
Journal of Mobile Multimedia, Vol. 2, No. 2 (2006) 098–111
c© Rinton Press

CONTENT ADAPTATION BASED APPROACH FOR
UBIQUITOUS MULTIMEDIA

HAIPENG WANGa

School of Computer Science, Northwestern Polytechnical University
Xi’an, 710072 Shaanxi, P.R.China

whp box@hotmail.com

ZHIWEN YU

Information Technology Center, Nagoya University
Nagoya, Japan

zhiwen@itc.nagoya-u.ac.jp

XINGSHE ZHOU, TAO ZHANG, DONG XIANG

Northwestern Polytechnical University
Xi’an, 710072 Shaanxi, P.R.China

Received March 1, 2006
Revised April 18, 2006

Content adaptation is playing an important role in ubiquitous multimedia, however
it is a challenging work due to the high degree of dynamism and heterogeneity of the
ubiquitous computing environments, where hundreds of devices provide information, and
thousands of terminals access these information. Recently, some researchers proposed
to address this issue by dynamically organizing services or components into customized
applications at runtime. However, due to the maintenance of the dependencies between
services or components, this kind of system becomes more complicated with the growth
of the system scale. Programming for these systems is also error-prone. This paper
discusses the issues of content adaptation based approach for ubiquitous multimedia,
and presents a prototype system, called UbiCon system. By abstracting media streams
into generic CONTENT entities, the system provides a simple and powerful means for
services to operate media stream. The CONTENT is dynamically created by the system
at runtime, and essentially has local association with related services. As a result, the
CONTENT is also used as a loosely coupling method for cooperating associated services.
By abstracting services with a T model, the services can effectively cooperate together
with other services. As a result, a collection of sophisticated applications can be built
with this simple and effective services model.

Keywords: ubiquitous multimedia, ubiquitous computing, content adaptation

Communicated by : I. Ibrahim

1 Introduction

There is an explosive growth in the number of ubiquitous multimedia sources, such as the
powerful general-purpose servers providing HTTP streams or audio/video streams, the fixed
sensors continuously generating traffic or weather information streams, and mobile devices

aP.O.Box 404, Northwestern Polytechnical Unversity, Xi’an 710072, Shaanxi, P.R.China.

98

H.-P. Wang, Z.-W. Yu X.-S. Zhou, T. Zhang, and D. Xiang 99

reporting position. On the other hand, with the vision of ubiquitous computing became reality,
people are living in an environment embodying a lot of networked computers, such as PDAs,
cellular phones, and smart appliances. People wish to access their desired information anytime
anywhere with their handy terminals [1]. However, with the difference in capabilities of
terminals and preferences of users, it becomes more difficult and complicated to serve suitable
media streams in server side [2, 3], or to provide adaptation supports in client side [27, 26],
which will result in fat server and fat client. Fat client is obviously not allowed for resource-
limited devices, such as PDAs, smart appliances, and laptops. Even for powerful resource-rich
servers, it is also unreasonable to design such fat server with endless requirements.

Performing adaptation in intermediary [25, 24] is a promising approach, which is more
suitable in ubiquitous computing environments. Several projects undertake this rationale [25,
23, 22], most of which adopt the approach of dynamically configuring components into an
application to fulfill the adaptation task. These components usually are composed into com-
ponents tree or components graph. With this structure, it is necessary for the system or
the application to maintain the dependencies between them, which is a complicated work.
Furthermore, with the growth of the system scale, it becomes more difficult to maintain these
dependencies, which in turn limits system’s flexibility and extensibility.

In another aspect, the dependencies between adaptive units, for example components
mentioned above or services, are usually specified in terms of the interfaces provided by them.
For instance, PCOM [22] specified dependencies in terms of the (Java) interfaces provided
by the component and the (Java) events that the component might signal. Because the
interaction between components is task-specific, the interfaces become component-specific,
which means that the components tightly couple to each other by these specific or private
interfaces. This characteristic of tightly coupling between adaptive units is not a good choice
in ubiquitous computing systems.

