
Journal of Mobile Multimedia, Vol. 3, No. 4 (2007) 347–370
c© Rinton Press

DUAL-EXECUTION MODE PROCESSOR ARCHITECTURE
FOR EMBEDDED APPLICATIONS

MD. MUSFIQUZZAMAN AKANDA, **BEN A. ABDERAZEK, and MASAHIRO SOWA

Network Computing Laboratory, Graduate School of Information Systems,
National University of Electro-communications, Tokyo, Japan

** Adaptive Systems Laboratory, The University of Aizu, Aizu-Wakamatsu, Japan
akanda@sowa.is.uec.ac.jp

Received June 18, 2007
Revised December 15, 2007

This paper presents a novel embedded 32-bit processor architecture targeted for mobile
and embedded applications. The processor supports Queue and Stack based program-
ming models in a single simple core. The design focuses on the ability to efficiently
execute Queue programs and also to support Stack programs without a considerable
increase in hardware to the base Queue architecture.
A prototype implementation of the processor is produced by synthesizing the high level
model for a target FPGA device. We present the architecture description and design
results in a fair amount of details. From the design and evaluation results, the QSP32
core efficiently executes both Queue and Stack based programs and achieves on average
about 65MHz speed. In addition, when compared to the base single-mode architecture
(PQP), the QSP32 core requires only about 2.54% additional hardware.

Keywords: Dual-Execution Mode; Queue Computation; Dynamic Switching Mechanism;

Embedded Core.
Communicated by : I. Ibrahim & L. Yang

1 Introduction

Mobile processors are used in numerous embedded systems, including laptops, personal digital
organizers, wearable computers, cellular phones, mobile Internet terminals, digital cameras,
digital cam-coders, smart cards, and sensor networks nodes. Although these systems differ in
terms of their communication and computation requirements, they share the common need
for low power, security and small memory footprint. There are many efforts in architecture
design that address these problems. Thus, computer architects are continuously challenged to
bring innovations to design microarchitectures, instruction sets, and compilers in order to keep
the balance between performance, complexity, and power. Several processors have achieved
success as two or four-way Superscalar implementations. However, adding more functional
units is not useful if the rest of the processor is not capable of supplying those functional
units with continuous and independent instructions to perform.
The desire for a simple, compatible, and fast machine motivated us to look for alternatives.
Our research was inspired by several original ideas [28, 29, 30], which proposed using the
Queue (first-in-first-out memory) instead of registers (random access register) as intermedi-
ate storage for operands. In [31] it is argued that a Queue machine application can be easily

347

348 Dual-Execution Mode Processor Architecture For Embedded Applications

mapped to an appropriate hardware. However, no real hardware was proposed or designed
and only theoretical techniques were proposed to virtualize the hardware.
In [2, 3], we proposed a novel high performance Parallel Queue processor architecture based
on produced order Queue instruction set architecture. The key ideas of the Queue comput-
ing model are the operands and results manipulation schemes. The Queue execution model
stores intermediate results into a circular Queue-register (QREG). A given instruction implic-
itly reads its first operand from the head of the QREG, its second operand from a location
explicitly addressed with an offset from the first operand location. The computed result is
finally written into the QREG at a position pointed to a Queue-tail pointer. As a result,
Queue based instruction set processor architectures have several promising advantages over
register-based machines. First, programs written for Queue based computation have higher
ILP because they are constructed using the breadth-first algorithm from a directed acyclic
graph [10, 28]. Second, instructions are shorter because they do not need to specify operands
explicitly [2]. That is, data is implicitly taken from the head of operand Queue and the result
is implicitly written at the tail of the operand Queue. This makes instruction length shorter
and independent from the actual number of physical Queue words. Finally, Queue based
instructions are free from false dependencies. This eliminates the need for register renaming
[10].
Queue execution model (Queue-EM) is analogous to the conventional Stack execution model
(Stack-EM), which is suitable for some special embedded applications. It is well known that,
by implicitly referring to operands, Stack code is often shorter than general-purpose register
code [16]. Moreover, since all working parameters are always present on the Stack, proce-
dure call overhead is minimal, requiring no memory cycles for parameter passing. Another
advantage of Stack execution model is that on interrupts there is no need to save registers.
Thus interrupt response latencies are low, making Stack architectures ideal for real-time and
embedded systems [16]. The Queue-EM has operations in its instruction set which implic-
itly reference an operand Queue (OPQ), just as a Stack-EM has operation which implicitly
reference an operand Stack (OPS). In Stack-EM, implicitly referenced operands are retrieved
from the top of OPS and results are returned back to the OPS (refer to Fig. 1). Therefore,
operands and results manipulation schemes in both models (Queue-EM and Stack-EM) make
the internal instruction processing and hardware modules quite similar in functionality and
complexity.
To boost processor hardware usability, compatibility, and reduction of design time, we pro-
pose a novel 32-bit dual-mode architecture (QSP32), which efficiently supports Queue and
Stack based programs. In addition, the QSP32 core implements QCaEXT scheme - a novel
technique used to extend immediate values and memory instruction displacements that were
otherwise not representable because of bit-width constraints in the original PQP architecture.
We will show later that for supporting Stack based programs, only little hardware is added
to the base Queue-EM architecture (PQP) without performance degradation.
An important aspect of developing any new architecture is verification which usually requires
complicated and lengthy software simulation of an emulated model. An event-based or cy-
cle level simulation becomes increasingly inadequate to verify a significant execution trace
for a given problem [1, 17, 18]. These software-based simulation approaches are not capa-
ble of predicting all micro-architectural issues related to final physical design. Therefore, we

Md. M. Akanda, B.A. Abderazek, and M. Sowa 349

d7

d6

+

Stac k

ALU

(b)

d7

d6

d5

d4

d3

d2

d1

d0

T OP

points to (T OP-1) pointer

r7 r6 r5 r4 r3 r2 r1 r0

d7 d6 d5 d4 d3 d2 d1 d0

+

d0d1

ALU

Circ ular Queue

(a)

QT QH

Queue operation: add Stack operation: add

Fig. 1. Operands and results manipulation schemes. (a) Queue (FIFO) computing, (b) Stack
(LIFO) Computing.

consider prototyping-based emulation that substitutes real time hardware emulation for slow
simulator-based execution. What is important for us is to investigate how to describe the
novel QSP32 architecture to achieve good synthesis results for FPGA implementation with
sufficient performance to support realistic evaluation.
Using a hardware description language, we have created the synthesizable model of the QSP32
core. A prototype implementation is produced by synthesizing the high-level model for the
Stratix FPGA device [7, 9]. As a result, we were able to evaluate relative circuit area, speed,
and power metrics.
The rest of this paper is structured as follows: Section 2 gives the related work. Section
3 gives the Queue computation model overview. Section 4 gives the embedded application
development requirements. In section 5 we give the details of QSP32 system architecture. Sec-
tion 6 gives the design approach and pipeline control scheme. Section 7 presents the QSP32
evaluation results and discussion. Finally, the last section gives our concluding remarks.

