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In this work we investigate the possibility of detecting errors in H.264/AVC encoded video
streams. We propose a method for the detection of errors exploiting the set of entropy
coded words as well as range and significance of the H.264/AVC information elements.
We evaluate the performance of such syntax analysis based error detection technique for
different bit error probabilities and compare it to the typical packet discard approach.
Particular focus is given on low rate video sequences.
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1 Introduction

H.264/AVC (Advanced Video Coding) [1] is the recent video coding standard, defined by
the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Pic-
ture Experts Group (MPEG) as the product of a collective partnership effort known as the
Joint Video Team (JVT). This standard is especially suitable for low data rate applications
as it provides substantially better video quality at the same data rates compared to previ-
ous standards (MPEG-2, MPEG-4, H.263), with only a moderate increase of the complexity.
Moreover, H.264/AVC was designed to support a wide variety of applications and to operate
over several types of networks and systems.
Video telephony and video streaming over Internet Protocol (IP) packet networks are quite
challenging applications due to their requirements on delay and data rates. A video stream is
encoded and encapsulated in Real Time Protocol (RTP) packets. These packets are tipically
transported end-to-end within the User Datagram Protocol (UDP). Unlike the Transmis-
sion Control Protocol (TCP), UDP does not provide any retransmission control mechanisms.
Nevertheless, it has been widely adopted for video streaming and video telephony, since end-
to-end retransmissions would cause unacceptable delays. Thus, in such real-time applications,
transmission errors cannot be completely avoided.
To allow for applications even in error-prone environments like mobile networks, apart from
the improved compression performance, H.264/AVC provides several error resilience features.
Therefore, the 3rd Generation Partnership Project (3GPP), standardizing the Universal Mo-
bile Telecommunications Network (UMTS), has approved the inclusion of H.264/AVC as an
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optional feature in Release 6 of its mobile multimedia telephony and streaming services spec-
ifications ( [3], [2]).
To facilitate error detection at the receiving entity, each UDP datagram is provided with a
simple 16 bits long checksum. The packets with detected errors are typically discarded [2, 4]
and missing parts of the video are subsequently concealed. The reason for this handling is the
variable length coding (VLC). The H.264/AVC standard supports a context adaptive VLC
(CAVLC) in all its profiles. After a bit error, (CA)VLC may easily desynchronize, making the
correct distinction between the following codewords impossible. Therefore, without any resyn-
chronization mechanism and/or additional detection/decoding mechanism (e.g. [5], [6], [7]),
the decoding of such stream may result in considerable visual impairments, or may become
even impossible (due to the non-existing codewords, too many or too few bits left for decod-
ing). The detection of errors allows to utilize the correctly received parts of the packet for
the decoding. Since a packet usually contains a rather large picture area, it may considerably
improve the quality of reconstruction at the receiver. The structure of the bit stream — the
syntax of its information elements — may also provide some means to detect errors. For H.263
codecs, the performance of a simple syntax check method was evaluated in [8]. However, the
structure of the H.264/AVC bitstream and the CAVLC differs considerably from the structure
and VLC of the H.263 bitstream.

In this paper we investigate the possibility of detecting errors in H.264/AVC encoded video
stream. We propose a method for error detection exploiting the codewords, as well as range
and significance of the H.264/AVC information elements. We evaluate its performance and
compare it to the typical packet discarding approach. The focus of this work is given on the
baseline profile (targeting video conferencing, streaming and especially mobile applications)
and thus, we work with CAVLC rather than with context adaptive binary arithmetic coding
(CABAC), mainly designed for the storage applications. We do not take into account error
detection within the RTP/UDP/IP header. Errors within the header could also be detected
by other means, e.g. UDP-lite [9], or using the information from lower layers depending on
the underlying system.
This paper is organized as follows. Section 2 introduces briefly the architecture of the
H.264/AVC codec. The structure of the H.264/AVC RTP bitstream is described in Sec-
tion 3. Section 4 analyzes individual information elements and presents the way in which
their syntax may be used to detect errors. Results of the performance evaluation and com-
parison with alternative methods are provided in Section 5. Section 6 contains conclusions
and some final remarks.

