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According to the advance of computer and network technologies, information systems are getting
scalable. Especially, peer-to-peer (P2P) overlay networks and Grid computing system are now tak-
ing a central position in information systems. In these systems, a large number of peer processes
are cooperating. In group communication, each peer process sends a message to multiple processes
while receiving messages from multiple processes. Here, messages transmitted are required to be
causally/totally delivered to every common destination of the messages. The computation and com-
munication complexity is O(n) to O(n2) for the number n of peer processes. In order to reduce
the overheads, a group is divided into smaller subgroups where processes exchange messages with
other subgroups only through gateway processes while processes directly exchange messages in each
subgroup. In this paper, we discuss a hierarchical group protocol aiming at reducing communication
and computation overheads for supporting a scalable group of cooperating peer processes. In tradi-
tional hierarchical group protocols, each subgroup communicates with another subgroup through a
single gateway communication link. A gateway communication link among subgroups implies perfor-
mance bottleneck and a single point of failure. In order to increase the throughput and reliability of
inter-subgroup communication, messages are in parallel transmitted in a network striping way through
multiple channels between multiple processes in the subgroups. We discuss a striping multi-channel
inter-subgroup communication protocol (SMIP). We evaluate SMIP in terms of stability of bandwidth
and message loss ratio and show how SMIP can support more stable bandwidth and message loss ratio.

Keywords: Distributed multimedia system, Group communication, Network striping, Hierarchical
group, Large-scale group

1 Introduction

Multimedia messages are exchanged among processes in distributed applications like teleconference,
video on demand (VoD), and video surveillance systems [4]. Each application requires a system to
support some quality of service (QoS) like bandwidth, delay time, and packet loss ratio. It is critical to
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discuss how to support each of huge number and various types of application processes with enough
QoS in change of network environments and requirements. In this paper, we discuss how to support
flexible group communication service of multimedia data for applications. In peer-to-peer (P2P) [21]
and Grid [11] computing systems, hundreds to thousands, possibly million number of peer processes
are cooperating, which are widely distributed in networks, by exchanging messages with each other
in networks.

Traditional communication protocols like TCP [23] and RTP [25] support processes with reliable
and efficient one-to-one transmission and one-to-many transmission of messages, respectively. Here,
a process can reliably and efficiently transmit messages to one or more than one process. Recently,
multiple connections are used to in parallel transmit messages from a process to another process in
network striping technologies [2, 8, 26] in order to increase the throughput. In PSockets [26], data is
divided into partitions and each partition is transmitted at a different socket. SplitStream [8] is a system
to distribute contents with high-bandwidth over peer-to-peer (P2P) overlay network. The multimedia
content is striped and distributed using separate multicast trees with disjoint interior nodes.

In group communications, a group of peer processes are cooperating by exchanging messages
while processes not only send messages to but also receive messages from multiple processes [6].
Various types of group communication protocols [6,13,28] are discussed to causally deliver messages
[19]. The communication overhead to exchange messages is O(n) to O(n 2) for the number n of
processes in a group. Here, every process directly sends a message to multiple destination processes
while receiving messages from multiple processes in a group. In order to reduce the communication
overheads, hierarchical groups are discussed where a group is divided to smaller subgroups. Each
subgroup can be furthermore divided to smaller subgroups. While directly exchanging messages
with the other processes in each subgroup, each process exchanges messages with other processes
only through a gateway process. Takamura et al. [30] discuss how to support the causally ordered
delivery of messages in a hierarchical group by using the vector clock. Here, a group is composed of
subgroups where processes in different subgroups exchange messages via gateway processes. Taguchi
et al. [28, 29] discuss multi-layered group protocols which adopt a vector clock whose size is the
number of processes in a subgroup. In Totem [18], messages are ordered by using the token passing
mechanism. The protocol cannot be adopted for a large-scale group due to delay time to pass a token
in rings. Kawanami et al. [15] discuss a hierarchical group where real-time clock is used to causally
deliver messages. The authors [20] discuss how to design a hierarchical group from a large number of
processes by using the k-medoid clustering algorithms [14]. Here, a hierarchical group is designed so
as to minimize the average delay time between processes.