To address such issues, the approach being pursued by some research groups is based on
dynamic adaptation of the content to the specific terminals being used. Our approach follows
this philosophy and presents the distinctive aspects described below.

• Eliminate the maintenance of dependencies. This is achieved with CONTENT entity,
which is an abstraction of media stream flowing between services.

• Offer a loosely coupling mechanism between the services cooperating together to fulfill
an adaptation task. This is also achieved with CONTENT abstraction, with a distinct
feature of local view belong to related services (see Section 3).

• Provide a simple and powerful mechanism for composing multiple services into a sophis-
ticated adaptation application. This is achieved with the service T model.

The rest of this paper is organized as follows. Section 2 presents our approach. Section 3
introduces the fundamental conceptual models. Section 4 describes the prototype system of
UbiCon. Section 5 discusses the current status of our implementation. Section 6 discusses
related work. Section 7 concludes the paper by discussing the contribution of the paper and
future work.

100 Content Adaptation Based Approach for Ubiquitous Multimedia

2 Approach

The approach, presented in this paper, shares the philosophy of intermediary adaptation [25,
24]. Figure 1 shows the role of intermediary in adaptation systems. This model consists
of three major components, producer and consumer, media stream, and intermediary. The
producer and consumer are the origin and destination of media stream respectively. The media
streams are used to abstract media contents (e.g., text stream, audio/video stream). The
intermediaries are used to abstract the media operations (e.g., reducing the image resolution,
reformatting HTML files).

PRODUCERCONSUMER INTERMEDIARY

media stream media stream

Fig. 1. The intermediary model.

More importantly, this model presents a separation between the media streams and the
intermediaries. Based on this separation, the UbiCon, our prototype system, provides two
major abstractions for describing media streams, and services located in intermediaries. The
abstraction of media streams provides an identical interface for intermediaries to access these
streams, through which a collection of services can operate together in a loosely coupling
manner, which in turn reduces the overhead and complexity for maintaining the dependencies
between these services. Another abstraction concerns the composition of services, which
provides a mapping or binding from adaptation tasks or subtasks to services themselves.
This mapping also simplifies the management of adaptation tasks with a set of TupleSpace-
styled operations. For instance, whenever a service completes a content adaptation task
delegated to it, the service takes this task from a TupleSpace [20, 19, 18] by itself. By using
this mechanism, the UbiCon accomplishes some degree of automation of adaptation tasks
management.

3 Conceptual Model

In this section, we describe several fundamental models underlying the content adaptation
based approach.

3.1 Delivery Context

In the following description, the service refers to a combination of operations and data made
available to users through the network. Services available on the network are delivered by ser-
vice providers. Such services usually generate multimedia contents, e.g., text, images, audio
or video streams. End users consume those services through accessing terminals. The ac-
cessing device, or terminal refers to a ubiquitous device having certain hardware and software
characteristics. It is usually connected to a network. Accessing devices may be greatly differ
in their characteristics, since they usually fulfill different requirements, either technology or
usage driven.

Delivery Context refers to the set of parameters conditioning the way the user perceives
information through his/her terminal. In general, terminals can be described in terms of the
following characteristics:

H.-P. Wang, Z.-W. Yu X.-S. Zhou, T. Zhang, and D. Xiang 101

• Device capabilities. They describe the accessing attributes of ubiquitous devices,
which include the hardware attributes and software attributes. The hardware attributes
describe the physical structure and the inner constraints of a device, e.g., the maximum
screen resolution, the CPU speed, or the kind of input and output peripherals, and so
on. The software attributes describe the software capabilities of the terminal as well as
the programs installed on it, such as, the operating system, the availability of specific
applications (e.g., a presenter in speech, or Web browser) and interpreters (e.g., Java
Virtual Machine, or Macromedia Flash), and so on.

• Network attributes. They include parameters such as bandwidth, response time,
faults management policies, or security support.

• User preferences. They describe the personal expectations of certain users about
the way the content should be presented and, sometimes, about the content itself, e.g.
preferences about the presence of presentation in visual media (text, or html), or in
speech, as well as the subjects the user is most interested in (e.g., music, art, sports).

