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Ad hoc networks have received considerable research attention by provisions of wireless communications 
without location limitations and pre-built fixed infrastructure. Because of the absence of any static support 
infrastructure, ad hoc networks are prone to several limitations such as bandwidth, connectivity, and 
power. The traditional content-based image retrieval approaches employed in ad hoc networks may result 
in either high search cost or low fault tolerance. In this paper, we propose and analyze a decentralized non-
flooding image retrieval scheme in multi-hop mobile ad hoc networks ─ Semantic Ad hoc Image Retrieval 
(SAIR). The novelty of SAIR stems from several factors including: (1) representation of image contents 
using first-order logic expressions; (2) clustering mobile nodes based on their data contents; (3) organizing 
image data with a hierarchical semantic-based indexing infrastructure; (4) performing content-based image 
retrieval within a reduced scope of mobile nodes. Through extensive simulations, we show that relative to 
the flooding strategy, SAIR can retrieve the semantically most similar image objects by accessing only a 
small portion of the mobile nodes with much lower search cost. Moreover, it is scalable to large network 
sizes and large number of data objects. 
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1 Introduction  

The rapid development of wireless communication standards such as Bluetooth and WiFi has 
made image applications more and more popular in mobile environments. Efficient access to image 
data requires large storage space, more computation capability, and higher network bandwidth. 
Moreover, indexing on image data is rather difficult, which has been witnessed by the wealth of 
research literature [1,9,14,16]. In a mobile network, the autonomy and heterogeneity of mobile 
databases introduce additional complexity to the representation and manipulation of image data, 
making the task of image data retrieval more challenging. 

Ad hoc networks, as a special class of mobile networks, are gaining popularity due to their 
infrastructure-free and self-organizing characteristics. Due to the lack of infrastructures, mobile nodes 
may not maintain direct point-to-point connections to other nodes in the system. Hence, most research 
assumes ad hoc network communications in a hop-by-hop fashion, where nodes behave as routers, 
forwarding messages for other nodes [2]. 



 

 

236      Hierarchical Semantic-Based Index for Ad Hoc Image Retrieval

 

Due to the recent advances in visualization techniques, the communications in ad hoc networks are 
no longer limited to textual information, and other form of information sources such as images are 
becoming desirable [16]. Within the framework of ad hoc networks, the ability of image retrieval is 
desirable and using images can enrich the communications between the mobile nodes, making their 
messages more expressive. For example, one of the most common ad hoc network applications is 
building temporary network among a rescue team in a disaster area. Each rescuer needs to make 
correct judgements and take actions swiftly based on his/her communications with other ones in the 
team. However, some instances, such as the damages, may not be easily described using only textual 
information. Consequently, there is a great need for novel methods that facilitate efficient management 
of image data. It should also be noted that in contrast with the lower-bandwidth wide-area wireless 
networks such as cellular networks (100Kbps for GRPS and 384Kbps for W-CDMA), ad hoc networks 
comparatively offer higher bandwidth (11Mbps for IEEE 802.11b and up to 54Mbps for IEEE 802.11a 
and 802.11g) [32], technically allowing the communication of image information. 

The previous research in ad hoc networks does not provide efficient solutions to image data 
accessing. With a very few exceptions [17,19], search techniques are based on centralized or flooding 
strategies, ignoring the content distribution among mobile nodes [3,4,5]. Centralization and flooding 
strategies make it possible to handle image data retrieval; however, they may also result in either low 
fault tolerance or high search cost. Generally, the challenges of ad hoc networks on image retrieval can 
be categorized as follows: 

First, in an ad hoc network, the mobile nodes communicate with each other in a hop-by-hop 
fashion; however, the paths between these nodes are constantly changing due to the mobility. As a 
result, the data source nodes are unknown at the requesting node and identification of data source in 
real-time applications is hard to achieve if traditional routing algorithms are employed [5]. One 
solution to the content-based queries is traversing the whole network [21]. However, this solution 
drastically consumes the system resources — memory, network bandwidth, and battery power. To save 
the system resources, the accurate identification of data sources requires an organizational 
infrastructure according to data content distribution. Consequently, to facilitate efficient image 
retrieval while considering the constraints of ad hoc networks, one needs to devise new methods that 
automatically and pervasively obtain information about data content distribution. 