In these hierarchical protocols, a gateway process in one subgroup exchanges messages with other
subgroups. Each gateway process implies not only performance bottleneck but also single point of
failure since every inter-subgroup message passes the gateway. In this paper, we discuss a hierarchical
group where a pair of subgroups are interconnected through multiple channels among multiple pro-
cesses in the subgroups to realize parallel, reliable network striping [26]. That is, a pair of subgroups
communicate with one another in the many-to-many type of communication. In addition, the number
of connections among subgroups can be dynamically changed, i.e. the more number of connections
are used, the higher bandwidth and reliability are supported for applications.

In section 2, we discuss a model of a hierarchical group. In section 3, we discuss inter-subgroup
communication in a hierarchical group. In section 4, we discuss how to design a hierarchical group
for a given set of processes distributed in networks. In section 5, we evaluate the inter-subgroup
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communication protocol in terms of bandwidth and message loss ratio compared with the one-to-
one communication and the hierarchical group in terms of delay time and the number of messages
compared with the flat group.

2 Striping Hierarchical Group

2.1 Hierarchical group

A group of multiple peer processes are cooperating by exchanging messages in order to achieve some
objectives. In one-to-one and one-to-many type of communications [9], each message is reliably
routed to one or more than one process, respectively. On the other hand, a process sends a message
to multiple processes while receiving messages from multiple processes in group communications
[5, 6, 8, 19, 27]. Here, a message m1 causally precedes another message m2 (m1 → m2) if and only
if (iff) a sending event of message m1 happens before [16] a sending event of message m2 [5]. For
example, suppose a process p1 sends a message m1 to a pair of processes p2 and p3. After receiving
the message m1, the process p2 sends a message m2 to the processes p3. Here, the message m1

causally precedes the message m2 (m1 → m2). A common destination process p3 of the messages
m1 and m2 is required to deliver the message m1 before m2. Linear clock [16], vector clock [17],
and physical clock with a GPS time server [15] are used to causally deliver messages in distributed
systems. Each process gives each message m timestamp m.T which shows time of the process. If
m1 → m2, m1.T < m2.T in every clock. Furthermore, m1 → m2 if m1.T < m2.T in the vector
clock. However, each message is required to bring a vector of elements n for number m of processes.

: process

Gj

G0

Gi

Gh

... GihGij

Fig. 1. Hierarchical group.

In a flat group, every pair of peer processes directly exchange messages with one another. Most
group protocols [6,19,27] are discussed for flat groups with the vector clock. Due to computation and
communication overheads O(n) to O(n2) for the total number n of processes in a flat group with the
vector clock, a large number n of processes cannot be supported. In addition, it is difficult to maintain
the membership, i.e. what processes are operational in a scalable group. First, processes in a group
G are partitioned into multiple subgroups. There is one root subgroup G 0 which is connected with
subgroups G1, . . . , Gk (k ≥ 1). Then, each subgroup Gi is furthermore connected with subgroups
Gi1 . . .Giki (ki ≥ 0) as shown in Figure 1. Here, a subgroup G i is referred to as a parent of a child
subgroup Gij . In a hierarchical group [28], every pair of a parent subgroup G i and a child subgroup
Gij communicate with one another through one gateway link as shown in Figure 3a. Hence, the
gateway processes and inter-gateway communication channel imply performance bottleneck and a
single point of failure.
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2.2 Inter-subgroup communication

In order to increase the performance and reliability of inter-subgroup communications, we newly
discuss a Striping Multi-channel Inter-subgroup communication Protocol (SMIP). Here, every pair
of parent and child subgroups communicate with one another through multiple channels as shown
in Figure 3b. A gateway process pij in a subgroup Gij communicates with a parent subgroup G i

and child subgroup Gijh. Gateway processes communicating with a parent subgroup G i and child
subgroup Gijh are upward and downward gateway processes, respectively, in a subgroup G ij [Figure
2]. Each process can be both types of gateways. A process is referred to as normal if and only if (iff)
the process does not play a role of any type of gateway. A leaf subgroup includes normal processes
and only upward gateway processes. If every leaf subgroup is at the same layer of the hierarchy, the
hierarchical group is referred to as height-balanced.

: normal process

Gi

Gij

: downward gateway processes
: upward gateway processes

Gijk

Fig. 2. Gateway processes.
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Fig. 3. Inter-subgroup communication.