In order to be properly presented to end users, ubiquitous multimedia must be adapted
according to the current delivery context. By content adaptation we manipulates the structure
of a multimedia resource, such as Web pages or images, the selection of its content, or the
modification of the nature or the form of the content itself and its related resources. These
selection and modification activities often deal with deciding whether specific content elements
should be kept or discarded and, if they need to be adapted, what kind of adaptation should be
performed, e.g., to which extent to resize an image, without loosing the message it transmits.
Content adaptation is carried out by software entities, called adapting services, that are able
to perform actions on the content or on its subparts. The overall adaptation of a multimedia
is the result of basic adapting actions performed on each single content element of the whole
multimedia, according to a proper adaptation plan.

3.2 DTG: The Task Model

The Delegatable Task Graph (DTG) model describes a set of tasks and the dependencies
between them. These task are derived from an adaptation application. The delegatable task
means that this task can be delegated to and fulfilled by a service. The service is provided by
any services providers, and registers itself using UbiCon’s register system service. To make
this idea concrete, suppose a Web content adaptation application, where an HTML stream
flows from an HTTP server to a resource-limited PDA client. We assume that the PDA
is not able to deal with the table tags and the high quality images due to the restriction
of client’s capabilities and bandwidth. Now we can derive at least two delegated tasks.
First is the table-to-list task, which reformats the table tags to alternative list tags. Second
is color-to-gray task, which reduces the color space of image. Both of these tasks can be
delegated to related services registered in the UbiCon system. In this example, there are not
direct dependencies between these two tasks. However, if we derive two other tasks—HTML
stream producing task, and HTML viewing task—from this application, these will introduce
dependencies between the former two tasks and the later two tasks.

The DTG model is defined in a graph, which is composed of edges and nodes, where the
nodes represent delegated tasks, and the edges stand for dependencies between these tasks.

102 Content Adaptation Based Approach for Ubiquitous Multimedia

The DTG graph, depicted in Figure 2, is specified by G = (V, E) where G is the graph, V is
the set of nodes, and E is the set of edges that connect nodes.

V

V V

V

V

E
HTML Producer

Tab2List Img2Gray

HTML Viewer

E

Fig. 2. The DTG Model.

UbiCon describes the DTG graph in a graph markup and modeling language of XG-
MML [17] with some modifications. We use four major elements to describe a DTG graph—
graph, node, edge, and att. The graph element is the root element and it can contain node,
edge and att elements. The node element describes a node of a graph, and the edge element
describes an edge of a graph. Additional information for graphs, nodes and edges can be
attached using the att element. An example is illustrated in Figure 3. A traversal of the
nodes and edges makes a full DTG file used to specify the configuration for a collection of
services operating together to fulfill an adaptation application.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<graph d i r e c t ed=”1” id=”1”>

<node id=”1” l a b e l=””>
<a t t name=”” va lue=””/>
<a t t name=”” va lue=””/>

</node>
<node id=”2” l a b e l=””/>
<node id=”3” l a b e l=””/>
<node id=”4” l a b e l=””/>

<edge from=”1” to=”2”/>
<edge from=”1” to=”3”/>
<edge from=”2” to=”4”/>
<edge from=”3” to=”4”/>

</graph>

Fig. 3. An example of DTG graph.

3.3 CONTENT: The Media Stream Model

The content model is used to describe the media stream flowing in UbiCon system from one
service to another service, which provides a general view of a variety of media streams for
services. The content model provides an abstraction of CONTENT, which has two interfaces,

H.-P. Wang, Z.-W. Yu X.-S. Zhou, T. Zhang, and D. Xiang 103

outputstream, and inputstream as shown in Figure 4. The outputstream provides services
with an output media stream, with which services can write data into it. The inputstream

provides services with an input media stream, with which services can read data from it.

CONTENT
outputstreaminputstream

Fig. 4. The CONTENT Model.

