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Due to their small form factor and modest energy budget it is infeasible to endow in-
dividual sensors with GPS capabilities. Yet, numerous applications require sensors to
have a coarse-grain location awareness. The task of acquiring this coarse-grain location
awareness is referred to as training. The main contribution of this work is to propose a
fully asynchronous training protocol for massively-deployed sensor networks. The sensors
wake up according to their internal clock and are not engaging in synchronization with
the sink. Our protocol is lightweight and simple to implement. We show analytically that
in spite of the lack of synchronization, individual sensors are trained energy-efficiently.
The analytical results have been confirmed by simulation.
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1 Introduction

Recent technological advances have made it possible to develop a large variety of miniaturized
low-power devices that integrate sensing, special-purpose computing and wireless communi-
cations capabilities [2, 17, 18, 19, 28, 39]. It is expected that these tiny devices, referred
to as sensors, will be mass-produced and deployed, making their production cost negligible.
Individual sensors have a small, non-renewable power supply and, once deployed, must work
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unattended. We envision a massive deployment of sensors, perhaps in the thousands or even
tens of thousands [38].

Aggregating sensors into sophisticated computational and communication infrastructures,
called wireless sensor networks (sensor networks, for short), are expected to have a significant
impact on a wide array of applications ranging from military, to scientific, to industrial, to
health-care, to domestic, establishing smart environments that will pervade society redefining
the way in which we live and work [20, 28]. The novelty of sensor networks and the tremendous
potential for a multitude of application domains has triggered a flurry of activity in both
academia and industry.

Sensor network research as we know it can be traced to a DARPA sponsored program,
SmartDust, originated in the late 1990’s [2, 7, 14, 33, 38]. The title of the program creatively
described its goal: to make machines with self-contained sensing, computing, transmitting,
and powering capabilities so small and inexpensive that they could be released into the envi-
ronment in massive numbers. DARPA defined a sensor network as follows: “A sensor network
is a deployment of massive numbers of small, inexpensive, self-powered devices that can sense,
compute, and communicate with other devices for the purpose of gathering local information
to make global decisions about a physical environment.”

A few years later, the National Research Council’s Committee on Networked Systems of
Embedded Computers published a report [20] defining the concept of the embedded network,
EmNet, as a network of heterogeneous computing devices pervasively embedded in the envi-
ronment of interest. Since that time, the term wireless sensor network (sensor network, for
short) has evolved to describe such systems and research abounds in academic and commer-
cial environments. Improvements in Micro Electro-Mechanical Systems (MEMS) technology
is producing, at rapidly decreasing cost, smaller and smaller self-powered devices that can
sense, compute, calculate, and communicate [28]. These devices have come to be called sen-
sor motes and serve as nodes in a sensor network. As these new motes are severely energy
constrained, they cannot transmit over long distances. Much current research is concluded
with forming multi-hop networks, to send information to and from the network motes where
no single mote need transmit any farther than to nearby motes.

As technology improves, computing and communicating capabilities are expected to im-
prove at an accelerating rate and new techniques for supplying energy will significantly re-
duce the low power constraint [1, 8, 34]. Increased capabilities will be possible and futurists
predict that societies of machines will evolve to be autonomous, cooperative, fault-tolerant,
self-regulating, and self-healing [28]. Due to the limited resources of available motes, most
current implementations of sensor networks are composed of a small number of motes that
collect simple sensory values and report these values to a central entity, sometime called the
end-user. In the past few years we have witnessed the deployment of sensor networks in
support of a growing array of applications ranging from smart kindergarten [35], to smart
learning environments [4], to habitat monitoring [25, 36], to environment monitoring [16], to
wildfire prevention and monitoring [6], to undergraduate education [11], among others. These
prototypes provide solid evidence of the usefulness of sensor networks and suggest that the
future will be populated by pervasive sensor networks that will redefine the way we live and
work. Tt is, thus, to be expected that in the near future, in addition to the examples above, a
myriad of other applications including battlefield command and control, disaster management
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and emergency response, will involve sensor networks as a key mission-critical component.

