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The goal of this paper is twofold. Firstly, we present results from graph-theory which
can be used to understand the fundamental properties of ad-hoc networks and wireless
sensor networks. Graph-theory is a well studied branch of discrete mathematics, and it
has been applied in many knowledge fields, e.g. social network, Internet tomography and
epidemiology. We review literature results from the point of view of the designer of an
ad-hoc network, who must set simulation parameters in order to predict the behaviour
of the real network. Secondly, we study the impact of the asymmetries of radio links
on the connectivity properties of an ad-hoc network. To the best knowledge of the
author, this further hypothesys has been addressed in the case of geometric random
graph only, but not for radio models with randomnesses. As expected, we found that
randomness in the radio model directly affects the distribution of the asymmetries and
the connectivity properties. This result can be very useful in the understanding of more
complicated aspects of ad-hoc nets, like routing and coordinated wake-up in power saving
techniques.
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1 Introduction

Ad hoc networks are the research frontier of networking community. Such a networks have
been promising new and attractive applications in many fields. We can cite some of them, as
vehicles networking, communications support to rescue platoons, infrastructure-less communi-
cations and Wireless Sensor Networks (WSNs), which are a subset of ad-hoc nets. If mobility
is of concern, we have a Mobile Ad hoc NETwork (MANET), where every node is supposed
to be mobile. Compared with infrastructure based wired- and wireless-networks, these net-
works need different solutions to standard problems, like routing, addressing, fault-tolerance
and Quality of Service (QoS). Besides the huge amount of technical proposals arose in recent
years, it has been envisioned that these problems can be solved by looking at the behaviour of
biological systems, which are inherently distributed, decentralized and time-varying systems
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[5]. In fact, these properties are present also in ad-hoc nets. In biological systems, some very
interesting properties seem to arise whenever the number of nodes increases. In other words,
complex systems composed of thousand of nodes can find optimal solutions in a cheap and
elegant way. Thus, solutions to standard problems of ad-hoc nets can be found by exploiting
the similarities with natural systems. An example of this method is surely the distributed
synchronization of nodes clock in a large-scale ad-hoc net [22]. On the other hand, simulation
of ad-hoc networks is a key tool to understand the performance of applications and protocols
designed for such networks. It is in fact prohibitive a trial-and-test approach to these net-
works. Ad-hoc networks are very complicated. So far, few works have been discussing the
interaction of different aspects of the communication stack of an ad-hoc node. For example,
in [15] the authors shown the intimate relation between connectivity and MAC operations. As
in other problems of complex systems simulation, sometimes embedding all physical details
in the simulation model is not advantageous to the understanding of the laws which rule the
behaviour of the system. Another approach is searching for invariant or scaling properties of
such large networks. In fact, this method benefits also optimizing simulation techniques.

One of the most important properties of these networks is the connectivity, that is the
probability that two any given nodes of the network can establish a multi-hop connection.
Connectivity affects other related performance variables, such as the transmission latency
of packets, interference level inside the network, the goodput and, for power limited nodes,
the energy consumption, as in the case of WSNs. The properties of large-scale networks
can be well understood by means of graph theory, which has been recently re-discovered
to study the fundamental properties of MANETs. Hereinafter, we will suppose that nodes
of the network can be thought as nodes of a graph, where an edge between two nodes of
the graph means that a communication link exists between the corresponding nodes in the
network. In general, this event (the existence of link) depends on the hardware: modulation,
coding, probability of bit error (or BER) and Signal to Interference-Noise Ratio (SINR). Many
researchers studied the fundamental properties of ad-hoc networks by means of the theory of
Geometric Random Graphs (GRG), which have been widely studied in the past [19, 9]. The
seminal work of such method of analysis is that of Gupta and Kumar [10], which furnished
some bounds on the transmission range and transport capacity of an ideal plane network in
order to achieve full connectivity. However, sometimes the literature is dispersive. Here, we
review in a concise fashion results on GRGs from recent works as well as the more realistic
case of ξ-GRG, that is a GRG with the addition of the shadowing phenomena in the pathloss
of links. The main parameter of this model is indeed the ξ � σ