2 H.264/AVC Design Characteristics

H.264/AVC defines a hybrid block-based video codec. Despite of a significant increase of
performance, compared to its predecessors of both the ISO and the ITU-T family, there
is no single element of the coding process granting the majority of the improvement; the
enhancements are rather gained using a plurality of single improved features.

Depending on the applications, H.264/AVC defines seven profiles : baseline (conversational
services), main (broadcast and storage application), extended (internet streaming) and four
high profiles (broadcast for High Definition TeleVision — HDTV). The 3GPP specification for
transparent end to end packet switched streaming service [2] as well as the ITU-T specification
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for 3G terminals (H.324) [10, 11] suggest the client to be compatible with the H.264/AVC
baseline profile. Therefore, in the following, we will refer to the set of features supported by
the baseline profile.

Similarly to its precursors, the H.264/AVC encoding process is characterized by a hierar-
chical structure. The video sequence consists of the succession of still pictures called frames.
Each frame is segmented into macroblocks (MB) of 16×16 pixels. A macroblock could be
further subdivided in smaller blocks up to 4×4 pixels.

H.264/AVC allows two frame encoding strategies: intra and inter. Intra (I) frames are
encoded exploiting spatial correlation. The already encoded neighboring macroblocks can be
used as a reference to predict the macroblock to be encoded. Inter predicted (P) frames exploit
the temporal correlation by referencing the MBs from previous frames (motion compensation)
contained in a buffer (reference list).

For I and P coding, given a macroblock to be encoded, the algorithm looks for its best
prediction, in time and in space, respectively. This predicted block is then subtracted from
the original one, obtaining the residual block. The residual block is transformed by means of a
modified discrete cosine transformation (DCT) [12], and quantized using a certain quantization
parameter (QP), obtaining the block of quantized coefficients called levels. The levels are then
zig-zag scanned and entropy encoded.

I frames are used to refresh the sequence. They enable random access and, in case of
error prone transmission channels, limit the propagation of errors in time. The set of frames
from an I frame up to the P frame preceding the next I frame is defined as group of picture
(GOP). Inter-coding requires much less associated information elements than intra-coding to
encode a frame. Therefore, for a given sequence, the resulting data rate depends strongly on
the GOP size and on the quantization parameter.

H.264/AVC is conceptually separated into a VCL (Video Coding Layer) and a NAL (Net-
work Abstraction Layer), as depicted in Fig. 1.

Control Data

Video Coding Layer

Data Partitioning

NALU NALUNALU

Network Abstraction Layer

Coded MB

Coded Slice

Fig. 1. H.264/AVC conceptual layers

The VCL is responsible for the core block-based hybrid coding functions, the NAL pro-
vides network friendliness by allowing the output bitstream to be transmitted over different
transport layer protocols. The encoded video data produced by the VCL is segmented by the
NAL in a stream of information units called NALU (Network Abstraction Layer Unit).

There are two types of NAL units: non-VCL and VCL NALUs. Non-VCL NALUs contain
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information associated to the sequence characteristics. To this category belong Sequence
Parameter Set (SPS) — defining profile, resolution and other information associated to the
whole sequence — and Picture Parameter Set (PPS) — containing type of entropy coding,
slice group and quantization properties. VCL NALUs contain the data associated to the video
slice, each VLC NALU refers to a non-VCL NALU as shown in Fig. 2.

SPS PPS
VIDEO
SLICE

VIDEO
SLICE

VIDEO
SLICE

Fig. 2. NAL unit sequence

The NAL functionalities are responsible for the arrangement of encoded MBs into a NALU.
Given a frame to be encoded, the NAL segments the frame in groups of MBs, called video
slices. The number of MBs contained in a slice depends on the proper encoding settings.

In a packet oriented environment, each packet contains one NALU. Fig. 3 shows the
encapsulation hierarchy of a video slice for a transmission over IP.