The massive deployment of sensors, combined with the lack of individual IDs, a modest
energy budget, and — in many applications — a hostile environment, pose daunting challenges to
the design of protocols for sensor networks. For one thing, the limited energy budget mandates
the design of ultra-lightweight communication protocols. Likewise, issues concerning how the
data collected by individual sensors may be queried and accessed and how concurrent sensing
tasks can be performed internally are of particular significance. An important guideline in
this direction is to perform as much local data processing at the sensor level as possible,
avoiding the transmission of raw data through the sensor network. Indeed, it is known that
it costs 3J of energy to transmit 1Kb of data a distance of 100 meters. Using the same
amount of energy, a general-purpose processor with the modest specification of 100 million
instructions/watt executes 300 million instructions [26].

As a consequence, the sensor network must be multi-hop and only a tiny minority of the
sensors count the sink among their one-hop neighbors. For reasons of scalability, it is assumed
that no sensor knows the topology of the network.

1.1 Interfacing sensor networks

There are several possible techniques available for interfacing sensor networks to the outside
world and for harvesting the data they produce. Perhaps the simplest involves using one or
several sinks — special long-range radios — deployed alongside with the sensors. Each sink has
a full range of computational capabilities, can send long-range directional broadcasts to the
sensors at distance at most R (see Figure 2), can receive messages from nearby sensors, and
has a steady power supply. In this scenario, the raw data collected by individual sensors is
fused, in stages, and forwarded to the nearest sink that provides the interface to the outside
world. Such a scenario, involving three sinks A, B, and C, is depicted in Figure 1.

Fig. 1. Illustrating a multi-sink sensor network.

1.2 QOwur contribution

While some applications require sensory data with exact geographic location, motivating
the development of communication protocols that are location aware and perhaps location
dependent, in most applications, exact geographic location is not necessary: all that individual
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sensors need is coarse-grain location awareness. There is, of course, an obvious trade-off:
coarse-grain location awareness is lightweight but the resulting accuracy is only a rough
approximation of the exact geographic coordinates [22, 37].

The random deployment implies that the sensors are initially unaware of their exact loca-
tion. Further, due to limitations in form factor, cost per unit and energy budget, individual
sensors are not expected to be GPS-enabled; moreover, many application environments limit
satellite access. It follows that the sensors have to learn either their exact geographic loca-
tion (if specifically required by the application) or else a coarse-grain approximation thereof.
The former task is referred to as localization and has received a good deal of well-deserved
attention in the literature [15, 21]. The latter task, referred to as training was extensively
discussed by Olariu et al. [22] and Wadaa et al. [37], who proposed elegant training proto-
cols for sensor networks. However, these protocols assume that the sink and the sensors are
somehow synchronized. While a number of synchronization protocols have been published
in the literature [22, 30, 31], synchronization is an additional overhead that makes training
unnecessarily complicated.

The main contribution of this work is to propose a fully asynchronous training protocol
for massively-deployed sensor networks. The sensors wake up according to their internal
clock and are not engaging in a synchronization protocol with the sink. Our protocol is
truly lightweight and simple to implement. We show analytically that in spite of the lack of
synchronization, individual sensors are trained very efficiently. Extensive simulation results
have confirmed that our asynchronous training protocol is energy efficient, each sensor being
awake for a total time interval that is proportional with its wake-to-sleep ratio.

The remainder of this paper is organized as follows. Section 2 discusses the sensor model
used throughout the work. Section 3 introduces the task of training — that is, endowing
individual sensors with coarse-grain location awareness. Section 4 is the backbone of the
entire paper, presenting the theoretical underpinnings of the asynchronous training process.
Section 5 presents the simulation model and the simulation results. Finally, Section 6 offers
concluding remarks.

2 The sensor model

We assume a sensor to possess three basic capabilities: sensory, computation, and wireless
communication. The sensory capability is necessary to acquire data from the environment; the
computational capability is necessary for aggregating data, processing control information,
and managing both sensory and communication activity. Finally, wireless communication
is necessary for sending/receiving aggregated data and control information to (from) other
sensors or the sink.