Second, scalability and robustness may vary as the network configuration changes. A practical ad 
hoc network may consist of a centralized data source node (data center) and several client nodes that 
request data from the data center. However, this infrastructure is not robust, scalable, or fault tolerant 
─ the data center behaves as a hotspot and its movement within the area could increase the network 
traffic. Note that if one node just access a data object from the data center, it is quite possible that 
nearby nodes try to access the same data object in near future [7]. As a result, means should be 
developed to reduce the communication and computation of the semantically similar queries. This 
brings out issues such as data replication, replica control, and coherency among replicated data. 

Third, an ad hoc network may consist of autonomous and heterogeneous data sources. 
Heterogeneity and autonomy require means to pervasively facilitate data integration. 

Finally, most of the existing search schemes proposed for ad hoc networks are based on text 
information and cannot be directly applied to image data [5,15]. 

This work is intended to address the aforementioned issues by proposing a semantic-based search 
scheme –– Semantic-based Ad hoc Image Retrieval (SAIR). The proposed scheme employs a 
hierarchical structure that organizes image data based on their semantic contents. In addition, SAIR is 
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based on three innovative ideas: (1) representation of image contents using optimized first-order logic 
expressions; (2) clustering mobile nodes based on data contents; (3) performing content-based image 
retrieval within a reduced scope of mobile nodes. Experimental results have shown that in comparison 
with flooding, SAIR can reduce network traffic and search cost, regardless of the distribution, 
heterogeneity, and autonomy of data sources. 

The remainder of this paper is organized as follows: Section 2 overviews the background 
materials. Section 3 addresses the semantic clustering and dynamic organization of mobile nodes to 
facilitate content-based retrieval. Section 4 analyzes the performance of the proposed scheme. Finally, 
section 5 draws the paper to conclusions. 

2 Preliminaries 

2.1  Content-Based Retrieval 

The importance of image retrieval has motivated considerable research on content-based search 
schemes. Many of the present approaches employ the feature vectors to facilitate content-based 
retrieval [1,9]. The features are extracted from image pixels, heuristically or empirically, and 
combined into vectors according to the application criteria. These features, in various data formats, 
represent a multi-dimensional feature space in which images can be considered as data points. The 
approaches proposed on the feature-based representation can be categorized as: The partition-based 
approaches (e.g. quad-tree [8], k-d-tree [9], and vp-tree [9]) that recursively divide the image data 
objects (or k-dimensional feature spaces) into disjoint partitions, with clustering or classifying 
algorithms, while generating a hierarchical indexing structure on these partitions. The region-based 
approaches (r-tree family [10,11]) employing small regions (either in the form of Minimum Bounding 
Rectangles or Spheres) to cover the data objects. These approaches work well in retrieving image data 
in a centralized configuration; however, they rely on an assumption that the whole network is 
homogeneous and can be organized under a centralized indexing structure. 

In an ad hoc network with heterogeneous distributed data sources, traditional information retrieval 
methods, i.e., centralized or flooding strategies, may not work efficiently mainly because of the 
changes in network topology. 

•  Due to the heterogeneity and node mobility, the centralized search strategy is not an efficient 
choice in performing content-based image retrieval. Moreover, this strategy may also cause 
single point of failure, which results in low robustness. 

•  The flooding search strategy achieves good performance only when dealing with text 
information [5]. Due to the sheer size of the image data, the flooding strategy may drastically 
consume system resources. 

To improve the efficiency of content-based retrieval, we propose a novel content-aware clustering 
scheme for the organization of image data. The basic concept is as follows: 

•  In response to the heterogeneity of data sources, the semantic contents of images on each 
mobile node are extracted and represented using a logic-based content representation that can 
summarize the image contents. We will discuss this in detail in section 3. 

•  The mobile nodes are partitioned into clusters based on the semantic similarity of their data 
contents. These clusters are recursively merged into bigger clusters, and at the same time their 
content representations are fused together in a hierarchical fashion using gradually more general 
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expressions at each level of the hierarchy. Hence a hierarchical infrastructure can be constructed 
based on the data contents of the mobile nodes. This hierarchical organization restricts the query 
processing within a subset of all mobile nodes in an ad hoc network. 