2 Previous Work

During the last years several works have been done in developing different kinds of hybrid
processor cores. The ARM926EJ-S [19] is a synthesizable 32bit core which supports hybrid
instruction sets. It is an integration of three instruction set architectures: namely the 32bit
ARM instruction set, 16bit ThumbR instruction set, and Java bytecode. One part of the
Java bytecode is realized in hardware and the remaining complex ones are executed by special
software emulation [20]. In [23], the authors implemented a processor core where two virtual
processors share one data path. It has two programming models: a Java model and a RISC
model. The idea comes from the common instruction (approximately 50%) when compared
with Java’s core binary instructions and a standard RISC instruction set.
The earliest work about Queue computation idea was proposed in [28]. At the execution
stage, each instruction removes the required number of operands from the front of the Queue,
performs computation and stores the result back into the operand Queue at a specified offsets
from the front of the Queue. A major problem with the above indexed queue architecture
is that it requires the relocation of a potentially large number of operands. In addition, the
operand Queue within the above architecture is implemented in the main memory.

350 Dual-Execution Mode Processor Architecture For Embedded Applications

To overcome the drawbacks of the indexed Queue machine, we proposed in [2, 3, 10] a produced
order parallel Queue processor architecture. In this scheme, data produced by instructions are
inserted in circular QREG in their executions order and can be reused by other instructions.
As a result, performance was highly improved and hardware complexity was decreased. In
[3], a new processor architecture based on circular queue register was proposed and designed.
There are also a number of microprocessors which implement a Stack directly in hardware
[16, 22]. In addition, most of the Stack machines reported previously in the literature have
some sort of Stack cache on the processor which serves as the architectural analogue of the
register file in conventional register machines. Although the Stack based model has some
drawbacks, there are various applications which are based on Stack architecture, such as Java
procesors [21, 24].
This research proposes architecture and design evaluation of a novel dual-mode processor
(QSP32), which supports both Queue and Stack based programming models in a single and
simple core. In addition to the dual-mode execution support, the QSP32 core also implements
QCaEXT scheme - a novel technique used to extend immediate values and memory instruction
displacements that were otherwise not representable because of bit-width constraints in our
original Queue (PQP) architecture. We are not aware of any previous research work dealing
with both Produced order Queue computation and dual-mode execution support on a single
embedded core. To our knowledge, we are the first research group to do so.

3 Queue Computing Overview

The produced order Queue computing model uses a circular QREG (also named operand
Queue) instead of random access registers to store intermediate results. A datum is inserted
in the QREG in produced order scheme and can be reused. This feature has profound im-
plications in areas of parallel execution, program compactness, hardware simplicity, and high
execution speed [2, 3]. This section gives a brief overview of the produced order Queue com-
putation model. We show in Fig. 2 (a) a sample data flow graph for the expressions: e = ab/c

and f = ab(c + d). A datum is loaded with load instruction (ld), computed with multiply
(*), add (+), and divide (/) instructions. The result is stored in the data memory with store
instruction (st). In Fig. 2(a), producer and consumer nodes are shown. For example, A2 is a
producer node and A4 is a consumer node (A4 is also a producer for m6 node). The instruc-
tion sequence for the Queue execution model is correctly generated when we traverse the data
flow graph (shown in Fig. 2(a)) from left to right and from the highest to the lowest level.
In Fig. 2(b), the augmented data flow graph that can be correctly executed in the proposed
Queue execution model is given. The generated instruction sequence from the augmented

graph is shown in Fig. 2 (c) and the contents of the QREG at each execution stage is shown
in Fig. 2 (d). A special register, called queue head pointer (QH), points to the first datum
in the QREG. Another pointer, named queue tail pointer (QT), points to the location of the
QREG in which the result datum is stored. Immediately after using datum, the QH is incre-
mented so that it points to a datum for the next instruction. QT is also incremented after the
result is stored. The four load instructions load in parallel a, b, c, and d data and place them
into the QREG. At this state, QH point to datum a and the QT points to an empty location
as shown in Fig. 2 (d) (State 1). The fifth and sixth instructions are also executed in parallel.
The mul refers a and b then inserts the result (a ∗ b) into the QREG. QH is incremented by

Md. M. Akanda, B.A. Abderazek, and M. Sowa 351

ld

*

ldld

ld

d +

r *
A3

A2

A1

m 1 m 2 m 3

d

st

q1 m 4

q2 q3

ld

/ s t

st

e f

q5 A4

A3 m 6

m 5

(a)

ld

*

ldld ld

+

/ *

st st

e f

m 5 m 6

A 3 A 4

A 1 A 2

m 1 m 2 m 3 m 4

(b)

a b c d a b c d

ld a
ld b
ld c
ld d
mu l
a d d
d iv -2
mu l -1
st e
st f

lo a d va ria b le " a "
lo a d va ria b le " b "
lo a d va ria b le " c"
lo a d va ria b le " d "
mu ltip ly th e f irst two va ria b les
f ro m th e f ro n t o f th e q u eu e
d iv id e th e en try p o in ted b y Q H b y th e va ria b le " c"
wh ich is lo ca ted a t a n eg a tive o f f se ts " -2 " f ro m Q T
sto re (a b /c) in to " e"
sto re (a * b /(c+d)) in to " f "

��
QH QT

��a b c d

QH QT

��
a b c d a*b c+d

QH QTld a, ld b, ld c, ld d

initial state

mul, add

��a b c d a*b c+d ab/c ab*(c+d)

QH QT

div -2, mul-1

��a b c d a*b c+d ab/c ab*(c+d)

st e, st f

QH QT

S ta te 0

S ta te 1

S ta te 2

S ta te 3

S ta te 4

(c)

(d)

Fig. 2. Sample data flow graph and circular Queue-register contents for the expressions: e = ab/c
and f = ab(c + d). (a) Original sample program, (b) Translated (augmented) sample program, (c)
Generated instructions sequence, (d) Circular Queue-register content at each execution state.

352 Dual-Execution Mode Processor Architecture For Embedded Applications

two and the QT is incremented by one. The add refers c and d then inserts (c + d) into the
QREG. At this state, the QH and QT are incremented as shown in Fig. 2 (d) (State 2). The
seventh instruction (div-2) divides the datum pointed to by QH (in this case a ∗ b) by the
datum located at “-2”, negative offset, from QH (in this case c). The QH is incremented and
points to (c+d). The eighth instruction multiplies the data pointed by QH (in this case c+d)
with the data located at “-1” from QH (in this case a ∗ b). After parallel execution of these
two instructions, the QREG content becomes as shown in Fig. 2 (d) (State 3). The last two
instructions store the result back in the data memory. Since the QREG becomes empty, QH,
and QT point to the same empty location (State 4).