We assume that individual sensors are tiny, mass-produced devices that operate subject to
the following fundamental constraints.

a. Sensors are anonymous — they do not have or need individually unique IDs,
b. Each sensor has a modest non-renewable energy budget,

c. In order to save energy, sensors are in sleep mode most of the time, waking up for short
intervals,
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d. Each sensor has a modest transmission range, perhaps a few meters. This implies that
out-bound messages can reach only the sensors in its proximity, typically a tiny fraction
of the sensors deployed,

e. Individual sensors must work unattended — once deployed it is either infeasible or im-
practical to devote attention to individual sensors.

It is worth mentioning that while the energy budget can support short-term applications,
sensors dedicated to work over extended periods of time may need to scavenge energy from the
specific environment they are placed into, employing light, temperature, vibration, kinetics,
magnetic fields, etc. [27, 29].

3 Training a sensor network

Throughout this work, we assume an autonomous sensor network where a number of sinks
provide local aggregation points for the data collected by the individual sensors. Each sink
organizes the sensors in a disk of radius R into an autonomous, short-lived sensor network as
illustrated in Figure 2.

Fig. 2. Illustrating autonomous sensor networks, each trained by a sink.

For ease of understanding we shall present the training processed centered at one of the
several sinks in the deployment area. It is important to understand that each sink is engaging
in the training process either independently of other sinks or in a concerted effort. Figure 2
shows three sinks, each training independently the sensors in its neighborhood.

The task of endowing sensors with coarse-grain location awareness, task referred to as
training, is essential in numerous applications. One example is clustering where the set of
sensors deployed in an area is partitioned into clusters [2, 3, 10, 32]. As a result of training, we
impose a coordinate system onto the sensor network in such a way that each sensor belongs to
exactly one sector. The coordinate system divides the sensor network area into equiangular
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wedges. In turn, these wedges are divided into sectors by means of concentric circles or coronas
centered at the sink and whose radii are determined to optimize the transmission efficiency
of sensors-to-sink transmission as will be discussed later. Sensors in a given sector map to a
cluster, the mapping between clusters and sectors is one-to-one.

Olariu et al. [22] argue that training is a very effective and lightweight clustering strategy.
This follows immediately from the fact that sensors in a given sector map to a cluster, the
mapping between clusters and sectors is one-to-one. A cluster is the locus of all the sensors
that have the same coordinates in the dynamic coordinate system of Figure 3. It is also worth
noting that as a result of training, the sensors acquire a rough location awareness (modulo
the sector to which they belong) as well as a form of collective identity [22].

Fig. 3. Illustrating the dynamic coordinate system.

Referring to Figure 3, the task of training a sensor network involves establishing:

Coronas: The deployment area is covered by k coronas determined by k concentric
circles of radii 0 < 71 < 79 < --- < 1, = R centered at the sink.

‘Wedges: The deployment area is ruled into a number of angular wedges centered at
the sink. Wedges are established by directional transmission [22].

As illustrated in Figure 3, at the end of the training period each sensor has acquired two
coordinates: the identity of the corona in which it lies, as well as the identity of the wedge
to which it belongs. Importantly, the locus of all the sensors that have the same coordinates
determines a cluster.

4 The asynchronous training protocol

The main goal of this section is to discuss the details of our efficient asynchronous training
protocol for a collection of sensors deployed uniformly at random in a disk of radius R centered
at a local sink.

The idea of the protocol is as follows. Immediately after deployment, the sink repeats the
transmission cycle illustrated in Figure 4. Assuming that k& coronas C1,Cs,...,Cy have to
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Fig. 4. Illustrating four sink transmission cycles.

be established, the sink transmission cycle involves k broadcasts at successively lower power
levels. The sink starts out by transmitting at the highest power, sufficient to reach the sensors
in the outmost corona Cf; next, the sink transmits at a power level that can be received in
corona Cj_1 but not C). This is, then, continued until in the sink transmits at a power level
that can be received only by the sensors in corona Cfj.

4.1 Selecting optimal sensor parameters

Each sensor alternates between sleep periods and awake periods. Referring to Figure 5, the
sensor sleep-awake cycle is of total length L: the sensor is in sleep mode for L — d time and in
awake mode for d time units. Sink-cycles and sensor cycles will be referred to, respectively,
as k — cycles and s — cycles.

sleep awake sleep awake sleep awake
[ L—d 1d ] L—d d] e e e | L—d 1 d ]
L L L
sensor cycle

Fig. 5. Illustrating the sensor sleep-awake cycle.