α , where σ2 is the variance of the
pathloss [21, 11]. Actually, several measurements on test-beds have shown that the presence of
asymmetric links is not infrequent [6]. Furthermore, the presence of asymmetric links affects
other important performance metrics of ad hoc networks and application specific protocols as
well. For example, ad hoc routing protocols usually make extensive use of route-discovery and
route-reply messages. In the presence of asymmetric links, it is not immediately clear how
well these protocols perform, because the existence of a forward path does not necessarily
imply the existence of a reverse path. For instance, the reverse path is the path used to
send back the information of the previously discovered forward path. Many routing protocols
encompass this problem by using multiple routes between the source and destination node.
However, the effectiveness of this technique depends on the density of nodes which in turn
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modifies the connectivity properties of the network. Motivated by recent experimental results,
we are interested in the connectivity of ξ-GRG by adding the assumption that links now are
asymmetric. In this case the ξ-GRG becomes directed.

The paper is structured as follows. In Section 2, we present main results on connectivity
of Pure Random Graphs (PRGs) and GRGs. In the same section, we show the extension of
these results to the more general model of ξ-GRGs. In Section 3, we summarize the methods
useful for compute the connectivity property of a graph via simulation. These results are
used in Section 4, where we study the differences of undirected graphs and directed graphs.
In Section 5, we conclude the paper by discussing some further improvements of the work.

2 Preliminaries

Notation
Hereinafter, we will use the following notation.

• A, area of the network, a = |A|
• ρ, density of nodes

• r0, radio range of a transmitter

• Pt, the transmitting power of a node

• Pr, the receiving power of a node

• β(r) = Pt

Pr(r) , the pathloss at distance r

• α, pathloss exponent (Friis-like formula)

In this paper, we assume that nodes are not moving. In the case of mobile nodes, we
could apply our results to a snapshot of the network. In other words, at every instant, the
network is supposed stationary [11]. A common assumption concerning the deployment of
nodes within an area A is that the number of nodes N in A is a poissonian r.v., i.e.:

P (N = n) = e−λ λn

n!
, λ = ρA .

Moreover, the number of nodes in non overlapping subsets of A are independent. In the
context of WSNs, the poissonian distribution is a good approximation for networks built up
by dropping sensor nodes from an airplane. In this work, we will analyze also the opposite
case to random deployment, that is the lattice case.

2.1 Pure Random Graphs (PRGs)

A random graph Gu(p) is defined as a set of vertexes V (Gu(p)) and a set of links or edges
E(Gu(p)) connecting pairs of nodes, i, j ∈ V (Gu(p)). For simplicity, we will use also V and
E for the vertexes set and edges set, respectively. The subscript u in Gu stands for “undi-
rected”: The graph has not directed links. We drop the subscript whenever we refer to more
general directed graphs, or digraphs, i.e. G(p). Given a pair of nodes (i, j), the probability
that a link exists between i and j is p. In random graph, p does not depend on the geometric
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distance between nodes. In other words, the exact relative distance (in some metric space)
of nodes is irrelevant. Examples of PRGs are the well known Erdös-Rény random graph [8],
the Barabási-Albert graph [2]. The degree Di of a node i is the number of links or edges of
that node. Usually, to represent a graph we use an adjacency matrix, A = (aij)ij≤N , where
n = |V | and aij = 1 iff there is a link between nodes i and j. By this way, Di =

∑
j aij . For

digraphs, the adjacency matrix is not necessarily symmetric, and we distinguish the in- and
the out-degree of a node. The in-degree is D−

i =
∑

j aji, while the out-degree is D+
i =

∑
j aij .