IP
header

UDP
header

RTP
header

NAL Unit

Fig. 3. NAL Unit encapsulation

Since the packets have fixed size, each NALU should fit the appropriate protocol packet
payload. Therefore, the number of MBs stored in a video slice depends on frame content and
on the encoding strategy. The MBs contained in a VCL NALU cannot contain references to
macroblocks of the same frame but belonging to a different slice. This is intended to limit
the impact of damaged or even not received packets on the quality of the decoded stream.

In this paper, we propose a syntax analysis performed on VCL NALUs, assuming that
non-VCL NALUs are not transmitted within the RTP payload, but provided in the SDP
(Session Description Protocol) ( [2], [3]).

3 H.264/AVC VCL NALUs Bitstream Structure

This section offers a brief overview of the H.264/AVC syntax, as produced by the JM (Joint
Model) reference software [13] ver. 10.2 in baseline profile and described in [1].

The standard [1] defines different binarization strategies for each of the information ele-
ments. Besides fixed length codes (FLC), several variable length coding strategies are used.
The residuals are encoded in the baseline profile by means of CAVLC. A variable length cod-
ing reduces the entropy of the source by assigning shorter codewords to the most frequent
symbols. This allows on one hand bit-rate saving but, on the other hand, it results to be
sensitive to decoding desynchronization.

Fig. 3 shows the structure of the considered VCL NALU payload, composed by a Slice
Header (SH) and the encoded macroblocks.

The slice header contains the basic characteristics of the slice, such as the slice index, the
frame index and the macroblock prediction type. Since the information contained within the
slice header determines the decoding of the contained macroblocks, an error in SH can make
the entire slice undecodable.
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Slice 
Header

MB K MB K+1 MB K+2 MB K+N...

Fig. 4. Structure of a VCL NAL unit

After the slice header, the VCL-NALU contains the encoded macroblocks belonging to
the slice. The VLC decoding is restarted at the beginning of each NALU since there is no
resynchronization point within a NALU. The encoded information elements associated to the
macroblock depend on the prediction type (inter or intra).

Without loss of information, we decided to subdivide the entropy coding strategies in the
following four groups.

• Exp-Golomb coded codewords — EG: The exponential Golomb code [14] (or simply
exp-Golomb code) is a parametric (k) universal code. H.264/AVC uses a special type of
the exp-Golomb codes, the parameter k is set to 0, also known as Elias-γ encoding [15].
Exp-Golomb encoded words are characterized by a regular logical structure consisting
of a predetermined code pattern without requirement of decoding tables. Each exp-
Golomb codeword embodies the following elements:

01 . . . 0M︸ ︷︷ ︸
M

1 b1 . . . bM︸ ︷︷ ︸
M

.

The first M zeros and the middle one are regarded as prefix while the following M bits
represent the info field. In the prefix is unary encoded the value of the length M. The
exp-Golomb field codeNum is obtained as

codeNum = 2M + info − 1.

The encoded value is derived from the codeNum depending on the chosen exp-Golomb
coding style (unsigned, signed and truncated). An error affecting the leading zeros or
the middle ’one’ affects the decoding by modifying the value of M, therefore causing
the misinterpretation of the codeword boundaries. desynchronization of the decoding
process. An error in the info field causes deviation of the decoded parameter value and
may affect the following elements, but does not cause desynchronization directly.

• CAVLC level codewords — VL: The context adaptive variable length coding style is
characteristic for encoding the levels. The levels are zig-zag ordered from the highest
to the lowest frequency, then they are encoded using a VLC-N procedure, where N is
a parameter depending on the value of the previously encoded levels. The standard
defines integer values of N in the range [0,6]. The first level of each macroblock is
encoded using the VLC-0, the resulting codeword has the following structure:

01 . . . 0M︸ ︷︷ ︸
M

1,

where the parameter M embodies both absolute value and sign of the level.
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For increasing encoded residual values, the procedure is adapted in order to assign
shorter codewords to the predicted level values. A codeword encoded with a VLC-N
(N > 0) procedure has the form:

01 . . . 0M︸ ︷︷ ︸
M

1 i1 . . . iN−1︸ ︷︷ ︸
N−1

s.