Since wedge training is similar (in fact, simpler than corona training), in the remainder of
this section we focus on corona training only. The goal is to guarantee that each sensor is
corona-trained within n, (n > 1), s-cycles regardless of the moment when it wakes up for the
first time. We propose to derive mathematical expressions that allow a sensor to tailor both L
and d (as functions of n and k) in such a way as to achieve this goal as efficiently as possible.

To begin, observe that since a sensor is awake for d time units per s-cycle, the smallest value
of d that guarantees that the sensor can be trained in n s-cycles is

-4 o
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Fig. 6. Illustrating Theorem 1 for n = 3.

To simplify the notation, in the remainder of this section we assume that % is an integer.
Referring to Figure 6(a) assume, without loss of generality, that the first k-cycle begins at time
0 and that for some arbitrary z, the sensor wakes up = time units after the beginning of the
k-cycle. With this assumption, it is easy to confirm that the n awake periods Ay, As,... A4,
of the sensor are given for 1 <i <n by

A=z +iL,z +iL +d]. (2)

By projecting each of these intervals onto the generic interval [0, k] of length k we obtain a

new sequence A;, Ay, ... A, of intervals such that for (0 <i <n —1)
A; = [(z+iL) mod k, (z +iL + d) mod k] . (3)

We note that the A;’s are modulo intervals in the sense that there may be a jump from the
end of the generic interval to its beginning. Nonetheless, as we shall see this phenomenon
does not create any difficulties.

In order to optimize coverage, we insist that the rightmost endpoint of the modulo interval A;
coincide with the left endpoint of the modulo interval A; ;. In other words, we are interested
in determining L in such a way that

(x+iL+d)mod k= (z+ (i + 1)L) mod k. (4)

In turn, (4) implies that
L — d = 0(modk)

or, equivalently,
L=mk+d (5)
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for some natural number m.
Now, replacing the value of L suggested by (5) into (3) we obtain a new form for the modulo
intervals A;. Specifically, we can write

A; = [(x +id) mod k, (z + (i + 1)d) mod k] . (6)

It is also easy to confirm that by virtue of (4) the union of the A;s covers the generic interval
[0, k] of length k. Thus, we have proved the following important result.

Theorem 1 Given that d = %, a sufficient condition for training a sensor in n s-cycles
regardless of the first wakeup time is that L = mk + % for some arbitrary natural number m.

To help the reader visualize what is going on, suppose that n = 3, and refer to Figure 6.
The goal is to train the sensor in 3 s-cycles regardless of its first time x when it wakes up.
Figure 6(a) illustrates the s-cycle as well as the wake-up periods in heavy lines. Figure 6(b)
shows that the projections of Ay, Ay and A3z cover the interval [0, &].

5 Simulation results

Our simulation is implemented using PARSEC, a discrete-event simulator developed at UCLA.
In our simulation, 1000 sensors are deployed uniformly at random in a field of size 640m x
640m. A sink node is placed in the middle of the field at (320, 320). The number k of coronas
is 32 and each corona has a width of 10 meters. Hence, the length of a k-cycle is 32 time slots
(a slot is 10 milliseconds). The sink transmits a beacon at a different power level repeatedly
as shown in Figure 4. Each beacon contains the current corona number. The sensors wake
up at random to simulate the asynchronous effect. For each sensor, the first wakeup time is
generated uniformly at random in the interval (0,7"), where T' = 32 (in fact, for the purpose of
the simulation, T is taken to be 320,000 because the time unit is taken to be the microsecond,
so T is equal to 32 time slots). Hence, each sensor nodes will wake up at a random time
between between that first and the 32-nd time slot.

After wakeup, each sensor listens for d time slots and then goes back to sleep for L — d
time slots. The sensor is trained if it hears the beacon in some slot s but not in slot s + 1. If
so, the corona number advertised in slot s is the corona number of the sensor and the sensor
node is trained by the sink node. The only exception is a sensor in corona C that will hear
a transmission both in slot s and s+ 1 except that the received power in s+ 1 is larger than
in s.

