Figure 2, the network architecture includes data rate assignment at the
application layer, which is decided by the optimal distribution ratios. Once the source data
rate has been determined, RR routing scheme can be utilized to find appropriate route path
for each sensor. At the each hop, the energy is optimized based on the rate and channel
condition. At physical layer, the power and AMC are adopted to achieve the energy efficiency.
On each routing path, given data requirement at each link, at MAC-PHY layer, there is a
transmission rate optimization to achieve minimal energy consumption at the link layer.
MAC layer matches the data rate requirement with a lookup table, which maps data rates
to modulation schemes. The modulation scheme together with the channel attenuation and
the desirable BER are guided into the Transmission Power Controller (TPC). The TPC then
sets the proper transmission power and control the radio module accordingly. Once these
settings are complete, data transmission in physical layer will start with the corresponding
modulation scheme, transmission rate and scaled transmission power.Based on our previous
work in multi-rate WSN platforms [10], a PHY-MAC layer energy-efficient module is utilized
with a handshaking mechanism. Therefore, it is very important to find an optimal distribution
that allocates the appropriate data rate, so the total network energy efficiency can be achieved.
In addition by setting different BER requirements at links of multiple routing paths, we can
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form multiple level error robust paths to implement the image transmission diversity. The
different BER requirements at each wireless link can be achieved by using AMC and PC
techniques.

3.1 RR Component

In this section, we propose an approximate method called RR routing scheme to form multiple
node-disjoint routing paths. RR achieves longer network life time not only by associating
lower transmission rate with the nodes having less residual power energy, but also exploit the
multiple node-disjoint route path to accomplish load balancing. The basic idea is to separate
the sensors between the source sensor group and the sink node into multiple levels according
to their distance to the sink. Sensors at each level will be assigned with data rates according
to their residual energy. The detail study of rate assignment is referred to our paper [11].
After a sensor determines its rate according to the residual energy level, it will choose the
next hop node in the next level based on its rate. Sensors always choose the next hop node
that has the same rate assignment. If some nodes at the same level have been assigned the
same rate, a probability-based selection scheme will be applied. This routing selection scheme
guarantees that each individual source node in the source group can find node-disjoint path
while satisfying their rate constraints.

3.2 Rate-Based Polling Sequencer Component.

In RR, multiple paths still converge at the same sink node and compete for the common
medium. An effective medium access in this bottleneck area is needed to replace the general
inefficient sender-initiated medium contention mechanism. We design a rate-based polling
sequencer, which allows sink node to dynamically schedule packet-receiving sequences from
multiple paths. This polling sequencer avoids blind channel contentions and eliminates unnec-
essary channel access delays. It can also alleviate the out-of-sequence problem by sequentially
assigning channel access priorities among multiple paths. The polling sequencer is designed
based on the RTS/CTS mechanism. The sink grants its one-hop neighbors different medium
access priorities according to their transmission rate. The neighbors of sink can be divided
into two classes: rate-oriented path neighbor and non-relay neighbor. Multiple rate-oriented
path neighbors always have higher priority than non-relay neighbors. Within rate-oriented
path neighbors, the medium access priorities are dynamically assigned by the sink node based
on the assigned transmission rate of its neighbor node. Whenever the sink receives an RT'S,
it assigns a new priority number to the RTS sender and adjusts the priority levels of other
neighbors. The priority assignment is recorded in its lookup table. The priority number is
assigned for channel access in the next data transmission period. In response to RTS, the
sink sends out CTS packets that include priority update information. By checking every
CTS received from the sink, the neighbors of the sink can know their priority assignment and
control medium access accordingly in the next data transmission period.