Similarly to exp-Golomb codes, the codeword starts with a sequence of M leading zeros
followed by a one, an info field consisting of N-1 bits and one explicit sign bit s. The
encoded value is then obtained as

(−1)s · ((M + 1) << (N − 1) + 1 + info),

where << represents the left bit-wise shift operation.
The VLC-0 codewords are highly susceptible to errors since the whole information is
contained in the leading zeros. For VLC-N the first M+1 bits are critical, errors lying
in the info field or sign do not cause desynchronization but affect only the decoded level.
Errors in the info field may also cause the use of a false VLC procedure for the next
decoded items.

• Tabled codewords — TE : This category includes the VLC words to be found in a look-
up table. H.264/AVC defines several VLC tables for different syntax elements (e.g. zero
runs) and contexts (e.g. number of remaining zeros to be encoded). Errors may result
in both deviation of the decoded value and decoding desynchronization.

4 Proposed Mechanism for Error Handling

In this section we discuss the effects of errors during the decoding of H.264/AVC encoded
datastreams.

The consequences of an error are twofold. We observe direct effects, since errors cause
the misinterpretation of the encoded parameter value and, therefore, affect the reconstruc-
tion of the considered macroblock. At the same time, bitstreams containing VLC-encoded
informations are prone to desynchronization. Due to errors, the decoder segments the stream
in an improper way, causing the following codewords to be misinterpreted aswell. The error
affecting a parameter in a given macroblock is therefore not necessarily limited to the affected
MB but can propagate until the end of the slice degrading a wide frame area (spatial error
propagation).

The spatial propagation is particularly critical in I frames. Even if the code associated to
a certain macroblock does not contain errors, each macroblock is usually spatially predicted,
referencing to the surrounding macroblocks. If one of the referencing MBs is uncorrectly
decoded, then the macroblock referencing to it will be flawed as well. In P frames the spatial
error propagation is caused by decoding desynchronization and by wrong motion prediction.

Besides spatial propagation, in case of errors we also experience temporal propagation. In
P frames each macroblock is predicted by means of motion compensation from a macroblock
belonging to a previous frame. If the reference picture area is distorted, the reconstructed
macroblock will result in distortion aswell. Such effect is called temporal error propagation.
Errors in I frame can propagate all over the GOP.
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In order to limit the error propagation in time and space, we propose a syntax check
mechanism capable of spotting errors during the decoding of the stream. The syntax check
limits in H.263, discussed in [8], are in H.264/AVC even more evident. H.264/AVC makes
extensive use of variable length coding and, additionally, differs from H.263 since it does not
provide synchronization words between group of blocks (GOB).

In the following we will discuss our proposed error detection mechanism and its application
to the encoded information elements of I and P frames as well as the slice header.

4.1 Syntax Check Rules

In order to suite the structure of the JM reference software we subdivided the macroblocks
decoding process into two main blocks, as depicted in Fig. 5. During the READ phase,
the raw bitstream is read and partitioned in codewords. During the DECODE phase these
codewords are interpreted as information elements (IE) and used to reconstruct the slice.

Since the length of the codewords is inferred by the bistream structure and by the expected
parameter, possible desyncronizations occur during the READ phase.

READ DECODE
Raw bistream Codewords

Decoded
elements

Fig. 5. Conceptual scheme of parameter decoding

We subdivide the possible decoding errors into three main categories, depending on their
characteristics:

• Illegal Codeword — IC: Arises when the codeword does not find correspondence
in the appropriate look-up table. IC occurs during the READ process for tabelled
codewords.

• Out of Range Codeword — OR: Results when the decoded value lies outside the
legal range. It appears during READ process for all types of codewords. If the decoded
parameter can only take values between [-K,K ], an error is produced if the absolute
value of the read parameter is greater than K.

• Contextual Error — CE: Occurs when the decoded word leads the decoder to illegal
actions. It arises during the DECODE phase for all types of encoded parameters.

The presented errors are not strictly related to current bitstream failures. They are rather
referred to the detectable anomalies, possibly caused by propagation of previously undetected
errors.

The three classes of errors are detected by our decoder implementation. Our error de-
tection mechanism cannot lead to false detections. However, it may happen that an error is
detected after its true occurrence.