By equation (1) in Subsection 4.1, if we want all sensors to be trained in 3 s-cycles, i.e,
n = 3, then d must equal 11. If we choose m = 2, then by Theorem 1, the length L of
the s-cycle will be L = mk + d = 75 and the total time to train all the sensor nodes will
be 2L + k 4+ d = 150 + 32 + 11 = 193 time slots. Our simulation confirms our theoretical
prediction as showed in Figure 7.

From Figure 7, one can see that the nodes are evenly trained in the 3 s-cycles. More
specifically, in the first training interval, approximately 33.3% of the nodes are trained. The
same percentage of the nodes is trained in the second and the third training intervals. In the
figure, the first training interval is from 11 to 43 because each sensor wakes up randomly at
a time between 0 and 32 time slot and listens for 11 time slots. In the first training interval,
the earliest time that a node is trained is at time 11 and the latest time is 43. In the second
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Fig. 7. Illustrating three s-cycle training.

training interval, the earliest time that a node is trained is at time 11475 = 86, the latest
time is 43+75 = 118, and so on.

Figures 8 and 9 show the total training time (in slots) with the different values of d (the
value of L remain fixed at 75). It is clear that 11 is the optimal value for training the nodes.
Indeed, if d is smaller than 11, then it takes much longer to train the sensors. The overall
awake time is larger than 33 (33 is the overall awake time for 3 s-cycles when d = 11). For
instance, in Figure 8 we can see that if d = 5, the total time slots needed to train the sensor
nodes is around 1500 (20 s-cycles), which requires overall 100 (20*5) awake time slots to train
the sensor nodes. On the other hand, if d is larger than 11 (see Figure 9), the overall awake
time is still larger than 33 because a larger awake interval does not help much. For instance,
when d = 21, the sensor nodes need 2 s-cycles to get trained, which makes the overall awake
time equal to 42.

Varying awake time interval (L = 75)

2000
1500

1000 \
- \\\0—0—0—0—\_._‘_‘+

3 7 11 15 19 23 27 31

Total time (in slots)

Awake time interval (d)

Fig. 8. Varying awake time interval — the overall picture.

Figure 10 shows that the length of s-cycle is also very important for node training. The
larger is the greatest common divisor of L and k, the worse for training the sensor nodes. For
example, if L = 104 and k = 32, the greatest common divisor of L and k is 8, which means
the sensors has to be trained in 4 s-cycles. Any sensor is not trained in 4 s-cycles will never
be trained. It is illustrated in the Figure 10 that only 37.5% and 62.5% nodes are trained
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Varying awake time interval (L = 75)
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Fig. 9. Varying awake time interval — the details.

when d = 3 and d = 5, respectively. This makes sense because only 37.5% and 62.5% of 32 is
covered in 4 s-cycles when d = 3 and d = 5, respectively. In this case, d has to be at least 8
to cover 32 in 4 s-cycles and all nodes will be trained.

4 s-cycle training (L = 104)
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Fig. 10. The importance of the s-cycle length.

Our simulation results show that if &k is known, we can decide the number n of s-cycles needed
to train the sensors and we can compute the optimal values of d and L s a function of both n
and k, using Theorem 1. However, if k is not known in advance, we are not able to compute
the optimal value of d and L. One important conclusion that the simulation reveals is that
the value of L should be a prime number in order to minimize the greatest common divisor
of L and k.

6 Concluding remarks

The main contribution of this work was to propose an asynchronous training protocol for
sensor networks. We showed analytically that in spite of the lack of synchronization, individual
sensors are trained energy-efficiently. The analytical results have been confirmed by extensive
simulation.

A number of problems remain open. First, the training protocol can be further improved
by reducing the amount of time that a sensor needs to be awake. There is a trade-off here:
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the synchronous training protocol of Wadaa et al. [37] requires individual sensor to be awake

for only logk time (which may be shorted than d) but consumes a lot of energy in both

synchronization and the toggling between sleep and wake periods [39]. Our protocol may

force sensors to be awake for longer periods but avoids frequent transitions from sleep to

wake periods. Striking the right balance between the two promises to be an exciting area of

further work.
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