3.3 Rate Distributor and Allocator

The rate distributor and allocator run inside each of the sensors, which are shown as Figure 3.
In Figure 3, it describes the functionality of the rate distributor and rate allocator. The rate
allocator and rate distributor are implemented inside each sensor. The optimal distribution
ratio are informed by the base station, any overlap change detections are also monitored
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by the rate allocator. Each sensor will raise a flag to the overlap detection unit.When the
overlapping detection unit find the number of flag has exceeded the pre-set threshold, it will
automatically report to the rate allocator. The rate distributor will optimize the transmission

|
| |
i Inside Sensor i Channel
Informed by E i Estimation
Base station ! ga:a |
| Rate | a e= Rate
| Allocator Distributor |«
| ] i BER flag | Channel
| | . .
| Estimation
i \ Data |
{
N ! Rate Rate Rate PC and AM
| -t > u E—— - -
Dlstrlbytlon Allocator Distributor ] CI"_lanngI
Ratio | g ! BER flag |Estimation
| \ Data !
, Rate <Rate= Rate |PCand AM,E : Ja”
! Allocator Distributor [« BER flag™] Channel
! Data |
Overlap ! Rate PC and AMC
Change || A||R ati "l bi Ft{?;et Pr— N
; ocator istributor ~
Detection : : BER flag
g :
Report Difference
Sensor PC: Power AMC: Adaptive
Control Modulation Control

Fig. 3. Rate Distributor and Allocator

rate based on the data rate requirement from rate allocator and channel status indicated by
BER. Once the optimal transmission rate are determined, the rate distributor will notify the
physical layer to change corresponding modulation scheme and control power. These two
components are implemented in distributed way with very small message exchange.

3.4 Owverlap Image Pattern Detection and Route Update

The overlapping image region among correlated sensors can be identified by image shaping
matching algorithm as described in [21]. The shape matching algorithm is operated on a very
small number of the feature point, hence the computational complexity can be greatly reduced.
This determination process has to be performed at the base station due to its complex image
processing. However, this kind of identification may also be conducted offline when image
sensor is deterministically pre-deployed with fixed image sensor angles and locations. In terms
of random deployment, the identification procedure needs to be executed only at the start-
up phase. Therefore, the system overhead of overlapping region pattern detection that is
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accomplished on the base station site with large amount resources is insignificant compared
to the benefit of reduced transmission load in WSN. Even when some overlapping regions
have been adjusted due to user requirements or environment changes after a period of time,
a detection updating strategy can also be provided. In this updating strategy, any obvious
change in the view of each image sensor beyond a threshold can be signaled as detection
pattern change, which should be informed to the sink node for new overlapping image region
identification. The procedure is described as follows: at the deployment phase,the base station
has the basic knowledge of region distribution patterns for image sensors by learning; Base
station collects the initial energy status for each sensor, and creates energy status profile. It
applies the algorithm described in the previous section to calculate the routing and implement
the optimal route path based on the topology information;The base station estimates the
residual energy based on the image blocks it received, updates the residual energy profile for
each sensor at base station. Since the route update only includes the optimized parameters
and rate assignment, so the overheads are small in term of energy gains.

4 Simulation Results

Genetic Algorithm (GA) method [12]-[13] proves to be a powerful optimization technique,
which is analogous to the natural genetic process in biology. To solve the optimization problem
formalized in the previous sections, we design a specific GA, whose steps are described as

follows.
Etotal _ Etotal

max min
~ rpitotal _ ptotal
Ec Emin

where Bt is the total energy consumption in the current generation calculated by Equation
(9). Once the network topology and energy status of each node has been determined, multiple
route paths could be determined by RR algorithm. Based on these determined route paths,
the above designed genetic algorithm can be applied to solve this constrained optimization
problem. In our algorithm, only a part of unknown x;; will be coded into genes, and others
will be accordingly bound by those constraint equations elaborated in section 2. This reduces
the complexity of computation. Table 2 gives the overlap and Non-overlap region distribution
pattern in the simulation.