4.2 Parameters Analysis

After describing the encoding techniques and detectable error categories, the characteristics
of the elements contained in VCL NALUs will be introduced.
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The parameters encoded in I slices, P slices and slice headers are presented as generated
in the encoding trace file of the JM 10.2. Apart from the slightly different nomenclature, they
correspond to the structure described in [1].

For each of the considered fields, the encoding style and the possible error category are
outlined. Additionally, where useful, a brief investigation of the error characteristics is pro-
vided.

I Frames

Parameter Name Enc. Err.
mb type EG OR
intra4x4 pred mode TE CE

Since the spatial prediction uses reference to the surrounding macroblocks, if they
are not available, not yet decoded or belonging to another slice, a contextual error
is produced.

intra chroma pred mode EG OR
coded block pattern EG OR
mb qp delta EG OR
Luma(Chroma) # c & tr.1s TE IC

The look-up table used to decode this value is not complete. The decoded code-
word could not find reference to any legal value.

Luma(Chroma) trailing ones sign EG
The signs of the trailing ones are fixed length encoded and do not influence any
of the following parameters. By means of syntax check it is not possible to detect
such errors.

Luma(Chroma) lev VL OR/CE
Decoded macroblock pixels can only take values lying in the range [0,255]. During
READ phase, values outside the bounds are immediately associated to errors.
During DECODE phase, the residuals are added to the predicted values and the
contextual check is performed. An extended range [−λ, 255 + λ] is considered
due to possible quantization offset. The value of λ depends on the quantization
parameter used

Luma(Chroma) totalrun TE IC
Luma(Chroma) run TE IC/OR

Depending on the number of remaining zeros, a VLC look-up table is chosen. For
more than six remaining zeros a single table covering the zero run range [0,14] is
used. Therefore, the decoder is exposed to out of range errors.

P Frame

Many of the parameters encoded in P frames are equivalent to those used to describe an I
frame. In the following only the parameters exclusive for P frames are discussed.

mb skip run EG OR/CE
The number of skipped macroblocks cannot be greater than the total number of
MBs in frame minus the number of the already decoded MBs.

sub mb type EG OR
ref idx l0 EG OR/CE
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The index of the reference frame cannot be greater than the actual reference
buffer size.

mvd l0 EG CE

Slice Header

first mb in slice EG OR
pic parameter set id EG OR/CE

The VCL-NALU cannot refere to a PPS index greater than the number of avail-
able PPSs.

slice type EG OR
frame num EG OR

Depending on the GOP structure an out of range error can be detected
pic order cnt lsb EG OR
slice qp delta EG OR

4.3 Error Handling

In this work we test two standard error handling strategies and compared them with our
syntax check based method. Since the focus of this work was given on the comparison of
error handling strategies and detection performance rather than on the concealment results,
detected errors are concealed by means of a zero motion temporal error concealment. It
simply replaces each corrupted macroblock in the current frame MBf (i, j) with the spatially
corresponding one in the previous frame MBf−1(i, j).

4.3.1 Straight Decoding — SD

The straight decoding represents the plain decoding strategy where the errors are not detected
and, therefore, not concealed. Since the reference software [13] cannot handle the error
categories described in Section 4.1, we modified the JM letting damaged bitstream to be
decoded. Each erroneous parameter value is replaced with the most similar legal one (for out
of range and illegal codewords) or to the safest one (for contextual error).

Fig. 8(a) shows a corrupted frame decoded using the error handling strategy SD. The
different slices are separated by means of the semitransparent dark lines. An error is inserted
into macroblock 32 (red square). Since no concealment routine is called, the rest of the slice
is decoded using desynchronized VLC codewords, causing wide artifacts until the end of the
slice.