The graph Gu(p) is said to be connected if there is at least a path between any pair of nodes in
V . Generally, Gu(p) is k−connected if there are at least k disjoint paths connecting any pair
of nodes. An equivalent definition of the connectivity is given by considering a fault-tolerance
argument: Gu(p) is said k-connected if there is a path between any two nodes after randomly
removing k − 1 nodes in Gu(p). The connectedness is a r.v. and its probability depends on
the distribution of D or rather the Dmin = mini(Di). We name with P (conn) the probability
that Gu(p) is 1-connected. Intuitively, one can say that if Dmin is greater than 1 for every
node, the graph is connected. But this happens asymptotically only, i.e. for n → +∞. For
example, we can have a graph with 4 nodes and 2 links: The minimum degree is 1 but the
network is clearly not connected at all. Moreover, generally a graph can be considered as
composed of several connected sub-graphs which we call components of Gu(p). If there is
one component spanning all the nodes of Gu(p), the graph is connected. Other measures of
connectivity can make use of the size of the “giant” component. If there are few components
and the giant component has size S ≈ |V |, we can say that Gu(p) is quasi connected. We
will see in Section 3, that connectivity and giant component size are intimately tight to the
structure of the adjacency matrix. The same properties can be defined for digraphs, which
are the main target of this work. Given G(p), if there is a path between any two nodes,
we say that G(p) is strongly connected. Otherwise, if only the undirected version of G(p) is
connected, we say that G(p) is weakly connected. In what follows, we briefly list the main
results on PRGs.

✥ The probability of connectivity is [8]:

P (Gp is 1 − conn) = 1, a.s. iff p ≥ log(n)
n

, n → ∞ . (1)

Under the same hypotheses, we have the well known result [4]:

P (Dmin ≥ 1) = P (1 − conn) , a.s. (2)

✥ The hop count h between two nodes is defined as the number of nodes of the shortest
path connecting them, if it exists. For disconnected networks, one can define the mean hop
count inside the components of Gp. For PRGs, we have that [2]:

E{h} ∼ ln(n)
ln(E[D])

.

In general, the hop count distribution of the graph representing the physical network is of
concern, because it can serve as a good tool to understand important metrics of ad-hoc net-
works, as packet delay, end-to-end throughput and power consumption [23].
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✥ The probability of the degree D isa:

P (D = k) =
(

n − 1
k

)
pk(1 − p)n−1−k � D

k
e−D

k!
, n → ∞ , (3)

where we used the Poisson approximation of the binomial distribution, and D = (n − 1)p.
We can easily prove (3), if we consider the number of ways we can set a link among a given
node and the other (n − 1) nodes.

✥ By using (2) and (3), and by assuming Di be i.i.d., we have:

P (Dmin ≥ 1) = P

(
min
i∈V

(Di) ≥ 1
)

=

[
n−1∑
k=1

(
n − 1

k

)
pk(1 − p)n−1−k

]n

= [1 − (1 − p)n−1]n .

(4)
✥ By using the approximation in (3), the distribution of D is:

P (D ≤ k) = e−D
k∑

i=0

D
i

i!
=

Γ(k + 1, D)
k!

, (5)

where Γ(a, b) is the incomplete gamma function, i.e. Γ(a, b) = (a − 1)!e−b
∑a−1

i=0
bi

i! [1].

2.2 Geometric Random Graphs (GRGs)

In PRGs, links are uncorrelated. For example, the link probability between two nodes does
not affect the link probability with another geometrically closed node. This is not the case
of a real network, where we remember that a link can be set up whenever the transmission
power is greater than a specific threshold. This power sets up in turn the transmission range
r0 of a node. Consequently, links become correlated. Because of this simple fact, we obtain
a GRG, where the link probability depends on distance r between nodes. For simplicity we
use the notation G only for GRGs. This model is called also Boolean or Bernoulli model. In
fact, the link probability between i, j ∈ V is the event that two nodes fall inside a sphere of
radius r. This event induces a bernoullian r.v. for which the probability is p(r) = 1r≥r0. Let
us note that in general the link probability is not a commutative property of the graph. In
other words, having a link between nodes i and j does not imply a link between j and i. If
we omit considering the direction of links, we have an undirected graph we call with Gu. If
not otherwise stated, we assume always an undirected graph and we study the properties of
G in Section 3. Here, we consider first the poissonian deployment.

Deterministic Path Loss Model (α-GRG)
The first-order model for the pathloss of the radiated signal is the classic Friis formula. By
expressing in decibel all variables, we haveb:

Pr(r) = Pt − β = Pt − β0 − 10α log
r

d0
(dB) , (6)

aWhenever it does not make confusion, we drop the subscript in order to simplify notation.
bWhen the variable of the equations are expressed in dB, we put the unit in parentheses at the end of the
equation.
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where β0 and d0 are constantsc. In other words, the pathloss is:

β(r) = crα , (7)

and c = 10β0/10

dα
0

. To correctly receive the transmitted signal, we lower bound the received
power by a threshold, Pr,th. Accordingly, the radio range is defined as:

r0 : Pr(r0) ≥ Pr,th , (8)

and by using (7), βth � β(r0) .