The maximum size of each subgroup is bounded due to the limited computation power of each
process. The number si of processes in a subgroup Gi has to satisfy a condition s ≤ si ≤ S where
constants s and S show the minimum and maximum numbers of processes, respectively, in the sub-
group Gi. The smaller size of each subgroup is, the more number of subgroups are connected, i.e. the
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height or breadth is increased in the hierarchy of subgroups. If the number k i of child subgroups of the
subgroup Gi is increased, the overhead for inter-group communication is increased. Processes leave
and join the subgroup Gi. In addition, the quality of service (QoS) supported by a process or network
is changed. Processes in a subgroup may move to another subgroup to satisfy the performance and
QoS requirements. If si > S, the subgroup Gi is split into smaller subgroups. If si < s, one of the
following actions :

1. The subgroup Gi is merged into a sibling subgroup Gj .
12. Processes in the subgroup Gi and its sibling subgroup Gj are redistributed into the subgroups

Gi and Gj so that the subgroup Gi and Gj satisfy the condition.

A hierarchical group is dynamically height-balanced as discussed in the B-tree [3]. The authors
discuss how to construct and maintain a hierarchical group from a large number of peer processes [20].

In this paper, we assume each process broadcasts every message m to all the processes in a group
as follows :

1. Each process sends a message m to every process in a local subgroup G ij , normal processes
and upward and downward gateway processes.

2. An upward gateway process forwards the messages m up to downward gateway processes of
the parent subgroup Gi.

3. A downward gateway process forwards the messages m down to upward gateway processes in
child subgroups Gij1, . . . Gijkij .

In each subgroup, a process delivers messages to all the processes by using its own synchronization
mechanism like vector clock [17] and linear clock [16]. Even if a message m causally precedes
another message m2 in a local subgroup, the messages m1 and m2 may be causally concurrent in a
whole group. In the paper [28], it is discussed how to resolve the unnecessary ordering of messages
in a hierarchical group.

3 Striping Inter-subgroup Communication

3.1 Inter-subgroup communication

In order to increase the performance and reliability of the inter-subgroup communication, a pair of
parent and child subgroups Gi and Gij communicate with one another through multiple channels
with multiple gateway processes. That is, a pair of subgroups communicate with one other in a the
many-to-many type of communication among gateway processes. Here, let us consider a subgroup G i

and its child subgroup Gij . Downward gateway processes in a subgroup G i are communicating with
upward gateway processes in a child subgroup G ij in the many-to-many communication as shown in
Figure 3b.

Suppose gateway processes in a subgroup G i send messages to gateway processes in another sub-
group Gij . A gateway process which sends a message to another gateway process is referred to as
a source gateway processes of the message. On the other hand, a gateway process which receives
a message from another gateway process is referred to as destination gateway processes. In our
sub-group communication model, multiple gateway process in a subgroup G i forward messages to
gateway processes in another subgroup Gj There are following ways for source gateway processes to
send messages to destination gateway processes in a subgroup G j :
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Fig. 4. Communication model of multiple source gateway processes.

a. Each source gateway process sends same messages to each of the destination gateway processes
[Figure 4a].

b. Each source gateway process sends messages different from the other gateway processes to each
of the destination gateway processes [Figure 4b].
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Fig. 5. Communication model of single source gateway process.

In addition, to each source gateway process in a subgroup G i transmits messages to multiple
destination gateway processes in the subgroup Gj . There are following ways for each source gateway
process to transmit messages to destination processes :

a. A source gateway process in Gj transmits same messages to each of the destination gateway
processes [Figure 5a].

b. A source gateway process in Gj transmits different messages to each of the destination gateway
processes [Figure 5b].

If different messages are transmitted in different channels [Figures 4b and 5b], messages arrive at
a destination process out of order. The destination process has to first buffer messages on receipt of
the messages. Then, the messages are reordered in the sending order by using the sequence numbers
of the messages. It takes time to reorder messages in the buffer since a process has to wait for delayed
messages. We have to reduce the number of messages to be reordered to increase the performance.
We would like to discuss this reordering problem in another paper.

3.2 Striping multi-channel communication

Suppose a gateway process in a subgroup G i would like to send messages to gateway processes in
another subgroup Gj . In this paper, we take the following inter-subgroup transmission protocol from
a source subgroup Gi to another destination subgroup Gj :
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Fig. 6. Three window parameter of SMIP.