4 QSP32 Architecture for Mobile and Embedded Applications

The QSP32 is a dual-mode processor core that offers simple and efficient execution engine
for embedded applications. A key design requirement for the QSP32 core was a modular
structure to facilitate experiments with a number of extensions for different application areas.
Source code modification should be restricted to those modules whose functionality is en-
hanced. Typically, instruction set extensions involves modification of the instruction decode
and execution stage modules. The modular structure provides a flexible framework with well-
designed interfaces when changes to the processor architecture are to be made. The QSP32
processor provides a mechanism to add or modify functionality without major redesign efforts.
This is achieved with a modular design style with well-designed interfaces between modules
and the use of a flexible and extensible pipeline control design. We describe the processor at
a high abstraction level. As a result, precise and detailed control on every element is easily
achieved without losing the visibility of interrelations with the rest of the elements in the
core. Logic synthesis, then, maps high-level operators to module generators, which can select
different implementation styles, based on timing, and area optimizations constraints.

4.1 Power Effective Mobile QSP32 Core

Mobile processors share a number of common characteristics. Most importantly, processors
that emphasize time-to-market, cost, and low power. Different from desktop processors,
just-in-time computing takes precedence over the traditional maximum performance metric.
The QSP32 core design approach takes into account performance, power consumption, and
dissipation considerations early in the design cycle. It maintains a power-centric focus across
all levels of design abstraction. In QSP32 core, all instructions are fixed format 16-bit words
with minimal decoding effort. As a result, Queue programs are much smaller than either RISC
or CISC programs. Programs sizes for our architecture are found in our earlier research work,
60% smaller than programs for RISC (SPARC) codes [10]. The importance of the system
memory size translates to an emphasis on code size since data is dictated by application.
Larger memories mean more power and optimization power is often critical in embedded
applications. In addition, instructions specify operands implicitly. This design decision makes
instructions independent from the actual number of physical Queue words (Queue-register).
Thus, instructions are free from false dependencies. This feature eliminates the need for
register renaming unit, which consumes about 4% of the overall on-chip power in conventional
RISC processors [4, 5].

Md. M. Akanda, B.A. Abderazek, and M. Sowa 353

add, addu, sub, subo, subu, subou, and,
or, neg, not, inc , m ul, m ulu, div,divu,
divuo, m od, m odo, m odu, m uduo

ALU
sru, s lu, s r, rol, ror, c om ,
c om u, c om c , c om c u,inc

setHH, setHL, setLH,
setLL, ldil, setr, m v, dup

S hift & C o mp are S ET

opcode n dis

1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1

add 1 0000111mnemonic

binary

operation
SSU(SRC1adr) +
SSU(SRC1adr + 00000111)
=> SSU(DEST addr)

opcode src0 src1

1 1 0 0 0 1 0 1 0 0 1 0 0 1 1 1

com 0010 0111

COMPARE SSU(0010) to
 SSU(0111) => SSU(DEST addr)

opcode value

0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1

ldil 00100111

00100111 => SSU(DEST addr)
// the Value is stored in [7:0]

bge, jum p, c all, rfc ,
b,beq, blt, ble,bgt

s tb, s ts , s tw , ldb, ldbu,
lds , ldsu, ldw , ldw u

Branch Lo ad /S to re

opcode target

0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 1

call 0 10100111

[a0 +1 0 1 0 0 1 1 1] => P C

opcode offset

0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1

stw 0 10100111

SSU (SRC1 adr) => M E M (a0 +1 0 1 0 0 1 1 1)

mnemonic

binary

operation

(d)

(a) (b) (c)

(e)

Fig. 3. Instruction format with several examples in Queue-EM mode: (a)add instruction,
(b)compare instruction (com), (c)load immediate (ldil) instruction, (d)call instruction, and
(e)store word (stw) instruction.

354 Dual-Execution Mode Processor Architecture For Embedded Applications

4.2 Reduced-Bit Instruction Set Design Consideration

The main issue in the design of general or even specific applications is the evaluation of the
instruction set architecture. Adapting an instruction set to a particular problem is a difficult
task, as many unknown issues have to be explored. Due to the many factors involved in
performance optimizations, suggested optimization solutions often minimize only the number
of instructions necessary to solve a problem, or at best the number of cycles. Our design ap-
proaches are based on software evaluation to establish cycle count, and synthesis to establish
speed and chip area. Software evaluation was performed using a cycle accurate instruction set
simulator described in the C programming language for Queue based instruction set architec-
ture [2]. For hardware evaluation, we have performed logic synthesis to an FPGA technology
for implementation information (discussed later).
The QSP32 processor uses a single shared instruction set. All instructions are 16-bit wide
allowing simple instruction fetch, decode, and facilitating pipelining of the processor. The
instruction format with several examples is illustrated in Fig. 3(a-e) with an example for each
format.
In the current version of our implementation, we target the QSP32 core for medium-scale

size applications, where our concerns focus on the ability to execute codes (Queue and Stack
based applications) on a processor core with small die size and low power consumption charac-
teristics when compared to other embedded 32-bit architectures. However, the short instruc-
tions may limit the memory addressing space as only 8-bits are left for displacement (6-bit)
and base address (2-bit - 00:a0/d0, 01:a1/d1, 10:a2/d2, and 11:a3/d3). To cope with this
shortage, QSP32 core implements QCaEXT technique, which uses a special hardware with a
“covop” instruction that extends load and store instructions displacements and also extends
immediate values if necessarily. The QSP32/PQP compiler [32] outputs full addresses and
full constants and it is the duty of the QSP32 assembler to detects and inserts a “covop” in-
struction whenever an address or a constant exceeds the limit imposed by the instruction’s
field sizes. Conditional branches are handled in a particular way since the compiler does
not handle target addresses, instead it generates target labels. When the assembler detects
a target label, it looks if the label has been previously read and fills the instruction with
the corresponding value and “covop” instruction if needed. There is a back-patch pass in
the assembler to resolve all missing forward referenced instructions [32]. Fig. 4 (b) shows
an assemby program example after compilation of a sample C program shown in Fig. 4 (a).
Fig. 4 (c) shows the assembly program output with “covop” instructions. For example, the
instruction ld 4000(d) (in Fig. 4(b), first line) has long displacement value “4000” (in binary
111110100000), which can not fit in one single QSP32 instruction. Therefore, “covop” in-
struction is inserted to solve this shortage (Fig. 4(c)). For the 6-bit displacement value, the
ld instruction (Fig. 4(c), second line) takes the lowest 6-bit (100000 (32 in decimal)) from the
original displacement value (111110100000) and the remaining bits (111110 (62 in decimal))
of the dispalcement are the operand value of the “covop” instruction (Fig. 4(c), first line).
The “covop” instruction is coalesced with the immediately following instruction to generate
a single QSP32 instruction at decode time (discussed later). This technique ensures that
coalescing does not introduce pipeline delays or increase cycle time.