✥ We have that also for GRGs but not in one dimension [18]:

P (k-conn) = P (Dmin ≥ k) a.s., n → ∞ . (9)

In a GRG, if a node has degree D = d, this means that d nodes can hear its signal in an area
of πr2

0 square meters. By taking the mean, we have D = ρπr2
0 . If n is fixed, we have:

P (Dmin ≥ k) = (1 − P (Dmin < k))n
. (10)

If also the number of nodes N is a r.v. with mean E{N} = ρa, then:

P (Dmin ≥ k) =
+∞∑
n=1

(1 − P (D < k))n P (N = n) .

In the next paragraph, we show that the distribution of D is poissoniand. We note that
this expression is in the form E{g(N)}, with g(n) = e−P (D<k)n. Thus, by using Jensen’s
inequality and by borrowing results of (5), we have:

P (Dmin ≥ k) ≥ e−ρAP (D≤k−1) = e−ρA Γ(k,D)
(k−1)! . (11)

For example, for k = 1, the lower bound is:

P (Dmin ≥ 1) = e−ρAe−D

= e−ρAe−πρr2
0

. (12)

A plot of this function is given in Fig 1. As shown, given a ρ, the critical transmission range
acts as a phase transition threshold, after which a sharp increase of Dmin arises. We show
in Section 4, that this behaviour well approximate the connectivity property of a simulated
network. By using (9), we can solve (12) with respect to r0:

r0 =

√√√√ ln
(

ln(P (1-conn)
−ρA

)
−ρπ

. (13)

cThe pathloss β0 depends on the hardware, for instance the antenna shape, the insertion pathloss and the
frequency of radiated signal.
dUnder our notation, a GRG is simply a 0-GRG, for which the results of (20) and (22) are easily adapted.
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Fig. 1. Probability of the minimum degree. The density is expressed in nodes/m2.

This value can be thought as the minimum transmission range of nodes of a large WSN, in
order to guarantee at least 1-connectivity. The value of r0 fixes the transmission power by
means of (8). Let us note that this result do not take into account the border effects, that is
the fact that border nodes of the network can have lower degree. When the area a → +∞, the
impact of the border effects is negligible. Otherwise, in simulation one has to use a toroidal
distance. A simple artifact to keep using (13) is making the transmission range of border
nodes greater than r0.

✥ Another definition of degree is as follows. Consider the number of links, L, in a random
geometric network, Gu. Then,

L =
n∑

i=1

n∑
j=i+1

p(rij) ,

where rij is the distance between node i and j. If we divide the total number of links 2L by
the number of nodes n, we obtain the degree. By taking the average, we have [11]:

D � E{D} =
2E{L}

n
.

However, the computation of E{L} is not always simple.

Random Path Loss Model (ξ-GRG)
Here, the pathloss is a r.v., i.e.:

β(r) = β0 + 10α log
r

d0
+ Xσ (dB) , (14)

where Xσ is a r.v. Because of this fact, the transmission range of a node is now a r.v. In the
shadowing model, Xσ is a normal distributed r.v., with mean 0 and variance σ2. Let assume
a shadowing model with parameter ξ � σ

α .
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The link probability depends on the threshold. By using (8), we can define again r0 by
using the mean value of Pr(r), that is:

r0 : Pr(r0) = Pr,th . (15)

Similarly, a definition for βth as above holds. Since Xσ is log-normal, by using (14), it is
straightforward to show that:

P (β(r) ≤ βth) = P (Pr(r) ≥ Pr,th) =
1
2
erfc

(
Pr,th − Pr(r)√

2σ

)
(dB) , (16)

where Pr(r) is the value computed by means of (6) and erfc is the standard complementary
error function [1]. Accordingly, we have the following results.