It should be noted that a conceptually similar data organization prototype ─ Summary-Schemas 
Model (SSM) ─ has been proposed for multi-database systems [6,7]. However, there are several 
significant differences between the SSM and our model: 

•  The SSM was proposed to deal with information in a distributed heterogeneous environment. Its 
indexing nodes (also called summary-schemas nodes) are connected via wired connections. 
While in our model, the parent / children relationships between nodes can be constructed using 
wireless connections. Hence our model does not require physical infrastructures to build the 
whole system. 

•  The SSM can be used to provide the global information sharing among data sources of large 
geographic distances. Our model focuses on providing an efficient search scheme that facilitates 
content-based image retrieval within a restricted area (i.e. an ad hoc network). 

•  The SSM was originally proposed to handle text-based information. In contrast, our model is 
intended to accommodate more complex data objects, such as images. 

There are several crucial issues that need to be addressed in the design of our model: 1) the 
extraction and representation of image semantic contents; 2) the construction of the indexing hierarchy 
based on the semantic contents of images; and 3) the self-adaptive mechanism that can adjust to the 
changes of network topologies and data contents. The first issue is closely related to image content 
extraction and will be addressed in this section. The remaining issues will be discussed in section 3. 

2.2  Image Semantics Extraction 

In image database systems, there are two types of features: granule-level features and object-level 
features. The granule-level features are those characteristics that directly or indirectly are derived from 
the original format of image storage ─ i.e., the pixels. Most traditional feature-based image retrieval 
systems employ three types of features in image representation: color, shape, and texture. Color 
features are widely used in image retrieval systems for its simplicity and effectiveness. Typical color 
features include color histogram [27] and color moment [28]. Shape features are employed in 
distinguishing images when the contour lines evidently profile the visual objects [29]. Texture features 
are provided as an important tool for image retrieval. A variety of texture analysis methods have been 
studied in the past years, such as Daubechies wavelet [30]. However, the performance of feature-based 
systems is far from satisfactory due to the fact that images with similar features may not share 
common semantic contents, which is known as the semantic gap [1]. 

The object-level features, in contrast, are obtained from the higher-level understanding of the 
images ─ the semantic contents of the image data. From a cognitive point of view, images are a 
communication medium that reflects the natural objects in the real world. Thus the content of an image 
can be described within a linguistic system capable of finding the objects in the image and deducing 
the semantics from the relationships of these objects. 

In this work, we analyze the object-level features of an image through a two-phase process: 

•  The image is first partitioned into several segments, which indicate the most significant visual 
components, and 
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•  The semantics of the partitioned segments are then obtained through latent semantic analysis 
(LSA) [12, 16]. 

The segmentation method employed in this work is similar to the binary-partition-tree approach 
proposed in [13]. Similar pixels are merged together as homogeneous segments, which are enclosed in 
minimum bounding rectangles (MBR). 

The low-level feature representation of image segments cannot represent the semantic contents, 
and therefore do not provide an ideal basis for semantic-based retrieval. Hence, the LSA is employed 
to obtain the semantics of these image segments. The LSA uses singular value decomposition (SVD) 
to uncover the hidden semantic relationships between image objects. We use two set of entities to 
perform latent semantic analysis: the objects whose semantics are already known (i.e. training 
samples), and the image segments whose semantics remains unknown. For simplicity, we assume the 
two sets of entities share the same set of low-level features f1, f2, …, fm. 

Suppose there are n image segments P1, P2, …, Pn and L training samples T1, T2, …, TL. For image 
segment Pi, the low-level feature values are defined as f1

i, f2
i, …, fm

i. For a training sample Ti, the low-
level feature values are defined as t1

i, t2
i, …, tm

i. Also suppose the training samples are classified as k 
semantic categories ζ1, ζ2, …, ζk, each category includes at least one training sample. Thus for a 
category ζj, we define a feature vector 

Fj = (f1
1, f2

1, …, fm
1, …,  f1 

n, f2 
n, …, fm 

n, t1 
1, t2 

1, …, tm 
1, …, t1 

H, t2 
H, …, tm 

H)' 

where H is the number of training samples in semantic category ζj. 

Based on the aforementioned feature vector, a matrix M can be built as follows: 

M = (F1, F2, …, Fk), 

where each column Fj in matrix M indicates the feature vector for category ζj. 