Md. M. Akanda, B.A. Abderazek, and M. Sowa 355

int main (v oid)
 {
 int a[1000];
 int i,x,y;

 if (y = =1) {
 x = a[i] ;
 }
 else {
 x = (x*2) +1000;
 }
}

main: ld 4000(d)
 ldil 1 ;load immediate 1 to QT
 ceq ;compare QH and QH+1 v alue
 bt L1 and check equality
L0: ld 4008 (d)
 ldi 4 ;load immediate 1 to QT
 mv rq ;mov e v alue f rom register to QT
 ldil 0 ;load immediate 0 to QT
 add ;add QH and QH+1 v alue and send
 mul the result to QT
 add
 st 4004 (d)
 Jump L2
L1: ld 4004 (d)
 ldil 2
 mul ;multiply QH and QH+1 v alue
 ldil 1000 and send the result to QT
 add
 st 4004(d)
L2: mv rq
 ld 4028 (d)
 ld 4024 (d)
 add
 jump 10(a)

main: cov op 62
 ld 32(d)
 ldil 1
 ceq
 bt L1
L0: cov op 15
 ld 62 (d)
 ldi 40
 mv rq
 ldil 0
 add
 mul
 add
 cov op 62
 st 36 (d)
 Jump L2
L1: cov op 62
 ld 36 (d)
 ldil 2
 mul
 cov op 15
 ldil 40
 add
 cov op 62
 st 36(d)
L2: mv rq
 cov op 62
 ld 60(d)
 cov op 62
 ld 56(d)
 add
 jump 10(a)

(a) (b) (c)

Fig. 4. (a) Sample C program, (b) QSP32/PQP Compiler generated assembly program without
“covop” instruction, (c) QSP32/PQP Compiler generated assembly program with “covop” in-
struction.

356 Dual-Execution Mode Processor Architecture For Embedded Applications

Dec ode Unit
(DU)

QS Com putation
Unit (QSCU)

Fetc h Unit (FU)

Shared
Storage

Unit
(SSU)

Issue Unit (IU)

E X E

A ddress M ult ip lex er

D
A

T
A

 B
U

S

A
D

D
R

E
SS

 B
U

S

R/W A dr
PROG/DAT

Mem ory

W RT

ADR

SW

DSM

4 ins t

4 ins t

4 ins t

4 ins t
W RT

RD

Fig. 5. QSP32 architecture block diagram. During RTL description, the core is broken into small
and manageable modules using modular approach structure for easy verification, debugging, and
modification.

Md. M. Akanda, B.A. Abderazek, and M. Sowa 357

5 System Architecture

5.1 Pipeline Structure

The block diagram of the proposed architecture is shown in Fig. 5. The execution pipeline
operates in five pipeline stages combined with four pipeline buffers to smooth the flow on
instructions through the pipeline. Below, we describe the salient characteristics of the core.
Instruction Fetch (FU): The fetch unit fetches instructions from the program memory and in-
serts them into a fetch buffer. In Queue-EM mode, the FU fetches four instructions per cycle.
However, for Stack-EM mode it fetches one instruction per cycle. A special fetch mechanism
is used to update the fetch counter according to the mode being processed.
Instruction Decode (DU): Decodes instructions opcodes and operands. The decode unit (DU)
has 4 decode circuits (DCs) and 1 Mode-Selector-Register (MS). The MS is set to “0” or
“1” according to the type of execution modes.
Queue-Stack Computing Unit (QSCU): The processor’s computation unit reads information
from the DU and computes each instruction’s sources and destination locations.
Instructions Issue (IU): The issue stage issues ready instructions to the execution unit. Mem-
ory and register dependencies are checked in this unit/stage. This unit also checks the avail-
ability of the sources and destination addresses.
Execution Unit (EXE): The EXE unit executes issued instructions and sends the results to
the Shared Storage Unit (SSU) or data memory. It consists of four arithmetic logical units
(ALU), four Set-register units, four Load/Store units and one Branch unit.
Write-Back Unit : The write back unit writes the result back to the PROG/DATA memory
or the SSU.

operand_ out

SW (MS)

opcode_ in

operand_ in

ms_we

IMms_set
opcode_ out

consumed_ data

produced_ data
8

8

1

1

1

Q
or
S

0 /QEM

1/SEM

SW

inst

(a)

Dec ode
Buffer
(DB)

 LEGEND
SW
M S
ms _ s et
o p co ed _ in
o p eran d _ in
QEM
SEM
in s t
ms _ we

Dec ode
Circ uit

Queue-Stac k
Com puting

Unit

Switch in g circu it
M o d e s electo r
M o d e s electo r p o rt
Op co d e in p u t p o rt
Op eran d in p u t p o rt
Qu eu e mo d e execu tio n
Stack md o e execu tio n
In s tru ctio n
M o d e s electo r write en ab le

:
:
:
:
:
:
:
:
:

Fig. 6. Mode-Switching mechanism and its interfacing block diagram.

QSP32 uses a simple hardware mechanism (DSM) to dynamically switch between execution

358 Dual-Execution Mode Processor Architecture For Embedded Applications

models. The block diagram of the DSM is shown in Fig. 6. It consists of a switching circuitry
(SW) and a dynamic computation unit [6]. The DSM detects the execution mode by decoding
a special field, named “switch” instruction, within each instruction. After it detects the mode,
it inserts a mode-bit for all instructions between the current and the next “switch” instruction.

DU

62
CVP

o p co d e,
o p eran d ,
cr,p r,im

IU

o p co d e

o p eran d

QSCU

4 0 0 0

8

8

8

14
opc ode8

reg_id2

disp_value
ld

0

CO N C

.

.

.

.

co v o p 6 2

ld 3 2 (d0)

16

16

Fetch Bu ffer

FU

ISSU E
L O GICQT

8
QT8

1 1

Fig. 7. Address extension mechanism.

As we mentioned, the QSP32 core uses QCaEXT scheme for extending memory displacement
and immediate values. Fig. 7 shows the main circuit which implements “covop” instruction
for extending memory displacement. The mechanism loads the displacement value in the
register CVP (62 in this example). The value in the CVP register is then concatenated with
the displacement value of the load instruction (32) at the issue stage and saved in a special
register (CONC). Finally, the extended memory displacement (4000) is sent to the execution
unit for effective address calculation.