Two distinct features of CONTENT are locality and dynamism. We illustrate them
through an example. Suppose an HTML format transcoding case. There are two services. One
is an HTML stream producer, which may be a proxy; the other is a table-to-list transcoder
service (tab2list). Whenever upon receiving a request from the tab2list service, the UbiCon
system creates a CONTENT entity dynamically at runtime, and returns it back to the caller
service. This CONTENT entity is only valid and meaningful for both tab2list and HTML
stream proxy; it is local to them, although there may exist other services in system, such as
an image compressing service. In summary, this CONTENT is local to certain services, and
is dynamically created at runtime. There are no constant and global CONTENT entities in
the UbiCon system.

3.4 T: The Services Model

The T model describes the services running in the UbiCon system, which draws a skeleton
for these services. As illustrated in Figure 5, the T model consists of three major interfaces,
namely them top interface, readstream interface, and writestream interface. The top inter-
face is responsible for the interaction with the DTG model, such as reading a delegatable
task from the DTG graph at the initial phase, removing the delegatable task from the DTG
graph after it is completed, and writing new extended tasks into the DTG graph. Both
the readstream and writestream interfaces are responsible for the access to the CONTENT
entity of the content model, such as reading table parts from an HTML stream through a
CONTENT entity, and writing new or reformatted content into an HTML stream through a
CONTENT entity. From the architecture point of view, the T model is the glue or the bridge
between the DTG model and the content model.

SERVICE
readstreamwritestream

top : {read, take,write}

Fig. 5. The T Model.

The T model provides a simple and powerful mechanism for building a collection of sophis-
ticated adaptation applications. This simplicity is important for developing large systems,
including our UbiCon system.

104 Content Adaptation Based Approach for Ubiquitous Multimedia

3.5 Putting It All Together

Figure 6 shows that how these three models work together to fulfill a common adaptation
task. The T model interacts with the DTG model through its top interface. For example,
an instance of the T model may read, take, or write a task from the DTG. The writestream

and readstream, interfaces of the T model, bind to the outputstream and inputstream,
interfaces of the CONTENT model, respectively. The ubiquitous multimedia flows into or out
the CONTENT entity through the outputstream or the inputstream interfaces, and accepts
appropriate adaptation at various T service entities. Different T services make virtual binding
through the CONTENT entity between them.

V

V V

V

V

E

CONTENT
outputstreaminputstream

SERVICE SERVICE
readstreamwritestream readstreamwritestream

virtual binding

binding binding
take

read

Fig. 6. Three Models Working Together.

4 UbiCon: The Prototype System

The UbiCon system is a flexible system, which adopts the content adaptation based ap-
proach to providing a ubiquitous multimedia environment. This system includes three major
components, DTG, CONTENT, and session manager. The DTG component manages the
adaptation tasks and the dependencies between them. The CONTENT component provides
an abstraction of media stream, called CONTENT entity, and a set of operations on it. With
these operations, the CONTENT provides a kind of cooperating mechanism for services. The
session manager is responsible for local and transient managing. Figure 7 depicts the major
functional components of the UbiCon system.

CLIENT SERVER

DTG

SE
SS

IO
N

M
A

N
A

G
E

R

T SERVICES POOL

LOOKUP REGISTER

CONTENT

requirements
preferences
capabilities

Fig. 7. The UbiCon Architecture.

H.-P. Wang, Z.-W. Yu X.-S. Zhou, T. Zhang, and D. Xiang 105

4.1 The DTG

The DTG has two major functions, tasks and dependencies representation and tasks manage-
ment. The DTG achieves them using an XGMML-based task representation and a TupleSpace-
based management.

For tasks and dependencies representation, the DTG is realized as a data repository, which
is made up of a collection of delegatable tasks. These tasks are derived from user’s require-
ments based on user’s preferences and client’s capabilities. The DTG describes these tasks in
an XGMML language, and arrage them into a graph structure, in which nodes and edges are
the tasks and dependencies between nodes respectively. The tasks are specified in terms of
interfaces, by which these tasks would be delegated to associated services implemented that
interfaces. Figure 8 shows an example of DTG.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<graph d i r e c t ed=”1” id=”1”>

<node id=”1” l a b e l=”HTMLProducer”>
<a t t name=” i n t e r f a c e ”

va lue=”ubicon . HTMLProducerProxy”/>
<a t t name=”outputStream ”

va lue=”ubicon . Content .HTMLStream”/>
</node>
<node id=”2” l a b e l=”Tab2List”>