After normalization of matrix M, we perform the singular value decomposition on M as follows: M 
= KSD’, where K consists of the eigenvectors of MM’, D comprises the eigenvectors of M’M, and S is 
a diagonal matrix. The image segments are classified into proper semantic categories in the singular 
value decomposition, and are assigned with proper semantics. 

2.3  Representing Image Semantics 

We proposed a logic-based platform that represents and organizes the image data into layers according 
to their semantics [16]. As a result, an image can be considered as the combination of a series of 
elementary entities, each entity representing an object of the basic semantic categories as mentioned in 
section 2.2. 

Definition 1: The Elementary Entity 

The elementary entities are those data entities that semantically represent basic visual objects (objects 
that cannot be divided further). Formally, the content of an elementary entity (E) can be considered as 
a first-order logic expression. 

Let E = g1 ∧  g2 ∧  …∧  gn, where gi = pi1 ∨  pi2 ∨ … ∨  pim is the disjunctive form of some logic 
predicates (true/false values) and pi1 … pim form a logic predicate set Gi, ─ In the feature-based image 
data sets, gi indicates the ith feature of the elementary entity. The content of an elementary entity can 
then be defined as: 
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E = ∧
=

n

i 1

( ∨
=

m

j 1

pij),  ∀ pij ∈∈∈∈  Gi.                (1) 

Note that in any term gi = pi1 ∨  pi2 ∨ … ∨  pim, there is one and only one true predicate pij. For 
instance, if pi1, pi2 … pim correspond to all possible color patterns, the semantic content of gi at any 
time is a specific color pattern. Since gi is disjunction of pi1, pi2 … pim, the false predicates do not affect 
the final result. The content of an elementary entity is restricted by its conjunctive terms g1, g2 … gn, 
which are the extracted features in application domains. 

Definition 2: The Image Object 

An image object is the union of a series of elementary entities. Given the above definition of 
elementary entities E1, E2, …, Ek, the content of an image object can be defined as: 

                    
where opt(.) is a function that rewrites a first-order logic expression into a semantically equivalent and 
shorter form. 

The logic-based representation provides a means of automatically obtaining the semantic content 
of images: For a given image, a series of visual components can be obtained from it through the 
aforementioned latent semantic analysis. These visual components are then described using elementary 
entity descriptors, as noted in definition 1. Finally, the image semantic content is represented as the 
optimized union of the elementary entity descriptors as shown in figure 1. Since the logic expressions 
are abstract descriptions of image semantic contents, we use a term “content summary” to refer to 
these expressions. 

 

Figure 1 An illustrative example of content summary. 

3.  Semantic-Based Image Retrieval 

3.1  Content-Based Clustering 

The semantic-based representation presented in section 2 provides a paradigm to describe image data. 
Based on this paradigm, contents of the images on mobile nodes can be automatically identified, 

(2) 
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summarized, and expressed as logic expressions (content summaries). Logic representation of 
semantic contents of data sources would also allow simple and efficient recognition of similar entities 
that assists classification and clustering process. 

Definition 3: Content-Related Nodes 

Suppose a mobile node ni contains image objects d1, d2, …, dm, which are collectively denoted as 
D(ni). Based on the aforementioned representation of image objects, each mobile node ni can obtain a 
content summary S(ni) that abstracts the contents of images in D(ni). Given a pair of nodes n0 and n1, 
they are content-related iff: 

S(n0) ⊕  S(n1) ≠ S(n0) ∨  S(n1),       (3) 

where S(n0) ⊕  S(n1) is defined as (S(n0) ∧  ~ S(n1)) ∨  ( ~ S(n0) ∧  S(n1)). 

In other words, if nodes n0 and n1 are content-related, they must have some common data entities, 
i.e. D(n0) ∩ D(n1) ≠ Ø. 