5.2 Dynamic Calculation of Source and Destination Addresses

In Queue-EM execution mode, each instruction needs to know its QH and QT values. The
above values are easy to obtain in serial Queue execution model, since the QH is always
used to fetch instructions from the operand Queue and the QT is always used to store the
result of the computation into the tail of the operand Queue. However, in produced order
parallel execution, which is supported by the QSP32 processor, the values for QH and QT
are calculated at run time.
Fig. 8(a) shows the hardware mechanism used for calculating source1 (first operand), source2
(second operand), and destination (result) addresses for current instruction. The computing
unit keeps the current value of the QH and QT pointers. Four instructions arrive at this unit
in each cycle. The first instruction uses the current QH (QH(n − 1) in the figure) and QT
(QT (n−1)) values for source1 and destination addresses respectively. As shown in Fig. 8(a),
the source2 of a given instruction is the first calculated by adding the source1 address to the
displacement (OFFSET (n − 1)).
Fig. 9(a) shows the the pointers-update mechanism of current QH and QT values for next
instruction. The number of consumed data (CN) field (8-bit) is added to the current QH

Md. M. Akanda, B.A. Abderazek, and M. Sowa 359

(b)

-

TOP

1

SR C1

SR C2

- +

P N

CN
DE ST

T OP : c urrent top poiner value
DEST : des tination loc ation
SRC1 : sourc e1 address
SRC2 : sourc e2 address

+

QH(n-1)

OFFSET (n-1)

OFFSET : pos tive/negative integer value that
 indic ates the loc ation of SRC2(n-1)
 from QH(n-1)
QT n : queue tail value of ins truc tion n
DEST n : des tination loc ation of ins truc tion n
SRC1(n-1) : sourc e address 1 of ins truc tion (n-1)
SRC2(n-1) : sourc e address 2 of ins truc tion (n-1)

(a)

QT (n-1)

SRC1(n-1)

SRC2(n-1)

DEST (n-1)

+

QHn

OFFSET (n)

QT n

SRC1n

SRC2n

DEST n

Fig. 8. Address calculation mechanism for sources and destination: (a) Queue-EM computing
circuit; (b) Stack-EM computing circuit.

value (QH0) to find the next QH (NQH), and the number of produced data (PN) field (8-
bit) is added to the current QT value (QT0) to find the next QT (NQT). The other three
instructions sources and destination addresses are calculated similarly. In Stack-EM mode, the
execution is based on Stack-EM model. The hardware used for calculating source1, source2
and destination addresses is shown in Fig. 8(b). It is the same hardware used for calculation
of operands in Queue-EM mode.
The computing unit keeps the current value of the Stack pointer (TOP). One instruction
arrives to the QSCU unit each cycle. The source1 address is popped from the operand stack
pointed by the current TOP pointer value. The source2 is calculated by subtracting 1 from
current TOP pointer value. The number of consumed data (CN) is subtracted from the
current TOP value and the number of produce data (PN) is added for finding the result
address (DEST). Fig. 9(b) shows the hardware mechanism used for calculating the result
address for current instruction. The destination address of current instruction points to the
next TOP pointer value (NTP), which will be used for next instruction’s source1 address.
Fig. 10 (a) and (b) show two examples of source and destination address calculations for both
Queue-EM and Stack-EM execution models respectively. For simplicity, only two instructions
“add -1” and “mul -1” are shown in the fetch buffer (FB) as shown in Fig. 10 (a). The “MS” is
the instruction-mode-selector register and is set to “0” which means that the QSP32 core is
in Queue-EM mode. The DU unit decodes instructions and calculates several fields for each
instruction. As shown in Fig. 10 (a), the fields are: IM (instruction mode), OP (opcode), OPR
(operand), CN (consumed number), and PN (produced number). For this example the values
of IM, OP, OPR, CN, and PN are: 0, add,−1, 1, 1 for the first instruction (add − 1). The

360 Dual-Execution Mode Processor Architecture For Embedded Applications

+ +

Q H 0 Q T 0

+ +

Q H 1 Q T 1

PN

PN

CN

CN

QHn+1

QT n+1

NQT
NQH

PN : num ber of produc ed data
CN : num ber of c onsum ed data
QH0 : initial queue head value
QT 0 : intial queue tail value
NQH : next queue head value
NQT : next queue tail value
QHn+1 : next queue head value
QT n+1 : next queue tail value

(a)

- +

T O P

P N

CN

NTP

P N : number of produced data
CN : number of consumed data
TOP : initial top pointer v alue
NTP : next top pointer v alue

(b)

Fig. 9. Address calculation mechanisms for next instruction’s source1 and destination: (a) Queue-
EM mode; (b) Stack-EM mode.

Md. M. Akanda, B.A. Abderazek, and M. Sowa 361

0M S Dec ode Buffer

.

.

 IM OP OPR CN PN
.
.

Cu rren t SSU (in QEM)

QH = 3, QT = 5

Calc ulate SSR

QH1add = QH = 3
QH2add = QH +OPR = 2
QT add =QT = 5
Set = im = 0
QH = QH+CN = 4
QT =QT +PN = 6

Next SSU (in QEM)

QH = 4, QT = 6

Decode (DU) QSCU

(a)

 0 m ul -2 1 1

 0 add -1 1 1

OPCODE (OP) = ad d
OFFSET (OPR) = -1
CONSUM E (CN) = 1
PRODUCE (PN) = 1
im = 0

1M S Dec ode Buffer

 IM OP OPR CN PN

Cu rren t SSU (in SEM)

TOP = 7

Next SSU (in SEM)

T OP = 7

Decode (DU) QSCU

Calc ulate SSR

NT OP = DEST

T OP = T OP = 7
(T OP-1) = T OP-1 = 6
DEST = T OP+PN-CN
 = 6
Set = im = 0

.

.

.

.
 1 add 0 2 1

(b)

OPCODE (OP) = ad d
OFFSET (OPR) = 0
CONSUM E (CN) = 2
PRODUCE (PN) = 1
im = 1

Fig. 10. Addresses calculation example: (a) When QSP32 is in Queue-EM mode; (b)When QSP32
is in Stack-EM mode.

362 Dual-Execution Mode Processor Architecture For Embedded Applications

same calculation scheme is performed for the following instructions. Using the mechanism
shown in Fig. 8 (a) and Fig. 9 (a), source1 (QH1), source2 (QH2), and destination (QT0)
addresses for each instruction are calculated in the QSCU stage. Fig. 10(b) shows another
example illustrating the calculation of TOP, TOP-1, and DEST fields in Stack-EM mode.

...

ldw 10

ldw 40

add

int 2

..

nop

mvr

add

...

rfi

...

10H

14H

16H
...

270H

12H

...

272H

...

298H
...

274H

MEMORY

disc ard

new PC

Fetc h

MUX

PC

+ 8

ldw 10

ldw 40

add

int2

FB

PC

inst

P
C

 f
ro

m
 c

on
tr

ol
un

it
 w

he
n

re
tu

rn
 f

ro
m

 in
te

rr
up

t

re
tu

rn
PC

DB

Dec ode
c irc uit

MS

ld,1,0,1,0

ld,12,0,1,0

m ul,0,2,1,0

com ,2,2,1,0

im

opc ode

operand

pr

c r

INT

pc

Save (PC +2) into
s tac k w hen
interrupt oc c urDec ode

InT ype IP C
0 120H
1 140H

IVT

(a) (b) (c)

QH

QCB

QT

Com putation
c irc uit

m v r ,0 ,1 1 ,1 2 ,2 0

m o d,0 ,1 2 ,1 4 ,2 1

add,0 ,1 5 ,1 6 ,2 3

div ,0 ,1 4 ,1 5 ,2 2

SRC1

opc ode

operand

DEST

flag

pc

SRC2

Save QHi into s tac k w hen int
Save QT i into s tac k
 w hen intQSCU

Q
H

ni

Q
T

ni

(d)

operand

opc ode

PC

Fig. 11. Components used for Interrupt Handling Mechanism in QSP32.