<a t t name=” i n t e r f a c e ”
va lue=”ubicon . Tab2List”/>

<a t t name=” inputStream”
va lue=”ubicon . Content .HTMLStream”/>

<a t t name=”outputStream ”
va lue=”ubicon . Content .HTMLStream”/>

</node>
<node id=”3” l a b e l=”Img2Gray”>

<a t t name=” i n t e r f a c e ”
va lue=”ubicon . Img2Gray”/>

. . .
</node>
<node id=”4” l a b e l=”HTMLViewer”>

<a t t name=” i n t e r f a c e ”
va lue=”ubicon . HTMLViewerProxy”/>

. . .
</node>

<edge from=”1” to=”2” weight=”0”/>
<edge from=”1” to=”3” weight=”1”/>
<edge from=”2” to=”4”/>
<edge from=”3” to=”4”/>

</graph>

Fig. 8. An example of DTG.

For the tasks management, the UbiCon realizes the DTG repository as a TupleSpace. With

106 Content Adaptation Based Approach for Ubiquitous Multimedia

such design, the session manager (subsection 4.3) and services are capable of performing a
set of TupleSpace-styled read, take, and write operations on tasks. These TupleSpace-styled
operations are very useful for the management of the DTG repository, since it does not demand
a centralized manager all time. As a result, the UbiCon system produces better performance.

4.2 The CONTENT

The CONTENT component essentially provides a cooperating mechanism, which is a data-
based mechanism in the UbiCon system. A collection of services work together by operating
on an media stream. The operations can be divided into two categories. The first kind is access
operations, including get an inputstream and get an outputstream from a CONTENT entity,
and the second one is task-specific operations, such as format transcoding, image resizing,
and text-to-speech translation. The first kind of operations are provided by the system—the
CONTENT entity, and the second kind of operations are implemented by services themselves,
which are out of control of the system.

The UbiCon realizes CONTENT using a TupleSpace. Upon receiving a request from the
caller services, the CONTENT entity will provide them with an media stream, inputstream or
outputstream, only if the system can create one at this moment. For a text-to-speech example,
if and only if the text-to-speech service writes an outputstream into system’s CONTENT Tu-
pleSpace, the speech player can only get a speech stream. Otherwise, the caller services would
be blocked on this CONTENT entity, until a valid CONTENT entity is created successfully,
or becomes active.

For services blocked on a CONTENT entity, there will raise a contention or conflict for
this CONTENT entity resource. For example, both blocked services, HTML-to-text and
table-to-list, will be notified, when a valid CONTENT entity appears. The UbiCon system
resolves this conflict by checking the DTG with the weight attributes associated with the edge
elements. The task and its corresponding services owing high weight would win the race.

4.3 The Session Manager

The session manager component plays the role of local manager. It initializes a session, and
provides local ID management, such as service ID, and CONTENT ID. The main purpose of
local ID is to improve the performance of the UbiCon system. Another responsibility of session
manager is to monitor the availability of services. When a service becomes unavailable, the
session manager will perform a lookup procedure to find another substitute. The detecting
of an unavailable service is realized using the soft-state mechanism, in which a heart-beat
message sent by the runtime system.

4.4 Other System Components

The UbiCon system also contains a few system components and system services. We describe
them briefly as follows.

• The T Services Pool. This pool contains a collection of services running in the system.
These services are composed into an adaptation application by using the T model. Due
to the supports provided by both the CONTENT model and the T model, these services
are cooperating together in a loosely coupling manner.

H.-P. Wang, Z.-W. Yu X.-S. Zhou, T. Zhang, and D. Xiang 107

• Lookup Service. This system service provides services lookup function by using a
template-based matching mechanism. The template consists of interface, attributes,
and service ID.

• Register Service. This system service provides services registering function. The reg-
istering information contains services’ interface and additional optional attributes used
to provide further detailed information.