Definition 4: The Content-Based Cluster 

Suppose an ad hoc network N comprises k mobile nodes n1, n2, …, nk. Let ni ≈ nj denote the content-
related relationship between ni and nj, and ni ≠ nj denote that ni and nj are not content-related. Then a 
content-based cluster C is defined as follows: 

Ci = { ni | ∀ nj ∈ C, nj ≈ ni; ∀ nk ∉  Ci, nk ≠ ni}    (4) 

Based on the definitions of content-based clusters, we developed an algorithm that partitions an ad 
hoc network into clusters. Table1 shows the notations used in the algorithm. Algorithm1 describes the 
process of content-based clustering. The mobile nodes within a cluster are content-related, while 
mobile nodes of different clusters share very few common semantic contents. 

Table 1 Notations related to the clustering. 

Items Notations 
V(N) The set of mobile nodes { n1, n2, …, nk} 

Γ The set of clusters 
F(x) The function of selecting an element from set x 

C(Γ , i) The ith cluster in Γ 
S(x) The function of generating content summaries of mobile node x 

 
 
Algorithm1: Content-based clustering 
1. Γ ← F(V(N)) 
2. K ← V(N) – Γ 
3. while | K | > 0 do 
4. x ← F(K) 
5. K ← K – {x} 
6. for i = 1, …, |Γ | 
7.     if S(C(Γ , i)) ⊕ S (x) ≠ S(C(Γ , i))∨ S(x) 
8.          merge x with C(Γ , i) 
9. if x is not merged with any cluster in Γ 
10.     create a new cluster in Γ 
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3.2  Organizing Clusters into a Hierarchy 

As noted in section 3.1, an ad hoc network could be partitioned into clusters where each cluster 
contains mobile nodes with similar or overlapping data objects. The contents of nodes within a cluster 
are integrated to form a content summary ─ a concise description of the semantic contents of this 
cluster. Cluster-level content summaries are then integrated and fused together (based on their 
semantic similarities) to form higher-level clustering, whose contents are represented using more 
generalized semantic descriptions. This process is recursively performed until the whole ad hoc 
network is represented as one cluster. To accommodate the cluster-level content summaries, a centroid 
node is selected for each cluster. 

Definition 5:    The Cluster-Level Content Summary 

Given a cluster Ci = {ni1, ni2, …, niq}, the cluster-level content summary, denoted as Sc(Ci), is defined 
as follows: 

                
Definition 6: The Cluster Centroid 

Given cluster Ci = {ni1, ni2, …, niq}, let V(nij) = {v1(nij), v2(nij), …, vk(nij)} denote a vector of the 
hardware characteristics of node nij, such as memory storage, computation capability, and 
communication speed. Then the centroid of Ci can be defined as € (Ci): 

€(Ci) = {n* | ∀ n’ ∈  Ci, ∑
=

k

s 1

cs*vs(n’) + |n’∩ Sc(Ci)| < 
∑

=

k

s 1

cs*vs(n*) + |n*∩ Sc(Ci)|}. (6) 

where c1, c2, …, ck are  predefined coefficients. 

Definition 7: The Content Similarity of Clusters 

Given a set of clusters ΓΓΓΓ = {C1, C2,…, Cr}, the content similarity of the clusters in ΓΓΓΓ  is denoted as 
Ss(ΓΓΓΓ): 

     
Definition 8: The t-Partition of Clusters 

Given r clusters C1, C2,…, Cr and an integer t (1 < t < r), the t-partition of the clusters is the process of 

partitioning the r clusters into t groups ΓΓΓΓ1, ΓΓΓΓ2,…, ΓΓΓΓ t satisfying that |   U  Ss(ΓΓΓΓ j) | is maximal. 

Definition 9: The Hypernym/Hyponym Relationship 

The semantics of a given cluster Ci is represented as a word, denoted as ω(Ci). An on-line thesaurus ψ 
(e.g. Roget’s thesaurus or Wordnet) can be used to define the semantic inter-relationships between 
clusters: 

For two given clusters Ci, Cj∈ ΓΓΓΓ, 

(1) If ω(Ci) describes a generic concept that includes ω(Cj), then ω(Ci) is a hypernym of ω(Cj), 

denoted as          

(5) 

(7) 

j =1 

t

denoted as 
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(2) If ω(Ci) describes a specialized concept that is included in ω(Cj), then ω(Ci) is a hyponym of 

denoted as                       

Consider an ad hoc network N containing k mobile nodes: n1, n2,…, nk. Let these nodes be 
partitioned into r clusters C1, C2,…, Cr based on their data contents. For any cluster Ci, one can select 
the centroid node of the cluster as follows: 

•  Find a node n* that has highest computation capability, memory storage, and communication 
speed, and define it as the centroid of Ci. In case there is a tie among more than one centroid 
candidate in cluster Ci, we choose the node whose data content has maximum overlapping with 
the cluster-level content summary as the centroid. 