5.3 Interrupt Handling in QSP32 core

The decode unit (DU) prepares the processor for correct handling of the interrupt. After an
interrupt instruction in the DU is detected, the program counter (PC) of the next instruction
is saved into the stack. The DU determines the address of the interrupt handler from the
interrupt vector table (IVT) and places the value into the PC. At the same time the DU
sends the discard signal to the fetch unit (FU) and the interrupt (INT) signal to the Queue
computation unit (QSCU).
After receiving the discard signal and the new value for the PC, the fetch unit stops fetching
instructions and resets the fetch buffer. Once finished, the FU resumes the fetching starting
from the newest value of PC until the return signal coming from the execution unit is detected.
Program Counter Controller : Fig. 11(b) describes the Program Counter Controller (PCC)
mechanism. There is a multiplexer (MUX) that selects the PC. The MUX is controlled by
input signals coming from decode and execution units. Normally, MUX is selected by normal
fetching mode where PC is always increment by 8 for each cycle. If there is discard signal
from DU, the PCC is selected by the discard signal and it updates the PC by the new PC.
When the PCC gets the return signal with return PC address from the execution unit, it sets
the PC as return PC.
Queue Status Controller : Fig. 11(d) shows the block diagram of QSCU when the interrupt
occur and Fig. 12 describes the details of Queue Status before and after the interrupt. Fig. 12
(a) shows the present Queue contents with present QH and QT pointer addresses. When the
QSCU gets the INT signal from the DU, QSCU saves the current Queue status (current QH

Md. M. Akanda, B.A. Abderazek, and M. Sowa 363

1 a d 1 f 4 3 f 7 9

QH QT

(a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 0

1 a d 1 f 4 3 f 7 9

QH QT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 0

1 a d 1 f 4 3 f 7 9

QHi QT i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 0

Current QT
Current QH

PCint+2

Stac k 64X32

1 a d 1 f 4 3 f 7 9 s d r 1 0 5 8 2

QH QT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 255 0

Current QT
Current QH

PCint+2

Stac k 64X32

(b)

(c)

(d)

Fig. 12. Queue Status when interrupt occur and return from interrupt. (a) Queue status before
interrupt, (b) when interrupt occur, (c) Queue: ready for interrupt handler, (d) Queue: when
return from interrupt.

and QT values) into the stack (Fig. 12 (b)) and also changes the status of Queue. Fig. 12(c)
shows the new QH (QHi) and QT (QTi) address for the interrupt handler. The QSCU will
continue the computation by using the QHi and QTi value until it gets the return signal from
Execution unit. When QSCU gets the return signal from EU it will restore the QH and QT
address from the stack recovering the normal Queue with correct QH and QT pointer address
(Fig. 12(d)).

5.4 Shared Storage Mechanism

We have implemented the shared storage mechanism in the shared storage unit (SSU). The
shared storage unit (SSU) behaves as a circular QREG in Queue-EM mode and as a Stack data
structure in Stack-EM mode. The SSU is an intermediate storage unit for QSP32 architecture.
The SSU has 32-bit 256 shared registers (SSR) and behaves like a conventional register file
(RF). However, in QEM, the system organizes the SSR access as a first-in-first-out (FIFO)
latches, thus accesses concentrate around a small window and the addressing of registers is
implicit through the queue head and tail pointers and in QEM, the system organizes the SSR
access as a last-in-first-out (LIFO) latches which addressing the register is implicit through
the stack pointer. The shared storage mechanism of SSR is controlled by the QSCU. The
block diagram of SSU is shown in Fig. 13.

364 Dual-Execution Mode Processor Architecture For Embedded Applications

0 254 255

.. d3 d2 d1 d0

S R C 1 S R C 2 DES T

data 1 data 2 resultS S R available

1
8 8 8

32 32 32

Fig. 13. Block diagram of shared storage unit.

6 QSP32 Core Implementation

6.1 Design Approach

To make the QSP32 design easy to debug, modify, and adapt, we decided to use a high-
level description, which was also used by other system designers, such as works in [13, 14].
We have developed the QSP32 core in Verilog HDL. After synthesizing the HDL code, the
designed processor gives us then the ability to investigate the actual hardware performance
and functional correctness. It also gives us the possibility to study the effect of coding style
and instruction set architectures over various optimizations. For the QSP32 core to be useful
for these purposes, we identified the following requirements: (1) High-level description: the
format of the QSP32 description should be easy to understand and modify; (2) Modular:
to add or remove new instructions, only the relevant parts should have to be modified. A
monolithic design would make experiments difficult; and (3) the processor description should
be synthesizable to derive actual implementations. The QSP32 has been designed with a
distributed controller to facilitate debugging and future adaptation for specific application
requirements since we target embedded applications. This distributed controller approach
replaces a monolithic controller which would be difficult to adapt. The distributed controller
is responsible for pipeline flow management and consists of communicating state machines
found in each pipeline.
In this design, we have decided to break up the unstructured control unit to small and man-
ageable units. Each unit is described in a separate HDL module. That is, instead of a
centralized control unit, the control unit is integrated with the pipeline data path. Thus,
each pipeline stage is mainly controlled by its own simple control unit. In this scheme, each
distributed state machine corresponds to exactly one pipeline stage and this stage is controlled
exclusively by its corresponding state machine. Overall flow control of the QSP32 processor is
implemented by cooperation of the control units in each stage based on communicating state
machines. Each pipeline stage is connected to its immediate neighbors and indicates whether
it is able to supply or accept new instructions.

In order to estimate the impact of the description style on the target FPGAs efficiency, we
have explored logic synthesis for FPGAs. The idea of this experiment was to optimize critical

Md. M. Akanda, B.A. Abderazek, and M. Sowa 365

design parts for speed or resource optimizations. In this work, our experiments and the results
described are based on the Altera Stratix architecture [7] for both speed and area optimiza-
tions. We selected Stratix FPGAs device because it has good tradeoffs between routability
and logic capacity. In addition it has an internal embedded memory that eliminates the need
for external memory module and offers up to 10 Mbits of embedded memory through the
TriMatrix TM memory feature. Synthesis efficiency is influenced significantly by the match
of resource implied by the HDL and resources present in a particular FPGA architecture.
When a HDL description implies resources not found in a given FPGA architecture, those
elements have to be emulated using other resources at significant cost. Such simulation can
be performed automatically by electronic design automation (EDA) simulation tools in some
cases, but may require changes in the HDL description in the worst case, counteracting aim
of a common HDL source code base. We have used the Altera Quartus II design tools [9] for
synthesis, simulation, placement, routing, and vendor supplied software for configurations.
Simulations were also performed with Cadence Verilog-XL tool [8]. The synthesis result of
the QSP32 processor over speed and area optimizations is shown in Table 2. From the above
result, we clearly see how the optimization types affect the number of logic elements (LEs)
for each unit and for the whole processor core.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

PROCEEDS

STALL

IDLE

ACP ^ SUP

SUP CPT^ACP^SUP

SUP^ACP

CPT^ACP

ACP

CPT v(CPT ^ ACP ^SUP)

Fig. 14. Finite state machine transition for QSP32 pipeline synchronization. The following con-
ditions are evaluated: next stage can accept data (ACP), previous pipeline stage can supply data
(SUP), last cycle of computation (CPT).