4.5 The Programming Model

Briefly, we present the programming model concerning with CONTENT entity and DTG. The
Figure 9 shows the programming model of the DTG, and the Figure 10 shows the programming
model of the CONTENT entity.

public I n t e r f a c e Template {
public ID id ;
public java . lang . Clas s [] types ;
public Entry [] a t t r ibuteSetTemplates ;

Template (
ID id ,

java . lang . Clas s [] types ,
Entry [] a t t rSetTemplates) ;

}

public ServiceTemplate implements Template ;

getDTG(int id) . read (ServiceTemplate tmpl) ;
getDTG(int id) . take (ServiceTemplate tmpl) ;
getDTG(int id) . wr i t e (ServiceTemplate tmpl) ;

Fig. 9. The Programming Model: DTG.

public ContentTemplate implements Template ;
Content content ;
content = getContent (ContentTemplate tmpl) ;
content . getInputStream () ;
content . getOutputStream () ;

Fig. 10. The Programming Model: CONTENT.

5 Implementation

Currently, two preliminary adaptation applications are conducted. One application is the
Information browsing with PDA and large screen displayer (PDP: plasma display 61”), an-
other is the presenting of HTML files using the transcoding from text to speech in special
environments, where visual presenting is not allowed, such as car driving environment.

Our prototype is based on Jini V2.0 [15, 16], JavaSpaces V2.0 [14, 13], and J2SE V1.4.
We use the JavaSpaces to construct and store both the DTG graph and CONTENT entities,

108 Content Adaptation Based Approach for Ubiquitous Multimedia

and use the Jini to build the system services of lookup and registration. We build a simple
parser program which parses the DTG files and puts them into the DTG JavaSpaces.

The application of information browsing with PDA and PDP is used to verify the basic
functions of the UbiCon system. The information, including environmental light and volume,
object location, and background map, is captured by a sensor network from environment,
which may be a battlefield or a district of city. Users may access these information with their
appropriate ubiquitous devices, for instance a soldier with a handy PDA, or an army leader
with the PDP in control center. Due to the differences between PDA and PDP in their capa-
bilities, the content adaptation need to be carried out according to accessing terminals. The
raw information, from the sensor network, is coded into XML, and then two services, xml2txt
and xml2rtf, are used to perform content adaptation. Both of the services are implemented
as Jini services. The xml2txt service transcodes the XML format into text format, which
is appropriate to presented in the soldier’s PDA (Figure 11). The xml2rtf service as many
information as possible (location, light, and volume), and also the background map into the
final result, which is presented in the army leader’s PDP (Figure 12).

Fig. 11. PDA Screen Shot.

In this application, we deployed two services in two PCs. An IBM x-series-235 server
runs a session manager and the system services of lookup service and register service. Both
JavaSpaces-based DTG and CONTENT entities are also deployed in this server. After the
xml2txt and xml2rtf services startup, they registered them in the system’s register service.
The session manager begins to work by checking the information stored in DTG, and then
it lookups the relevant services, xml2txt and xml2rtf, and notifies them to work together to
perform content adaptation. Both of these services get their valid CONTENT entities or
block on them, until they complete successfully. After complete their works, the services take
their tasks from DTG JavaSpaces without the participating of session manager. Finally, the
session manager does some clear up work.

The application of presenting HTML with speech is used to verify the ability of the Ubi-
Con system to do dynamic content adaptation. This application is assumed to perform in
special situations, such as in driving a car, where visual Web browsing is dangerous. By in-
serting these information into DTG JavaSpaces at run time, the session manager can enable

H.-P. Wang, Z.-W. Yu X.-S. Zhou, T. Zhang, and D. Xiang 109

Fig. 12. PDP Screen Shot.

a new adaptation task dynamically. A text-to-speech service is started and begins to per-
form work, which is similar to xml2txt or xml2rtf. The text-to-speech service is built using
the FreeTTS [12] with some modifications. As the first step of our research, the changes of
adaptation context, such as the changes of environments, are input into the system in an
interactive manner. We are in the progress to automate it.

The initial experience shows the effectiveness of the UbiCon system. However, it is also
clear that more adaptation services are needed to be built, in order to provide sophisticated
adaptation applications.