•  Build an indexing hierarchy on top of the centroid nodes as follows: 1) The mobile nodes of 
cluster Ci are considered as children of its centroid; 2) Suppose the ad hoc network is 
decomposed into r clusters C1, C2, …, Cr, we partition these clusters into t groups (1 < t < r) 
using t-partition as in definition 8, and represent the semantic contents of each group using more 
generalized descriptions (i.e. hypernyms). In this work, we maintain an on-line taxonomy that 
can find the generalized descriptions for cluster-level content summaries of any given group 
[16]. Steps 1 and 2 are recursively applied until the whole ad hoc network is represented as one 
group. This grouping process constructs a hierarchy that can be used as an indexing 
infrastructure. 

Note that the definitions of t-partition and indexing hierarchy are based on the assumption of 
reliable pair-wise message communications between mobile nodes in the order of their generation, 
using some existing hop-by-hop routing protocol, such as AODV or DSR. Due to the lack of static 
infrastructure in the ad hoc network, the parent/child links in the hierarchical index are virtual 
connections that correspond to multi-hop paths in the network. Based on these assumptions, we 
propose Algorithm2 and Algorithm3 for the t-partition and the construction of the hierarchical 
indexing, respectively. 

In the algorithms2 and 3, we address the content-aware organization of mobile databases to 
facilitate image retrieval in the ad hoc network. In comparison with the traditional centralized content-
based indexing models, the proposed hierarchical indexing has the following properties: 

1) The fundamental idea of the indexing hierarchy is based on the content distribution of mobile 
nodes. The data content of each node is represented using first-order logic expressions. The 
ad hoc network is partitioned into clusters of semantically similar nodes to facilitate content-
based search. 

2) The indexing hierarchy is overlaid on the mobile nodes, which corresponds to the 
infrastructure-free nature of ad hoc networks and provides high scalability. 

3) A centroid node in the indexing hierarchy can “float” from one mobile node to another in 
accordance with bandwidth, topology changes, or query distribution to achieve better 
robustness and load balancing. 

4) The ad hoc network is partitioned into clusters based on semantic similarity. The mobile 
nodes in each cluster share the same or similar semantic contents. Due to the semantic locality 
of queries, in most cases the query processing is performed within one or a few clusters. 

 

ω(Cj), denoted as 
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Table 2 Notations related to the t-Partition. 

Items Notations 
Γ The set of clusters Γ = {C1, C2,…, Cr} 
t The number of expected partitions 
Θ The set of partitions 

F(Θ, x) The function of selecting an element from set x satisfying the 
minimal overlapping with Θ 

P(Θ, i) The ith partition in Θ 
Sc(x) The function of generating content summaries of cluster x 

Ss(x) The function of generating content similarity of clusters in 
partition x 

 

Algorithm2: t-Partition 
1. Θ ← F(Θ, Γ ) 
2. Γ ← Γ  – Θ 
3. while |Γ | > 0 do 
4.     K ← F(Θ, Γ ) 
5.     if |Θ| < t 
6.           Θ ← K 
7.           Γ ← Γ  – K 
8.     else 
9.           L ← Sc(K) ∩ Ss(P(Θ, 1)) 
10.    for i = 2 to t 
11.          if |Sc(K) ∩ Ss(P(Θ, i))| > |L| 
12.                 L ← Sc(K) ∩ Ss(P(Θ, i)) 
13.                 J ← i 
14.    P(Θ, J) ← P(Θ, J) ∪ K 
 

Table 3 Notations related to the hierarchical indexing. 