1. One process pis is taken as a source gateway process in the source subgroup G i.
2. On receipt of a message in the source subgroup G i, the gateway process pis forwards the mes-

sage to some process, say pjtj in the destination subgroup Gj . Here, pjtj is a destination process
of the destination subgroup Gj .

3. On recept of messages, the process pjts forwards the messages to the destination gateway pro-
cesses in the destination subgroup Gj .

4. If the channel between a pair of gateway processes p is and pjt1 might not support enough QoS,
the source gateway process pis takes another process pjt2 as a gateway process in the destination
subgroup Gj .

5. Thus, the source gateway process pis in the source subgroup Gi sends different messages to a
pair of the destination gateway processes pjt1 and pjt2 in the destination gateway subgroup Gj .
The process pis distributes messages to a pair of the gateway processes pjt1 and pjt2 so that
both the channels with the processes pjt1 and pjt2 satisfy the QoS requirement.

6. The larger bandwidth is required, the more number of destination gateway processes are taken in
the destination subgroup Gj . The source gateway process pis sends messages to the destination
gateways in the source subgroup Gi.

Messages are transmitted in a channel between a pair of gateway processes by the congestion
control algorithm used in TCP [12]. If a pair of subgroups are interconnected in a single channel,
processes in the subgroups cannot communicate with each other due to the congestion and fault of
the channel. In the inter-subgroup communication protocol SMIP, a pair of subgroups G i and Gj are
interconnected with many-to-many types of communication channels. Even if a channel is faulty or
does not support QoS requirement, the subgroups can communicate with one another with enough
QoS through other operational channels. The approach has the following advantages :

1. The network traffic can be distributed to multiple channels.
2. The other channels compensate the degradation of QoS even if QoS of some channel is de-

graded.

Messages are transmitted in each channel between a pair of source and destination gateway pro-
cesses through the congestion control algorithm, the additive increase and multiplicative decrease
(AIMD) algorithm used in TCP [12]. Here, two parameters, congestion window size (cwnd) and
receiver window size (rwnd) are used for each channel. In our protocol, an additional parameter re-
quirement window (qwnd) showing the size of data in the buffer is used for a set of the channels as
shown in Figure 6. The window size (wnd) of each channel is decided as follows :

wnd = min(cwnd, rwnd, qwnd).
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The source gateway process pis in a subgroup Gi sends messages to a destination gateway process
pjtl

in another subgroup Gj through a channel. The requirement window size (qwnd) is decided as
follows :

qwnd = qwnd − wnd.

4 Design of Hierarchical Group

We discuss how to design a hierarchical group for a set G of peer processes p 1, . . . , pn. Here, the
size |G| of the group G is n. Each pair of processes p i and pj can communicate with one another
through a logical channel Cij . A channel can be realized in UDP [22] or a connection of TCP [23].
Each channel Cij is characterized by quality of service (QoS) Q ij , i.e. delay time, bandwidth, and
packet loss ratio. In this paper, we assume that each channel supports enough bandwidth like 10G
Ethernet [1]. Messages may be lost and delayed due to congestions and faults in networks. In order to
realize real-time multimedia communications, it is critical to reduce the delay time. We discuss how
to construct a hierarchical group from a set G of processes so as to minimize the delay time among
processes.

Let dij stand for the message delay time from a process p i to another process pj . The distance
δ(pi, pj) between a pair of processes pi and pj is defined to be round trip time dij + dji between the
processes pi and pj . The distance is assumed to be symmetric from the destination in this paper. Let
DG be a set of distances between every pair of processes in a set G of processes, {δ(p i, pj)| pi, pj ∈
G}. AvDist(pi,G) shows the average distance from a process pi to every other process in the process
set G, i.e.

∑
pj∈G δ(pi, pj)/(|G| − 1).

Given a process set G and the distance set DG for G, a parent subgroup G0 and child subgroups
G1, . . . ,Gk are obtained by the following procedure DV where s is the number of processes to be
included in the parent subgroup G0 and k is the number of child subgroups of the parent subgroup
G0. Here, G = G0 ∪ G1 ∪ . . . ∪Gk,G0 ∩Gi = φ, and Gi ∩ Gj = φ(fori.j = 1, dots, k, i �= j).