6.2 QSP32 System Pipeline Control

In many conventional processors, the control unit is centralized and controls all central pro-
cessing core functions. This scheme introduces pipeline stalls, bubbles, etc. However, espe-
cially for pipelined architecture, this control unit is one of the most complex part of the design,
even for processors with fixed functionality [15]. Communication with adjacent pipeline stages
is performed using two asynchronous signals, AVAILABLE, and PROCEED. When a stage
has finished processing, it asserts the AVAILABLE signal to indicate that data is available

366 Dual-Execution Mode Processor Architecture For Embedded Applications

to the next pipeline stage. The next stage will indicate whether it can forward the data by
using the PROCEED signal.

Table 1. QSP32 Processor Hardware Configuration Parameters.

QSP32 core

Items Configuration Description
IW 16-bit Instruction width
FW 8 bytes Fetch width
DW 8 bytes Decode width
SI 56 Supported instructions
SSU 256 Shared storage unit size
ALU 4 Arithmetic logical unit
LD/ST 4 Load/Store unit
SET 4 Set unit
BRAN 1 Branch unit
GPR 16 General purpose registers
MEM 2048 word PROG/DATA memory

Table 2. Synthesis results. LEs means Logic Elements. AOP means Area optimization and SOP
means speed optimization.

Synthesis Results

Descriptions Modules LE-SOP LE-AOP
Fetch unit FU 345 252
Decode unit DU 1395 1269
QS computation unit QSCU 489 484
Issue unit IU 1794 1588
Execution unit EXE 7543 6213
Shared storage unit SSU 12084 8120
QSP32 core QSP32 23650 17926
PQP core (base) PQP 23065 17556

Since all fields necessary to find what actions are to be taken next are available in the pipeline
stage (for example operation status ready bits and synchronization signals from adjacently
stages), computing the next stage is simple. The state transitions of a pipeline stage in the
QSP32 is illustrated in Fig. 14. This basic state machine is extended to cover the operational
requirements of each stage by dividing the PROCEED state into substates as needed. An
example is the implementation of the Queue computation stage where PROCEED is divided
into sub-states for reading initial addresses values, calculating next addresses values, and
addresses fixup (when needed).

7 Results and Discussion

Table 1 shows the hardware configuration parameters of the designed QSP32 core. Table 2
summarizes the synthesis results of the QSP32 for the Stratix FPGAs. The complexities
of each module as well as the whole QSP32 core are given as the number of logic elements
(LEs). The design was optimized for balanced optimization guided by a properly implemented
constraint table. From the prototyping result, the processor consumes 94.389% of the total
logical elements of the target Stratix EP1S25F1020 FPGA device. As a result, the QSP32

Md. M. Akanda, B.A. Abderazek, and M. Sowa 367

Fig. 15. Simulation result for interrupt controller QSP32 core

processor successfully fits on a single FPGA device, thereby obviating the need to perform
multi-chip partitioning which results in a loss of resource efficiency.
Table 2 shows the total number of LEs for the QSP32 and the base architecture (PQP). When
compared to the PQP core, QSP32 requires only 2.54% extra hardware for speed optimization
(SOP) and 2.11% extra hardware for area optimization (AOP). The achievable frequency of
the QSP32 core is 64.8 MHz and 62.31 MHz for speed and area optimizations respectively.
The performance can be much more improved by using specific layout generation tools and
standard libraries. We have tested the QSP32 core by using different programs. Fig. 15 shows
the simulation result of interrupt handling mechanism of QSP32 core. When interrupt signal
(DS int) is active, the interrupt controller saves the processor state in stack (pci, qh, qt in
Fig. 15). Fig. 15 shows that at 70ns an interrupt occurs and at that time qh and qt values
were 0 and 3 respectively. From that time the controller generates an interrupted pc (pci =
E in Fig. 15) and the interrupt handler location (pc n = 26 in Fig. 15). Then it creates a
new Queue from the QT pointer (3 in Fig. 15) of the main Queue and follows the new Queue
location for each instruction source and destination address. When the interrupt controller
gets the return from interrupt signal (int r), it pops the saved processor state into the original
location.

Table 3. QSP32 Speed and power consumption comparisons with various Synthesizable CPU
cores over speed (SOP) and area (AOP) optimizations. This evaluation was performed under the
following constraints: (1) Family: STRATIX; (2) Device: EP1S25F1020; (3) Speed: C6. The
speed is given in MHz. NA means result not available.

Various Synthesizable CPU cores

Cores Speed Speed Average
(SOP) (AOP) Power(mw)

QSP32 64.8 62.31 187.5
PQP 71.5 70.1 187.5
OpenRisc1200 32.64 32.1 1005
SH-2 15.3 14.1 NA
ARM7 25.2 24.5 22
LEON2 27.5 26.7 458
MicroBlaze 26.7 26.7 NA

368 Dual-Execution Mode Processor Architecture For Embedded Applications

7.1 QSP32 Speed and Power Consumption Comparison with Synthesizable CPU

cores

Performance of QSP32 in terms of speed and power consumption is compared with various
synthesizable CPU cores as illustrated in Table 3. The SH-2 is a popular Hitachi SuperH
based instruction set architecture [11, 12]. The SH-2 has RISC-type instruction sets and
16x32bit general purpose registers. All instructions have 16-bit fixed length. The SH-2
is based on 5 stages pipelined architecture, so basic instructions are executed in one clock
cycle pitch. Similar to our processor, the SH-2 also has an internal 32-bit architecture for
enhanced data processing ability. LEON2 is a SPARCV8 compliant 32-bit RISC processor
[27]. The power consumption values are based on Synopsis software based on reasonable
input activities. ARM7 is a simple 32-bit RISC processor and the power consumption values
are produced by the manufacturer for hard core[25, 26]. From the results shown in Table 3,
the QSP32 processor shows better speed performance for both area and speed optimizations
when compared with the other listed processors, except for PQP processor, where QSP32
has 10.34% and 12.50% speed decrease for SOP and AOP optimizations respectively. QSP32
core also shows 144.27% less power consumption when compared with LEON2 and consumes
much less power than OpenRisc1200 as shown in Table 3. However, QSP32 core consumes
more power than the ARM7 processor, which also has less area than PQP and QSP32 for
both speed and optimization (not shown in the table). This difference comes mainly from
the small hardware configuration parameters of ARM7 when compared to our QSP32 core
parameters.

From the design results and comparison results it becomes clear that QSP32 core required
low power consumption when compared with other conventional architectures that is very
important for the mobile multimedia system area. On the other hand, the stack computation
model is widely used in the internet and mobile system. As a result, the embedded QSP32
will be a good candidate for future mobile multimedia area.