Items Notations 
h The expected height of the hierarchy 

t(i) The expected partitions at level i of hierarchy 
Pt(x, t) The function of t-partition of elements in x 

ω(x) The function of describing the semantic content of x using a 
word in the on-line thesaurus ψ 

Pu(x) The function of finding the parent node for x 
H(x,y) The function of computing the hypernym of the words x and y 

 

Algorithm3: Constructing hierarchical indexing 
2. Θ ←  Pt(Γ, t(1)) 
3. for i = 1 to t(1) 
4.    compute ω(P(Θ, i)) 
5. for level = 2 to h 
6.    Ω ←  Pt(Θ, t(level)) 
7.     for j = 1 to t(level) 
8.         ω(P(Ω, j)) ← Ø 
9.     for k = 1 to t(level - 1) 
10.         ω(Pu(P(Θ, k)))←H(ω(Pu(P(Θ, k))),ω(P(Θ, k))) 
11.   Θ ← Ω 
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Figure 2 Data distribution in an ad hoc network. 

Figure 2 represents a collection of image data objects located irregularly on the mobile nodes in an 
ad hoc network. As can be observed, the semantically similar contents (say, cars) are scattered on 
nodes not spatially located together. However, these nodes can be treated collectively as a cluster 
based on their semantic similarity. Figure 3 illustrates the hierarchical indexing infrastructure obtained 
from content-based clustering and recursive abstraction of semantic contents. 

 

Figure 3 The indexing hierarchy based on clusters. 

With the help of this indexing hierarchy, content-based image retrieval is performed as a clearly 
aimed searching process, navigated by the semantic content descriptions on the centroid nodes. The 
content-based search algorithm is described as follows: 
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•  When a query (i.e. an example image) is submitted to a mobile node, first try to resolve the 
query locally. 

•  If the query cannot be resolved locally, then forward the query to the cluster centroid node, and 
try to resolve it at the cluster-level. 

•  If the query is resolved at the cluster level, then forward the query to the mobile node containing 
the corresponding image data; otherwise, keep forwarding the query to higher-level clusters 
until it is matched. 

With this search strategy, a query may be resolved within a single cluster (intra-cluster queries) or 
by cooperation of several clusters (inter-cluster queries). Note that the queries generated by a mobile 
node are likely to be semantically related with the data contents of corresponding cluster; hence, this 
“semantic locality” helps to reduce the average search cost by restricting the search scope to a cluster. 

It should be noted that this indexing hierarchy has the self-organizing capability according to the 
network status. After a period of time, some mobile nodes may break down, while some other nodes 
may try to join this network. Hence, this indexing hierarchy should make dynamic adjustments to these 
changes to guarantee the optimal organization and accurate data retrieval. Although some maintenance 
overhead needs to be paid, this overhead occurs only occasionally, and does not have much impact on 
the overall performance. Our simulation results show that with the consideration of maintenance 
overhead, our model still offers better performance than flooding-based strategy. 

4. Performance Evaluation 

A simulator was implemented in ns-2 environment (version 2.26) to evaluate the proposed semantic-
based search scheme. Performance of the proposed scheme is compared against the flooding strategy 
based on various metrics, such as accuracy, search cost, and scalability. 

4.1  Simulation Setup 

To examine both the accuracy and the scalability, we used two sets of experimental datasets as the 
testbed: the real dataset and the synthetic dataset as follows: 

•  The real dataset contains up to 2,048 real images from Corel dataset, which is similar as the 
dataset used in [31]. In the simulator, 256 color histogram features are extracted from each 
image for representation purpose. The semantic contents of images are obtained through the 
latent semantic analysis as discussed in section 2. 

•  The synthetic dataset comprises 65,536 data points whose feature values are assigned by a 
random number generator abiding normal distribution in the interval [0, 1]. 

As mentioned earlier, the data contents of mobile nodes (or clusters) are represented as content 
summaries, and then integrated in the indexing hierarchy. To allow more flexibility and 
comprehensive analysis, the simulator relies on a set of input parameters and conditions: The mobile 
nodes are scattered randomly in an area of 670m * 670m, moving at speeds randomly selected from [0, 
vmax]. The test data are disseminated randomly on the mobile nodes. The contents of these images are 
concisely described as content summaries, which are kept at the centroid nodes. The simulator is also 
capable of building the indexing hierarchy with pre-defined heights and complexities. Table 4 
summarizes some of these parameters. 
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Table 4 Parameters used in the simulations. 