4.3.2 Slice Level Concealment — SLC

This strategy relies on the checksum information provided by the lower layer protocols. For
wireless transmission the UDP protocol is used. The checksum information is calculated over
the entire NALU and its RTP header. Each error, regardless of its position and effect on the
decoding, results in the slice rejection and concealment. A block diagram of this approach is
depicted in Fig. 6

The same error considered in the previous handling strategy, produces a concealed frame
as shown in Fig. 8(b).
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Encoded video slice (VLC NALU) 
(frame f)

UDP 
checksum

Decoded video slice 
(frame f)

Decoder

Concealment

Fig. 6. Block scheme of the Slice Level Concealment handling

4.3.3 Macroblock Level Concealment — MBLC

Macroblock level concealment represents our proposal for an efficient error handling strategy.
The first presented strategy, SD, is not aware of errors and, therefore, an error propagates

spatially until the end of the slice. On the other hand, the SLC approach appears to be
exceedingly coarse. As shown in the previous discussion, some errors do not influence the
decoding process radically. Moreover, the slice rejection mechanism causes the discarding
of the error-free macroblocks preceding the error. These macroblocks can be correctly de-
coded. Therefore, in contrast to the slice level concealment, our error handling mechanism is
performed at macroblock level.

The proposed approach consists of the implementation of the presented error detection
mechanism based on the syntax analysis. We detect errors belonging to the classes defined
in Section 4.1. Once, during the decoding, one of these errors arises, the affected macroblock
and all the following (until the end of the slice) are concealed. This mechanism is depicted in
Fig. 7.

MB K+1MB K+2 MB K READ DECODE

CONTROL

CONCEALMENT

Encoded video sslice (VLC-NALU)

DECODER

Decoded MB

Fig. 7. Block scheme of the Macroblock Level Concealment handling

Fig. 8(c) displays the result of the MBLC applied to the frame affected by an error in
MB 32 like before. Using MBLC, the error is detected in macroblock 33 (green square), the
macroblocks from 33 up to the end of slice (MB 38) are concealed.

Further analysis shows that conceptual errors can arise also at the slice level. Due to desyn-
chronization, the code length can be too small or too large. If the bitstream is too short to
decode the whole slice, a concealment method is called for the remaining macroblocks. On the
other hand, the number of decoded macroblocks can exceed the number of macroblocks orig-
inally belonging to the slice. The slice header contains a parameter named first mb in slice,
indicating the index of the first macroblock contained within the slice. Under the assumption
of correctness of the slice header, if the decoded value is lower than the number of previously
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decoded macroblocks, the exceeding macroblocks are overwritten with the correct MB.

(a) SD (b) SLC (c) MBLC

Fig. 8. Corrupted frame decoding

5 Performance Analysis

To evaluate the performance of the three presented error handling methods, we performed
experiments with corrupted H.264/AVC encoded video sequences.

For our simulations we used the encoder and decoder of Joint Model H.264/AVC v.10.2 [13]
adapted to our needs by introducing the following additions:

• The decoder is able to read external text files containing error patterns and to modify
at NAL level the bits to be corrupted.

• If a read codeword or a decoded parameter assumes an illegal value, its value is restored
to the most similar legal one (SD). Additionally, two error flags, one at macroblock
level and one at slice level, are forced to one (and used for error handling at macroblock
level).

The sequence used for the simulations is ”Foreman” in QCIF (176×144 pixels) resolution.
The total length of the sequence is 400 frames, played at 30 frames per second. The sequence
was encoded in baseline profile, the selected GOP size was 10. The slicing mode was chosen
fixing the maximum number of bytes per slice to 700 bytes. Flexible macroblock ordering,
rate control and rate-distortion optimization were not used. The number of reference frames
for motion estimation was set to five. In order to analyze the behavior of the error handling
mechanism as a function of the compression rate, the sequences were encoded with different
quantization parameters, namely 20, 22, 24, 26, 28, and 30.

For all quantization parameters, we considered various bit error rates (BER) in the range
from 10−2 to 10−7. We generated 75 random error patterns for each BER.

We performed two kinds of analysis. The first concerns the resulting end-to-end quality.
The second investigation is performed over the detection capabilities of our proposed method.

5.1 End-to-End Quality Results

We simulated transmission over a binary symmetrical channel by inserting errors in the po-
sitions indicated by the error patterns. The degraded streams were decoded using the three
approaches described in Section 4.3.