✥ The link probability between two nodes is:

pr(r̂) = P (Pr(r) ≥ Pr,th) =
1
2
erfc

(
10 log r̂√

2ξ

)
, r̂ � r

r0
, (17)

where we used a normalized distance r̂.

✥ According to simulation results of [11], we have:

P (Dmin ≥ 1) = P (1 − conn) , if ξ < 3, Dmin ≥ 15 (18)

P (Dmin ≥ 1) = P (1 − conn) , a.s., if ξ ≥ 3 . (19)

This mean that, for connectivity properties, a graph Gu can be considered a random graph
for high values of the shadowing parameter ξ. However, other properties such as D and E{L}
can be different.

✥ Under the poissonian assumption for the nodes deployment, and by assuming an un-
bounded area (a → +∞), the number of nodes that can hear the signal of a given node is
also a poissonian r.v. [17][3]:

P (D = d) =
D

d

d!
e−D , D = ρπr2 . (20)

Furthermore, by adapting the value of constants in [17], we obtain the following definitions:

r = 10ηeζ , (in meters)

η =
βth − β0

10α
, ζ =

(
ln(10)ξ

10

)2

(21)

βth = 10 log
(

Pt

Pr,th

)
. (22)

In (20), we can recognize a similarity with (3). In other words, the degree distribution of the
network resembles that of a random graph, with different mean.
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✥ For the minimum degree, we have an expression similar to (11), but with a mean D

defined as in (20). By using the expression of β0 in (21), we obtain the very important result:

D = πρr2
0e

2ζ . (23)

With this value for D, we have again:

P (Dmin ≥ 1) = e−ρAe−D

, (24)

and, for the critical range r0:

r0 =

√√√√ ln
(

lnP (conn)
−ρA

)
−πρe2ζ

. (25)

We plot this probability in Fig. 2. As shown, for a given density, the presence of shadowing
decreases the transmission range r0 in order to achieve the asymptotic connectivity. On the
other hand, if we are given a certain r0, the critical density for connectivity decreases as ξ

increases.
There are not other results on connectivity for other radio models. However, a general-

ization of the methodology in [17] can be found in [13].

2.3 Lattice Graphs

In general, in a lattice graph nodes are vertexes of some geometric structure. In other words,
the minimum distance between adjacent nodes is fixed and it is a parameter of the lattice. We
call lattice step, s, the minimum distance. The simplest lattice graph in one dimension is a a
line of nodes. For particular applications, the topology of ad-hoc networks can be arranged
as a lattice graph. To say the truth, the lattice structure is more suitable for WSNs, where
the position of nodes can be computed a priori. Another simple structure in two dimensions
is the square lattice, which is simply a grid. As in the case of poissonian deployment, we
can have both GRG and ξ-GRG for lattice graphs. For example, for a square lattice, if we
suppose to set the transmission power of every node in such a way that the transmission range
of nodes equals s, we obtain Dmin = 2. If one discards the border nodese, Dmin = 4. When
the nodes of the graph G have the same degree d, we say that G is d-regular. If we consider
also the effects of border nodes which have degree lower than d, we call G a quasi-d-regular
graph. For example, with the above assumptions on the transmission power, a lattice graph
with Dmin = 4 is a quasi 4-regular graph. For this kind of graphs, the degree distribution is
P (D = d) = δ(k − d) +

∑
i∈Vb

δ(k
′
i − d), where Vb is a partition of the set of border nodes

and k′
i depends on the type of lattice. For example, in a square lattice k

′
i = 2, 3. For ξ-GRG,

the degree of nodes changes and G is not regular anymore, since every node can establish
a link with nodes far away the step size s. However, we will see that when ξ increases, the
lattice connectivity resembles that of a ξ-GRG with poissonian degree distribution. We do
not derive a distribution of D for lattice ξ-GRG, but we study the connectivity via simulation.

✥ The hop count in quasi 4-regular graph is:

E{h} =
m + n

3
, (26)

eThis can be done by considering a smaller service area A
′ ⊂ A, or by assuming a toroidal distance.
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Fig. 2. ξ-GRG.
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where m = |E|. Obviously, this is true for GRG; things change if we consider ξ-GRG, for
which the mean hop count can be lower than the value in (26).