6 Related Works

A significant effort has been spent in the last few years on providing content adaptation,
and many different solutions have been proposed. Odyssey [11, 10] is an early work in the
adaptation field. In Odyssey, clients can guide applications in changing their behavior so that
they use less of a scarce resource. This change usually reduces the user-perceived quality, or
fidelity.

Puppeteer [9] is a system for adapting component-based applications in mobile environ-
ments, which implements adaptation by using the exposed APIs of component-based appli-
cations, enabling application-specific adaptation policies without requiring modifications to
the application. With the restriction of component-based approaches by nature, Puppeteer
is limited its usage to component-based applications with exposed APIs. It is also difficult
to program with Puppeteer, because for adapting a new application, Puppeteer needs to
implement associated drivers, policies, and transcoders, all of which are non-trivial.

PCOM [22] is a light-weight component system supporting strategy-based adaptation in
spontaneous networked ubiquitous computing environments. It offers application program-
mers a high-level programming abstraction which captures the dependencies between com-
ponents using contracts, by which PCOM supports automatic adaptation in cases where the
execution environment changes to the better or to the worse.

The @Terminals [23] is an extensible infrastructure for universal access to Web contents

110 Content Adaptation Based Approach for Ubiquitous Multimedia

and services, which supports both dynamic adaptation of contents and services based on
terminals capabilities. For content adaptation @Terminals is able to manipulate the structure
of a Web resource, select its content, or modify the nature or the form of the content itself
and its related resources. For service adaptation @Terminals supports the modification the
services performed by the service providers.

The CAP [21] is a modularised and scalable architecture that provides content adaptation
for both Web-related data and arbitrarily complex data. The architecture can be used as part
of many client-server applications, not just Web browsers.

The Espial Escape Web browser [27] is a device-specific Web browser that is executed
directly on the user terminal and carries out basic resources adaptations, such as rescaling of
images or shrinking of documents. A similar approach can also be found in the Device Mosaic
Web browser [26] by OpenTV.

7 Conclusions

This paper presents a content adaptation based approach to ubiquitous multimedia, and a
prototype system, called UbiCon. Two distinct features of the UbiCon system are adaptation
tasks management and dependencies-maintaining-free mechanism. They are implemented by
abstracting media streams into generic CONTENT entity, and by abstracting services with
the T model. Based on these two models, the UbiCon provides a simple and powerful means
for services to operate media stream, and the services can effectively cooperate together with
other services. The prototype implementation and two experiments verified the effectiveness
of the UbiCon system. As a result, a collection of sophisticated adaptation applications can
be built with the UbiCon system.

Future work can move towards a further extension of the prototype system for supporting
the management of quality of service. Another area of interest can be the adaptation and
composition of Web services, for the dynamical provision of high value services. Finally, higher
quality adaptation could be achieved leveraging on emerging technologies and standards for
content description, such as the semantic Web and ontologies [6, 5, 4].

References
1. Z. W. Yu and D. Q. Zhang (2006), Middleware Support for Context-Aware Ubiquitous Multimedia

Services, chapter 32 in the book of Handbook of Research on Mobile Multimedia, edited by I. K.
Ibrahim, Idea Group Inc., pp. 476-490.

2. V. Korolev and A. Joshi (2001), An End End Approach to Wireless Web Access, Proceedings of
the International Workshop on Wireless Networks and Mobile Computing.

3. D. Q. Zhang and C. Y. Chin and M. Gurusamy (2005), Supporting context-aware mobile ser-
vice adaptation with scalable context discovery platform, Proceedings of the IEEE 61st Vehicular
Technology Conference (VTC2005-Spring), pp. 2859-2863.

4. M. C. Daconta, L. J. Obrst and K. T. Smith (2003), The Semantic Web: A Guide to the Future
of XML, Web Services, and Knowledge Management, Wiley Publishing, Inc.

5. G. Antoniou and F. V. Harmelen (2004), A Semantic Web Primer, MIT Press, Cambridge, Mas-
sachusetts.

6. U. Srinivasann and S. Nepal (2005), Managing Multimedia Semantics, IRM Press, USA, chapter
1, pp. 1-30.

7. C. Becker and G. Schiele (2003), Middleware and Application Adaptation Requirements and their
Support in Pervasive Computing, Proceedings of the 3rd International Workshop on Distributed
Auto-adaptive and Reconfigurable Systems at ICDCS, USA, pp. 98-103.