The quality was expressed as the peak signal-to-noise ratio of the luminance component
(Y-PSNR). Given the luminance component DYf of a degraded sequence (at frame f) and
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the luminance component OYf of the original non compressed (non degraded) sequence, then
we calculate the mean square error (MSE) and Y-PSNR as

MSE(f) =
1

N · M
N∑

i=1

M∑
j=1

[OYf (i, j) − DYf (i, j)]2, (1)

Y-PSNR(f) = 10 · log10

2552

MSE(f)
, (2)

The resolution of the frame is N ×M , indexes i and j address particular luminance values
within the frames. For a given BER, the quality in Y-PSNR was averaged over the 400 frames
and over the 75 decoded sequences.

The comparison is performed over the quality performance of the three approaches together
with the error-free decoded sequence, used as reference. The results of the simulations are
plotted in Fig. 9.
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Fig. 9. Performance of the different error handling strategies

The results confirm the assumption made in Section 4.3. The proposed approach clearly
outperforms both classical approaches, with quality improvement up to 4 dB in the middle
of the considered BER range. For high BER ([10−2, 10−4]) the slice rejection mechanism
performs even worse than the straight decoding, since, statistically, one error is inserted in
each slice. For decreasing BER, SLC slightly outperforms the SD.

Remaining undetected errors are not concealed and, therefore, result in artifacts. These,
however, remain local if the error is detected in some successive information elements. A
graphical interpretation of the results, referred to the scenario described in Section 4.3, is
provided in the following.

Using the proposed approach, the decoding of a slice can be described by subdividing it
into three intervals as shown in Fig. 10:

CB

MB 22 MB 32 MB 33 MB 38

A

Fig. 10. Origination of macroblock level concealment delay

The figure considers only the slice affected by the error. The characteristics of each interval
are described in the following.
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• Interval A : MB [22,32), the slice is correctly decoded from its beginning (MB 22) up
to the error appearance (MB 32). These macroblocks were not affected by errors and
are thus correctly decoded.

• Interval B : MB [32,33), the error (appeared in MB 32) remains undetected until MB
33. These macroblocks were decoded incorrectly and result in artifacts in the decoded
frame.

• Interval C : MB [33,38], the macroblocks starting from MB 33, where the error was
detected, until the end of the slice (MB 38) are concealed.

The efficiency of the proposed approach in comparison to SLC and SD, lies in the interval
[22,32) and [33,38], respectively. SD, by discarding the whole slice, does not exploit the
macroblocks that were not affected by errors. This fraction of the slice can be significant. For
the considered error concealment method, the improvement is even higher in the sequences
with faster motion, resp. in the sequences with reduced frame rate, since in such cases the
performance of error concealment decreases. The macroblocks decoded in the interval B cause
errors with higher magnitude. However, assuming a small delay between error appearance
and error detection (cf. Section 5.2), the effect of the artifacts is limited. Using the proposed
method, only the macroblocks following the error detection are concealed. This clearly prevails
the straight decoding, where the macroblocks in the interval C are uncorrectly decoded,
resulting in the wide artifact shown in Fig. 8(a).

As final results, the average Y-PSNR over time (frame number) is shown in Fig. 11(a)
for the three investigated methods compared to the error-free decoded sequence. Averaging
was performed over sequences encoded with QP 28 and decoded with BER of 10−5. For the
same BER, Fig. 11(b) shows the histogram of the decoded frame quality for the considered
method. In both graphs the improvement brought by the utilization of the proposed method
can be observed.
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Fig. 11. Y-PSNR over frame number for SD, SLC, and MBLC.

The frames in the range [250,350] of the Foreman sequence are characterized by the fast
camera movement. In Fig. 11(a) we can distinguish the degradation of SLC performance in
this interval.
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5.2 Detection performance

Furthermore, we investigated the detection capabilities of the proposed method. The tests
were performed choosing a quantization parameter of 28 and inserting one error per slice
during the decoding.

The performance was tested separately for I and P frames. The I frames syntax presents
significant differences to the P frames.