3 Connectivity

To compute the connectivity of a graph G, one can use the probability of minimum degree
of G, as a lower bound. In fact, P (k − conn) = P (Dmin ≥ k), a.s. To test the validity
of formulas above discussed, we need a method to check the connectivity of the network
during simulations. Given the network or a graph G, a brutal-force method could be the
enumeration of all paths between any pair of nodes, and stop whenever we discover a pair
which does not have a path at all. In this case, we declare the graph G disconnected. This
procedure works for few nodes, but its complexity time explodes after |V | � 24. In fact,
the complexity is not polynomial but factorial. Another approach is to use a Depth-First
Search (DFS) algorithm which has complexity O(n + m). A clever procedure to check the
connectivity of a graph G relies on exploiting a theorem of graph theory. Let us remember
that a matrix A is said irreducible if there is not any permutation P such that PAPT has a
non trivial block triangular form, e.g.:

PAPT =
(

A1 A2

0 A3

)
.

Theorem 1 (Dulmage-Mendelsohn [12]) Given a graph G with adjacency matrix A,
the following relations hold.

if A is irreducible ⇔ G is strongly connected
if A is reducible ⇔ G is not strongly connected

The theorem is valid also for Gu. For other details and for the implementation of the algo-
rithm, which is promptly done in MATLAB, see [20]. In summary, to check the connectivity
of G we have to check the irreducibility of the matrix A. The algorithm furnishes also the
sizes of the (strongly) connected components of G. It is worth noting that for Gu, another
procedure exists. It exploits the laplacian of the Gu, which is defined as L(G) = R(G) − A,
where R(G) is the diagonal matrix of degrees, i.e. Rii = Di, i ∈ V . If we order the eigenvalues
λi of L(G) in increasing order, it has been proved that always λ1 = 0, and λ2 = 0 iff Gu is
connected. Moreover, the multiplicity of 0 as eigenvalues of Gu is the number of component
of Gu [14].

4 Examples

In this section, we give some examples, by showing also the impact of asymmetries on the
connectivity properties of an ad-hoc network. This fact is important because it affects the
performance of routing protocols. In fact, a routing protocol does use forward and reverse
links in order to find a suitable path between any two given nodes.

If we use a deterministic pathloss model, i.e. a GRG, we have topologies as in Fig. 3. In
particular, for the GRG of Fig. 3(b), we set ρ = 6.25 · 10−4 and by using (13), r0 = 68.47m
with P (1-conn) = 0.99. For the square lattice, with s = 50m, we have r0 = s. In the figure,
links among border nodes are not shown. For ξ-GRG, we first try an experiment with ξ = 2,
i.e. α = 3 and σ = 6. Accordingly to (25), r0 = 55.38m, i.e. the transmission range now
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is decreased, as expected. At this point we must note that the expressions for Dmin have
been computed by assuming undirected graphs, that is, given a pair of nodes, there is no
distinction between forward link and reverse link at all. It has been documented in some
works that this is far from reality. Several measurements on test-beds have shown that the
presence of asymmetric links is not infrequent [6]. The asymmetry means that the given two
nodes, i and j, the characteristics of link i → j are different from those of link j → i. For
example, one can consider the BER in the two directions. We can inspect more in details this
phenomenon by generating a topology where link events are independent in the two directions.
A realization of such a network, i.e. a digraph, is shown in Fig. 4, where asymmetric links are
shown with a black arrow. As we can see, if we neglect the asymmetry of links, the topology
is connected. On the other hand, if we consider the asymmetries, we see the emergence of
components in G. In the figure, two of them are marked with a big circle. There are also two
components which are composed by a single node only. These components are isolated because
they have out-links only. To stress more this fact, by considering Gu, a visual inspection tell
us that Dmin = 1. However, if we take into account asymmetric links too, the result changes.
In fact, the (real) topology now is disconnected, as pointed out by the presence of nodes that
have not a path towards other nodes. The same happens also for the lattice graph, as shown
in Fig. 4(b). The behaviour of G, i.e. the digraph, depends on the distribution of in- and
out-degree of nodes. Furthermore, although a link between components of G can be present,
in general also this link is a directed link. This means that it might happens that we can
go towards a component of G but we cannot come back from it. In other words, we should
distinguish the giant component of Gu from the strongly connected giant component of G.
In general, the strongly connected component of G arises after the emergence of the giant
component of Gf. We can see this fact also by analysing the distribution of minimum degree
in G and Gu. For G, we plot the distribution of D+