H.-P. Wang, Z.-W. Yu X.-S. Zhou, T. Zhang, and D. Xiang 111

8. C. Becker, G. Schiele, et al. (2003), BASE — A Micro-broker-based Middleware For Pervasive
Computing, Proceedings of the 1st IEEE International Conference on Pervasive Computing and
Communication (PerCom 2003), USA, pp. 443-451.

9. E. D. Lara, D. S. Wallach and W. Zwaenepoel (2001), Puppeteer: Component-Based Adaptation
for Mobile Computing, Proceedings of the 3rd USENIX Symposium on Internet Technologies and
Systems (USITS), California.

10. J. Flinn and M. Satyanarayanan (1999), Energy-Aware Adaptation for Mobile Applications, Pro-
ceedings of the 17th ACM symposium on Operating systems principles, USA, pp. 48-63.

11. B. D. Noble, M. Satyanarayanan, et al. (1997), Agile Application-Aware Adaptation for Mobility,
Proceedings of the sixteenth ACM symposium on Operating systems principles, France, pp. 276-
287.

12. FreeTTS, http://freetts.sourceforge.net.
13. P. Bishop and N. Warren (2002), JavaSpaces in Practice, Addison Wesley.
14. E. Freeman, S. Hupfer and K. Arnold (1999), JavaSpaces: Principles, Patterns, and Practice,

Addison Wesley.
15. Jini (1999), http://www.jini.org/.
16. Sun Microsystems, Inc. (2003), Jini Specifications v2.0.
17. XGMML (eXtensible Graph Markup and Modeling Language) XGMML 1.0 Draft Specification,

2001.
18. B. Johanson and A. Fox (2004), Extending tuplespaces for coordination in interactive workspaces,

Journal of Systems and Software, Special issue: Ubiquitous computing, Vol.69, No.3, pp. 243-266.
19. S. P. Wade (1999), An Investigation into the Use of the Tuple Space Paradigm in Mobile Computing

Environments, Master Thesis, Lancaster University.
20. D. Gelernter (1985), Generative Communication in Linda, ACM Transactions on Programming

Languages and Systems (TOPLAS), Vol.7, No.1, pp. 80-112.
21. T. Phan, G. Zorpas and R. Bagrodia (2002), An Extensible and Scalable Content Adaptation

Pipeline Architecture to Support Heterogeneous Clients, Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS 2002), pp. 507-516.

22. C. Becker, M. Handte, G. Schiele and K. Rothermel (2004), PCOM — A Component System for
Pervasive Computing, Proceedings of the Second IEEE Annual Conference on Pervasive Comput-
ing and Communications (PerCom 2004), pp. 67-76.

23. E. D. Nitto, G. Sassaroli1 and M. Zuccalà (2003), Adaptation of Web Contents and Services
to Terminals Capabilities: the @Terminals Approach, Proceedings of the 1st IEEE International
Conference on Pervasive Computing and Communication (PerCom 2003), pp. 433-440.

24. P. Maglio and R. Barrett (2000), Intermediaries Personalize Information Streams, Communica-
tions of the ACM, Vol.43, No.8, pp. 96-101.

25. R. Barrett and P. Maglio (1999), Intermediaries: An Approach to Manipulating Information
Streams, IBM Systems Journal, Vol.38, pp. 629-641.

26. Device Mosaic Web Browser, http://www.opentv.com/dm.
27. Espial Escape Web Browser, http://www.espial.com.
28. Anupam Joshi (2000), On Proxy Agents, Mobility, and Web Access, Mobile Networks and Appli-

cations, Vol.5, No.4, pp. 233-241.
29. R. Mohan, J. R. Smith and Chung-Sheng Li (1999), Adapting Multimedia Internet Content for

Universal Access, IEEE Transactions on Multimedia, Vol.1, No.1, pp. 104-114.