Table 2. Overlap and Non-Overlap distribution pattern
NO1 01 NO2 02 NO3 03
4197 2177 2798 1451 2798 2908

Our simulation is based on three correlated image sensors with both single-hop and multi-
hop scenarios. In single hop scenario, three image sensors directly send image to the sink. In
the multi-hop scenario, there are fifteen random relay sensor nodes deployed between image
sensors and the sink node. The latter is a typical scenario in the image sensor network, i.e.,
there are a small number of sensors which sense the target view while others play a relay role
in the WSN. Table 3 gives the optimization results for the single hop scenario. The column
of GEN indicates how many generations the designed genetic algorithm takes to obtain the
optimization results.

Table 4 shows optimization results for multi hop scenario. The column of GEN indicates
how many generations the designed genetic algorithm spends.
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Table 3. Optimization results on single hop scenario using the genetic algorithm

f | zn T21 212 22 Gen
1 0.263 0.135 0.414 0.310 9
2 0.156 0.156 0.292 0.332 17
4 0.397 0.088 0.071 0.294 8
6 0.270 0.453 0.324 0.152 9
8 0.196 0.201 0.232 0.410 9
10 | 0.290 0.238 0.383 0.147 12
Table 4. Optimization results with RR and Multi-hop

f T11 T21 T12 T22 Gen

1 0.011 0.300 0.020 0.393 10

2 0.003 0.356 0.030 0.343 18

4 0.003 0.360 0.026 0.062 17

6 0.007 0.310 0.041 0.271 11

8 0.016 0.317 0.087 0.221 10

10 | 0.001 0.325 0.011 0.319 30

From Table 4 and Table 3, we have found the optimal results had been changed with
different values of f, i.e., the source image data rates at the source sensors. The optimal
results of x11,T21, 212, 22 are approached quickly by the genetic algorithm, and other pa-
rameters can then be determined by these optimal values according to the equation constrains
elaborated in section 2.

We have conducted computer simulations in order to evaluate the performance of the
proposed algorithm.The result is shown in Figure 4,5 and 6. In Figure 4, for a single hop
scenario, we compare three approaches together:the preset 1/3 distribution ratio set scenario;
optimal distribution ratio set scenario; single hop without collaboration scenario. The simu-
lation shows that the proposed optimal approach spends less energy consumption than both
non-collaborative approach and non-optimal set (preset 1/3). It achieves almost 3 times en-
ergy savings more than the Non-collaborative approach. We also found when the sampling
frequency increases (i.e., the source rate increases), optimal set achieves more and more energy
savings than the non-optimal set. The same performance is shown in Figure 5 by comparing
Minimum Hop (MH) routing and Minimum Total Energy(MTE) routing based methods in
the multi-hop scenario with the proposed optimal RR approach. In Figure 5, RR with optimal
set spends less energy consumption than both MH and MTE with either preset 1/3 distri-
bution ratio or the Non-collaborative approaches. This performance improvement becomes
more obvious, up to 21% compared with MH and 30% compared with MTE in the simulation
when the source rates of image sensors increase.

Figure 6 shows that the RR scheme with the optimal set based on genetic algorithm also
extends the network lifetime significantly by a factor up to 4.7 than both MTE and MH at 1/3
preset distribution ratio. It is obvious that Non-collaborative approaches without the consid-
eration of the correlation of images are not energy efficient in Figure 6. The network lifetime
in Non-Collaborative approaches are reduced quickly, and the network energy resources have
been wasted due to redundant transmissions. However, the proposed optimal scheme has
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extended the network life time in large scale. There are two reasons for that: one is that the
proposed RR with optimal set takes advantages of the correlations and importance of image
regions; the other is that RR utilizes the higher residual energy nodes, and balances the node
energy consumption in WSN.

5 Conclusion

In this paper, we investigated how each correlated image sensor within WSN can optimally
transmit images to base station,and how images can be sent through our RR scheme. We
found that the effective pattern of image transmissions is not only determined by the network
resource of each image sensor itself, but also is related to the whole network routing protocol
design. Based on the overlapping scenario, we formed a network optimization problem for en-
ergy efficient image transmission. The optimization problem was solved effectively by Genetic
Algorithm approach. The simulation results have shown that our algorithm and procedures
achieve considerable energy efficiency gains in wireless image sensor networks.
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