DV(G,DG, s, k) {
G0 := Parent(G,DG, s);
{G1, . . . ,Gk} := Child(G − G0,DG−G0 , k);
if G = G0,

for i = 1, . . . , k, {
Gi0 := DV(Gi,DG, s);
Let Gi0 be a child of G0; }

return(G0);
}

First, a parent subgroup G0 is obtained by the procedure Parent(G,DG, s), where G0 includes
more number of processes than s/2 − 1 and fewer number of processes than s + 1. The procedure
Parent is given as follows :

Parent(G,DG, s) {
G0 := φ; i := 0;
while(i < s) {

Select a process p whose AvDist(p,G) is the minimum in G.
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if i < s/2 or AvDist(p, G) < AvDist(p′, G0) + α where p′ is a process
whose AvDist(p′, G0) is the minimum in G0,
{G0 := G0 ∪ {p}; G := G− {p}; i := i + 1;}

else return (G0);
}
return (G0);

}
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Fig. 7. k-partitioning of a group.

Here, α is a constraint. The larger the constant α is, the more distant processes are included in
a subgroup. By executing the procedure Parent, a parent subgroup G 0 is obtained and processes
in the parent subgroup G0 are removed from the process set G. By the Child procedure using a
type of k-medoids algorithm [14], a group G is partitioned into k child subgroups G 1, . . .Gk. In
Figure 7, a root subgroup G0 of four processes is first obtained by Parent. Then, remaining 16
processes are partitioned into four subgroups G1, G2, G3, and G4, each of which includes four
processes. Processes which are nearer to each other in a group G are grouped into one subgroup. That
is, δ(pi, pk) < δ(pi, pj) for every pair of processes pi and pk in a subgroup Gi and every process pj

in another subgroup Gj(j �= i). There are algorithms like PAM (Partitioning Around Medoids) [14]
and CLARA (Clustering LARge Applications) [14] to partition a collection of data into clusters. PAM
is efficient for smaller number of processes (n < 100) and CLARA can be adopted for more number
of processes.

Algorithm PAM

1. Select k representative processes arbitrarily in G.
2. Compute the total cost (TCij) for every pair of processes pi and pj where pi is currently selected

but pj is not selected.
3. Select a non-selected process pj whose total cost TCij is the minimum for the selected process

pi. If TCij < 0, the process pj gets selected and the other process pi is changed to a non-
selected one. Goto 2.

4. Otherwise, for each non-selected process pj , find the most nearer selected process pi and include
the process pj to a subgroup of the process pi. Halt.

We discuss how to compute the total cost TCij for a pair of processes pi and pj . Let pi be a
current medoid, i.e. selected process which is to be replaced. The following processes are defined.
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ph .

. pk

pj .
pi pj

ph
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:process

4

3

Fig. 8. Replacement of a medoid.

ph = the new medoid with which pi is replaced.

pj = another non-selected process which may or may not need to be changed in the subgroup

pk = a current medoid which is nearest to pj .

The total cost TCih for a pair of the processes pj and ph is given
∑

j Cjih. Here, Cjih is computed
as follows [Figure 8] :

1. Suppose a process pj is in a subgroup of a selected process pi and a process ph is the second
closest selected process such that δ(pj , ph) is the minimum for every selected process.

(a) Cjih = δ(pj , pk) − δ(pj , pi) if δ(pj , ph) ≥ δ(pj , pk).
(b) Cjih = δ(pj , ph) − δ(pj , pi) otherwise.

2. Suppose a process pj currently belongs to a subgroup other than the one represented by p h. Let
pk be the selected process of that subgroup.

(a) Cjih = 0 if δ(pj , pk) > δ(pj , ph).
(b) Cjih = δ(pj , ph) − δ(pj , pk) otherwise.

Next, the algorithm CLARA is shown as follows :

Algorithm CLARA

1. For i := 1 to N , repeat the following steps:
2. Arbitrarily select a sample set S of S processes from a group G, and call the algorithm PAM to

find k medoids of the sample set S.
3. For each process pj in G, determine which of the k medoids is the most nearer to the process

pj and add the process pj to the subgroup of the medoid.
4. Calculate the average distance δ of the subgroup obtained in the previous step. If δ is smaller

than the current minimum, use this value as the current minimum, and retain the k medoids
obtained so far.