The first main difference is the size of the code associated to a frame. Considering a
quantization parameter of 28 and slice dimension of 700 bytes, the majority of the P frames
are contained within one NALU, whereas an I frame usually consists of more than 4 slices.
This reflects on different effects of errors propagation and concealment, since in P frames the
end of the slice usually corresponds to the end of the frame. This also explains why the SLC
approach performs poorly for P frames.

Additionally, the parameters encoded in I frames are usually more sensitive to errors,
improving the performance of our detection mechanism. Bit errors in P frames, the parameters
of which consist mainly of motion vectors, yield less frequently to desynchronization.

For both frame types we first calculate the detection probability. More than 60% of the
errors inserted in I frame are detected, for P frames the percentage is 47 %. The following
discussion will help the understanding of these values.

For the detected errors we calculate the detection delay, i.e. the distance, expressed in
number of macroblocks between the error appearance and the error detection. Fig. 12 shows
the histogram for I and P frames.
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Fig. 12. Detected errors: detection distance

As expected, the range of detection distance for I frames is much smaller than the one
for P frames. For I frames we obtained excellent results. The average detection delay is 1.39
MB and over 85% of the errors are detected within 2 MBs. The interval B in Fig. 7, where
the macroblocks are incorrectly decoded, is therefore extremely narrow. For P frames, the
average detection delay is bigger: 15 MBs.

For the undetected errors we performed a different analysis. We measured the distance,
expressed in macroblocks, between the error appearance and the end of the slice. Besides
undetectable errors, errors that cannot be detected at all by our detection approach, we
assumed that missed error detections also occur if the errors arise near to the end of the slice
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and, therefore, the decoder reaches the end of the slice before the error could be detected.
Fig. 13 shows the results of these measurements.
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Fig. 13. Undetected errors: distance between error appearance and end of slice

The obtained results appear to be fully compatible with our assumption. For both I and
P frames we observe peaks of the histogram for distances smaller than the average detection
delays. These missed detections can be reasonably attributed to the errors arising near the
end of the slice. In the remaining range the histogram is uniformly distributed, representing
the undetectable errors. For I frame we observe the decreasing of the histogram for increasing
distance. This effect could be justified considering that in the simulations scenario an I frame
(99 MBs) consists, in average, of five slices. Bigger I slices occur rarely, therefore the number
of occurrence of I slices decrease with increasing slice dimension (in MB), as well as the
number of undetected errors.

We conclude the performance analysis by examining the effects of undetected errors. Since
undetected errors result in artifacts, we observed their impact on the quality measured in
terms of MSE of such missed detection. The mean square error is calculated with respect to
the same frame index belonging to a error-free decoded stream. In Fig. 14 we plotted the
resulting MSE as a function of the distance between the error appearance and the end of the
slice.

The obtained results are significant. The graphs does not show any direct proportionality
between the distance and the resulting MSE. For increasing distance between the error oc-
currence and the end of the slice the resulting mean square error remains roughly constant.
This effect is clearly notable for P frames (Fig. 14(b)). For I frames we explain the decreasing
MSE density for increasing distance as for the behavior in Fig. 13(a). We can also measure
the highest MSE peaks for undetected errors appearing near the end of the slice. These are
caused by errors occurring near the end of the slice and, therefore, not detectable because of
the detection distance as discussed previously.

We can therefore conclude that the errors that cannot be detected by the proposed algo-
rithm are the one that does not cause decoding desynchronization. Moreover, we can infer
that they do not lead to significant quality degradation.



L. Superiori, O. Nemethova, and M. Rupp 329

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
x 10

4

Distance [MB]

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 
Measured MSE
Average MSE

(a) I frames

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Distance [MB]

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 
Measured MSE
Average MSE

(b) P frames

Fig. 14. Undetected errors: resulting MSE

6 Conclusions

Three possible error handling strategies are compared in this paper: common packet discard
approach, strategy based on straight decoding of H.264/AVC and the proposed syntax analysis
based error detection. The proposed syntax analysis based detection method performs better
than the packet discard strategy. Since the syntax analysis does not require much complexity,
we can conclude that it is beneficial to implement as an alternative to the widely adopted
packet discard method.
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