8 Concluding Remarks

In this work we presented a novel dual-mode execution processor targeted for embedded and
mobile applications. The QSP32 has a shared instruction set architecture and supports both
Queue and Stack execution modes in a simple core. This is achieved dynamically with an
execution-mode-switching and sources-results-computing mechanisms.
Form the evaluation results, we conclude that the proposed processor achieves a speed of about
64.8 and 62.31 MHz for speed and area optimization respectively. The processor consumes
94.389% of the total logic elements (LEs) of a Stratix FPGA device. As a result, it fits
on a single Stratix device with an internal embedded memory that eliminates the need for
external memory module, thereby eliminating the need to perform multi-chip partitioning
which results in a loss of resource efficiency. The core was implemented without considerable
additional hardware when compared with the base PQP core (only about 2.54% more LEs
are required). The QSP32 processor also shows better speed performance for both area and
speed optimizations when compared with other well known Synthesizable CPU cores.

Finally, we conclude that the QSP32 core is expected to be a promising candidate for
embedded and mobile multimedia applications requiring tight resource constraints and mutli-
execution mode environments.

Md. M. Akanda, B.A. Abderazek, and M. Sowa 369

References

1. G. De Micheli, R. Ernst and W. Wolf, Readings in Hardware/Software co-design, Morgan Kauf-
mann Publishers, ISBN 1-55860-702-1.

2. M. Sowa, B. A. Abderazek and T. Yoshinaga,Parallel Queue Processor Architecture Based on
Produced Order Computation Model, in: Int. Journal of Supercomputing, HPC, Vol.32, No.3, June
2005, pp.217-229.

3. B. A. Abderazek, T. Yoshinaga, M. Sowa, High-Level Modeling and FPGA Prototyping of Produced
Order Parallel Queue Processor Core, in: International Journal of supercomputing, Volume 38,
Number 1, October 2006, pp. 3-15.

4. P6 Power Data Slides provided by Intel Corp. to Universities.
5. B. Bisshop, T. Killiher, and M. Irwin, The Design of a Register Renaming Unit, in: Proceedings

of Great Lakes Symposium on VLSI, 1999, pp. 34-37.
6. M. Akanda, Ben A. Abderazek, S. Kawata, and M. Sowa, An Efficient Dynamic Switching Mech-

anism (DSM) for Hybrid Processor Architecture, in: The proceedings of Springer’s Lecture Note
in Computer Science (LNCS), LNCS 3824, December 6-9, 2005, pp. 77-86.

7. D. Lewis et al, The Stratix Logic and Routing Architecture, in: FPGA-02, International Conference
on FPGA, 2002, pp 12-20.

8. Cadence Design Systems:http://www.cadence.com/
9. Altera Design Software: http://www.altera.com/

10. B. A. Abderazek, M. Arsenji, S. Shigeta, T. Yoshinaga, M. Sowa, Queue Processor for Novel Queue
Computing Paradigm Based on Produced Order Scheme, in: Proc. of HPC, IEEE CS, July 2004,
pp. 169-177.

11. F. Arahata, O. Nishii, K. Uchiyama, N. Nakagawa.,Functional verification of the superscalar SH-4
microprocessor, in: Compcon97, the Proceedings of the International conference Compcon97, Feb
1997, pp. 115-120.

12. SuperH RISC engine SH-1/Sh-2/Sh-DSP Programming Manual: http://www.renesas.com
13. H. Maejima, M. Kinaga and K. Uchiyama, Design and architecture for Low Power/High Speed

RISC Microprocesor:SuperH, in: IEICE Transaction on Electronics, Vol.E80, No.12, dec. 1997,
pp.1539-1549.

14. H. Takahashi, S. Abiko and S. Mizushima, A 100 MIPS High Speed and Low Power Digital Signal
Processor, in: IEICE Transaction on Electronics, Vol.E80-C, No.12, 1997, pp.1546-1552.

15. R. Lysecky and F. Vahid, A Study of the Speedups and Competitiveness of FPGA Soft Processor
Cores using Dynamic Hardware/Software Partitioning, in: Design Automation and Test in Europe
(DATE’05),Munich, Germany, Vo.1, March 2005, pp. 18-23.

16. J. P. Koopman, Stack Computers: the new wave, Ellis Horwood Limited, 1989.
17. M. Sheliga and E. H. Sha, Hardware/Software Co-design With the HMS Framework, in: Journal

of VLSI Signal Processing Systems, Vol. 13, No.1, 1996, pp. 37-56.
18. K. Kim, H. Y. Kim and T. G. Kim, Top-down Retargetable Framework with Token-level Design

for Accelerating Simulation Time of Processor Architecture, in: IEICE Trans. Fundamentals of
Electronics, Communications and Computer Sciences, Vol. E86-A, No. 12, Dec. 2003, pp.3089-
3098.

19. http://www.arm.com/products/CPUs/ARM926EJ-S.html
20. JazelleTM-ARM Architecture Extensions for Java Applications, White Paper, http://

www.arm.com
21. Advancel Logic Corporation, Tiny2J Microprocessor Core for Javacard Applications,

http://www.advancel.com
22. http://ultratechnology.com/
23. Oyvind Strgm, Einar J. Aas., An Implementation of an Embedded Microprocessor Core with sup-

port for Executing Byte Compiled Java Code, in: Proceedings of the Euromicro Symposium on
Digital Systems Design, 2001, pp. 396-399.

370 Dual-Execution Mode Processor Architecture For Embedded Applications

24. Harlan McGhan and Mike O’Connor, PicoJava: A direct execution engine for Java bytecode, in:
Computer 31(10), October 1998, pp. 22-30.

25. ARM7DMI Data Sheet, Advanced RISC Machines Ltd, 1994.
26. ARM Architecture Reference Manual, Advanced RISC Machines Ltd., September 2001.
27. Gaisler Research Laboratory. LEON2 XST User’s Manual, 1.0.22 edition, May 2004.
28. B. R. Preiss, V. C. Hamacher, Data Flow on Queue Machine, in: ISCA 1985, 12th International

Symposium on Computer Architecture, Boston, August 1985, pp. 342-351.
29. M. Fernandes, J. Llosa, N. Topham, Using Queues for Register File Organization in VLIW, Tech-

nical Report ECS-CSG-29-97, University of Edinburgh, Department of Computer Science, 1997.
30. L. S. Heath, S. V. Pemmaraju, A. N. Trenk, Stack and Queue Layouts of Directed Acyclic Graphs:

Part I, in: SIAM Journal of Computing, Vol 23, No. 4, 1996, pp.1510-1539.
31. H. Schmit, B. Levine, B. Ylvisaker, Queue Machines: Hardware Compilation in Hardware, in:

FCCM’02, 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,
2002, pp. 152-161.

32. A. Canedo, Code Generation Algorithms for Consumed and Produced Order Queue Machines,
Master Thesis, Graduate School of Information Systems, University of Electro-Communications,
September 2006.