5. Return to step 1 to start the next iteration.

In CLARA, N = 5 and S = 40 + 2k. The complexity of a single iteration is O(k(n − k)2) in
PAM and O(kS2 + k(n − k)) in CLARA for n processes in a group G.

By using the procedure DV for a group G of processes, a hierarchical group H G is obtained. The
hierarchical group HG is height-balanced.
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5 Evaluation

5.1 Evaluation of inter-subgroup communication protocol

We evaluate the striping multi-channel inter-subgroup communication protocol (SMIP) in terms of
the stability of bandwidth and the message loss ratio compared with the traditional one-channel
transmission protocol like TCP. In the traditional one-to-one communication approach, protocols like
RSVP [24] at a lower layer than the transport layer are used to support the quality of service (QoS)
required by applications. In our striping multi-channel approach, QoS is supported on the end-to-end
basis with QoS control at transport layer. In the simulation, the bandwidth of the network channel is
bounded to be 30Mbps by the evaluation tool although the channel support larger bandwidth 30Mbps
means the transmission speed of the digital video (DV) data.

Figure 9 shows the evaluation environment of the striping multi-channel communication protocol.
A source gateway process is realized in a computer Dell Precision 530 with dual Intel Pentium Xeon
1.8Ghz and 1.5B memory on Linux 2.6.10. Four destination gateway processes are realized in HP
Proliant BL10e blade server with Intel PentiumM 1Ghz and 512MB memory on Linux 2.4.26. These
gateway processes are interconnected through a computer HP Proliant DL145 with dual AMD Opteron
2.2Ghz and 2GB memory on Linux 2.4.21 named NISTnet router where NISTnet [7] is installed. The
delay time between a source gateway process and a destination gateway process is emulated to be 40
milliseconds by using the NISTnet.
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In the evaluation, the source gateway process sends multimedia like DV data with 30Mbps. The
NewReno algorithm [10] of TCP is used for transmitting messages in each channel. The data transmis-
sion procedure of TCP is emulated over UDP/IP [22]. Figure 10 shows how the bandwidth is changed
for time in the traditional one-channel transmission. The bandwidth supported is largely changed.
Figure 11 shows the bandwidth in our striping multi-channel transmission. Compared with the one-
channel transmission, the striping multi-channel transmission supports more stable bandwidth, i.e.
30Mbps. The DV data is required to be transmitted, i.e. the constant bandwidth 30Mbps. In the
SMIP, the bandwidth of 30Mbps can be continually supported. However, the bandwidth supported by
the traditional one-channel protocol is not so stable that the DV data cannot be transmitted. Figure
12 shows both the one-channel and the striping multi-channel ways to show how stable the striping
multi-channel way is. Even if QoS is degraded in a channel, messages which cannot be transmitted in
the channel can be transmitted through the other channels in the striping multi-channel approach.

Next, we measure the message loss ratio. We take a pair of subgroups G i and Gj . In the traditional
way, one gateway process in the subgroup G i communicates with one gateway process in the other
subgroup Gj [Figure 13a]. In the SMIP, the same number k of gateway processes in each of the
subgroup Gi and Gj are interconnected. Here, this inter-subgroup communication from l gateway
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Fig. 13. Data transfer arrangement.
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Fig. 14. Utilization of bandwidth.

processes to l gateway processes is written in SMIP-l. Figure 13b shows SMIP-3. Each pair of
gateway processes are interconnected in the 100Mbps Fast Ethernet. Each of normal processes and
gateway processes is realized in an HP Proliant BL10e blade server with Intel PentiumM 1Ghz and
512MB memory on Linux 2.4.26. Gateway processes are interconnected through a computer HP
Proliant DL145 with dual AMD Opteron 2.2Ghz and 2GB memory on Linux 2.4.21 named NISTnet
router where NISTnet [7] is installed. The delay time a pair of the subgroups between G i and Gj

is emulated to be 40 milliseconds by using the NISTnet. Figure 15 shows the packet loss ratio for
the bandwidth for each gateway process for the traditional one-to-one and SMIP-3. In the SMIP, no
packet is lost. In Figure 15, k [Mbps] means the each of three gateway processes sends packets with
k/3 [Mbps]. On the other hand, the message loss ratio is increased as the transmission bandwidth
of each gateway process is increased. For example, about 0.018% of packets transmitted are lost
if a gateway process transmits messages with 60Mbps. Figure 14 shows that the utilization of the
bandwidth of each gateway process. In the traditional way, the bandwidth is used out. This means, the
transmission rate cannot be increased. On the other hand, messages are transmitted through multiple
channels in SMIP. Hence, each gateway can have unused bandwidth to transmit further messages in
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Fig. 15. Message loss ratio.
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Fig. 16. Performance of the PAM and PAM+CLARA.