min, while for Gu we plot the distribution
of Dmin. To obtain the plots shown in Fig. 5, we used the following procedure. We first
generated a ξ-GRG with parameters shown in the figure. For every topology, we computed
several graph properties, as the minimum degree within the graph, the connectivity by means
of results of Section 3. Then, we repeat the experiment 500 more times. These steps are
then repeated for increasing values of the density ρ. In Fig. 5, for a better inspection, we
plot the kernel density estimate of the underlying density function (i.e. the minimum degree
distribution), even if the true density is a discrete probability function. As shown, the density
functions are shifted with each other, in particular the density function of D+

min is always at
the left side of the density of Dmin. This mean that, for G, in order to achieve connectivity
we have to increase the density with respect to the case of Gu.

fOther details can be found in [7] and [16].
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Fig. 3. Deterministic pathloss model.
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Fig. 4. 4/3-GRG with asymmetries.
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Fig. 6. Connectivity property for ξ-GRGs.
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Fig. 7. Comparison of connectivity of ξ-GRGs with lattice graphs.
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We can see this phenomenon also from the point of view of the connectivity. By using the
same steps above explained, we estimate the connectivity probability by its average, i.e. we
divide the number of connected topologies by 500. It is worth noting that we always inherently
assumed a toroidal distance. In Fig. 6, we plotted the the estimates of the connectivity
probability as a function of ρ for ξ = 1 and ξ = 2.6667, respectively. For the undirected
graph Gu, we obtain the results explained in the previous sections, that is P (conn) is well
approximated by P (Dmin ≥ 1) as ξ increases. This means that, as ξ increases, the critical
density point above which the net is connected a.s. (i.e. P (conn) = 99%) can be computed
by using P (Dmin ≥ 1), and this value can be computed by means of (24). However, if we
compare P (conn) for G and Gu, there is a noticeable distance between the two curves. In
particular, we have that: (1) The critical density value rougly doubles; (2) increasing ξ does
not reduce the differences. For square lattice, the same differences hold. In this case, we
note also two more things. In the square lattice, the connectivity probability resembles a step
function for low values of ξ, as shown in Fig. 7(a), because of the structure of P (Dmin), as
explained in Section 2.3. However, as the variance of the pathloss increases, the square lattice
is more similar to a GRG, i.e. the presence of the severe shadowing destroys the regularity
of the lattice. Accordingly, the connectivity probability is not a step function any longer, as
clearly shown in Fig. 7(b).

5 Concluding Remarks

In this paper, we reviewed some basic properties of random graphs as model of ad-hoc net-
works. We insisted on the distribution of minimum degree of the network, which directly
affects the connectivity. We have shown the dependence of these properties on system param-
eters, as the density of nodes and the transmission range, and environment parameters, as the
pathloss coefficient α and the variance σ, which we embodied in one parameter, ξ. By means
of extensive simulations we presented the importance of considering asymmetric links, for in-
stance links which do not have the same communication characteristics in both directions. For
simplicity, for the transmission range of nodes we consider a threshold model by disregarding
the presence of other important factors, such as the ambient noise and the overall interference
due to neighbouring nodes. However, the extension of these results to more complete scenario
is straightforward. One lesson we can learn from these results is that connectivity of real
networks directly affect the performance of routing and MAC protocols. In fact, the rout-
ing protocol needs to discover a path between two nodes. Although the performance of the
protocols depends on other particular mechanisms, in general for on-demand protocols, there
is a common routing discovery procedure during which the source node broadcasts special
routing request packets. When these packets reach the destination node, a similar procedure
is used in order to acknowledge the previously discovered path. The asymmetries affect some
routing parameters, as timeouts which in turn trigger the searching for alternate path. The
overall effect of these asymmetries is on the transmission delay of a packet between two given
nodes. On the other hand, at the MAC layer, nodes perform some coordinated access to the
channel. This access depends on the contention level on the channel, which in turn depends
on the degree of the nodes.
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