SMIP.

5.2 Evaluation of designing hierarchical group

We implement three versions DVp, DVc, and DVcp of the procedure DV(G,DG, s, k) which take
usage of the PAM, CLARA, and PAM+CLARA algorithms, respectively. Let n be the number of
processes in a group G. In the PAM+CLARA algorithm, CLARA is a adopted for n ≥ 200 and PAM
for n ≤ 200. First, we measure how long it takes to obtain a hierarchical group HG for a group G
of n processes. Figures 16 and 17 show the computation time to make a hierarchical group H G for
a group G of n processes by three algorithms DV p, DVc, and DVcp. DVcp is the fastest for every
number n of processes as shown in Figures 16 and 17. Hence, we take the algorithm DV cp to obtain
a hierarchical group HG.

We measure the delivery time from a process to another process in a hierarchical group H G and a
flat group G. The delivery time is defined to be a duration from time when a process starts transmitting
a message until time when the message is delivered to all the destination processes.

In the simulation, n processes are randomly distributed to a geographical location in a 400 × 400
lattice. Here, one unit among a pair of neighboring nodes in the lattice shows a distance of one
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milisecond delay time. The distance δ(pi, pj) between a pair of processes pi and pj is calculated in
the Euclidean distance between the locations of the processes p i and pj . The number s of processes
in each subgroup is decided for the total number n of processes; s = n/10, if n ≤ 500 and s = 50,
otherwise.

The height h of the hierarchical group HG is decided for n; h = 10 + 	n/500
.

The number k of child subgroups is computed to be 	(n/s) 1/h−1
. In the flat group G, a process
directly sends a message (n−1) times to deliver to (n−1) processes. For example, it takes 52 [msec]
for a process to transmit 100 messages in Linux 2.4.26 on a personal computer Dell Precision 530
with dual Intel Pentium Xeon 1.8Ghz and 512MB memory. If a process lastly sends a message to
the most distant process, it takes the longest time. If a process lastly sends a message to the nearest
process and every other process receives the message when the nearest process receives the message,
the delivery time is minimum. In the hierarchical group HG, the delivery time of a message from a
process to the most distant process is measured, which is the maximum one. That is, a message sent
by a process is forwarded via a root subgroup to a destination process. Figure 18 shows the maximum
and minimum delivery time in the flat group G and the maximum delivery time in the hierarchical
group HG. The maximum delivery time of the hierarchical group HG is almost constant while the
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delivery time is O(n) in the flat group G.
We measure how many messages are transmitted. In the flat group G, a process sends (n − 1)

messages to broadcast to all the processes. On the other hand, in the hierarchical group H G, a message
is broadcast in each subgroup. Figure 19 shows the number of processes transmitted in the flat group G
and the maximum number of messages transmitted in the hierarchical group H G. In the hierarchical
group HG, the number of messages transmitted can be drastically reduced.

6 Concluding Remarks

We discussed the hierarchical group (HG) where subgroups are hierarchically interconnected through
gateway processes. In order to improve the reliability and throughput of the inter-subgroup commu-
nication, a pair of parent and child subgroups are interconnected through multiple communication
channels between multiple gateway processes in the subgroup. First, we discussed algorithms to de-
sign a hierarchical group for a large number of processes distributed in a network so as to minimize
the average delay time. In traditional hierarchical groups, a pair of subgroups communicate with one
another through a pair of the gateway processes. The communications through the gateways implies
performance bottleneck and single point of failure. Gateway processes in different subgroups ex-
change messages through multiple channels with multiple gateway processes in the network striping
way to increase the reliability and performance of the inter-subgroup communication. In the evalua-
tion, we showed that the hierarchical group supports the shorter delay time and the fewer number of
messages than the flat group. In addition, we showed that the striping multi-channel inter-subgroup
communication protocol can support the higher stability of the bandwidth and the smaller message
loss ratio compared with the traditional protocol.
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