Parameter Default Range 
Environment size 670m * 670m 100m2 to 106m2 
Transmitter range 100m 100m to 1,000m 
Bandwidth 1M bps  
Traffic type constant rate  
Pause time 1s  
Number of nodes 128 1 to 16,384 
Node mobility ( vmax ) 1 m/s 1 to 50 m/s 
Query rate ( Qrate ) 10 query/s  
Query packet size 2 KB  
Data packet size 512 KB 0 – 1 MB 
Node cache size 8 MB 0 to 8 MB 
Image dataset size 2048 1 to 6,5536 
Objects per image 8 1 to 8 

4.2  Evaluation Metrics 

While the main focus of this work is to improve the search performance of content-based image 
retrieval in ad hoc networks (e.g. reduced search cost and increased accuracy), we also tried to study 
the other aspects of the proposed scheme (e.g. scalability and maintenance cost). Our simulations are 
based on the following metrics: 

•  Search cost is the average number of messages spent on transmitting the request to the data 
source node. 

•  Response time is the average delay from the query submission to the determination of data 
source location. 

•  Maintenance cost is the number of messages incurred in the process of adjusting the indexing 
hierarchy according to network topology and data content changes. 

•  Accuracy is the percentage of the results generated by the decentralized search strategy (i.e., 
SAIR or flooding) matching with the results generated by the centralized search strategy [15]. 

4.3  Simulation Results 

•  Accuracy 

In terms of accuracy, we ran our simulator on 2,048 real images randomly scattered on 128 mobile 
nodes. We set the number of nearest-neighbor search to 10. For the two search schemes (SAIR and 
flooding), we varied the number of visited nodes from 2 to 96 to evaluate the matching percentage of 
returned content-similar images in comparison with the centralized search results based on latent 
semantic analysis. Figure 4 illustrates the trends of matching percentage with different numbers of 
visited nodes. For instance, over 80% of the top 10 images returned by SAIR match with the 
centralized search results when 48 nodes are visited, under the similar condition the flooding strategy 
only retrieves 20% of the top 10 images. The superior performance of SAIR in contrast with flooding 
stems from its content-based clustering capability. The search scope is restricted to a few clusters that 
are semantically most related with the query, hence SAIR can achieve higher accuracy by accessing 
only a smaller number of nodes. 
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Figure 4 Impact of the number of visited nodes (2,048 images, 128 nodes). 

To examine the effect of different indexing hierarchy configurations, we use a parameter ─ 
maximum fan-out (MF) ─ in the simulation. In general, in the indexing hierarchy with a fixed number 
of the mobile nodes, the hierarchy’s depth decreases as the nodes’ fan-out increases, hence reduces the 
length of search path (in term of the number of visited nodes) to the data sources. In the simulation run 
depicted in figure 4, the maximum fan-out was set to 10. 

In another simulation run, we examined the impact of data density to the search accuracy. Using 
the same real image dataset, we varied the number of mobile nodes from 512 down to 16 ─ increasing 
the average number of images per node from 4 to 128, while forcing the simulator to visit only 8 
nodes. Figure 5 shows the results. Both strategies achieve higher accuracy when local nodes contain 
more images. This is due to the fact that more images on local nodes increases the chance of finding 
nearest neighbors locally. As expected, SAIR outperforms the flooding strategy because of its 
capability to reduce the search scope to the semantically related local nodes. 
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Figure 5 Impact of data density (2,048 images, 8 nodes visited). 
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•  Response Time and Message Complexity 

In the simulation, we also compared the performance of SAIR and flooding in terms of average 
query response time and message complexity. A commonly used message complexity metric is the 
amortized number of messages pushed to the network during the query resolution process [18]. 

Figure 6 shows the average query response time as a function of the number of nodes in the 
network. As can be concluded, flooding achieves shorter response time than SAIR. In the flooding 
scheme, each query message is first broadcast to the neighboring nodes of the requesting node, then 
copied and re-broadcast throughout the network, therefore a copy of the query message can arrive at 
the data source node thru the shortest path. In contrast, SAIR first finds the location of data source 
node with the help of indexing hierarchy, then unicasts the query message to the data source. 
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Figure 6 Average response time. 
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Figure 7 The number of replies per query. 

SAIR does not perform as well as flooding in terms of response time; however, it incurs much less 
message complexity than flooding. As illustrated in figure 7, flooding strategy results in multiple query 
resolutions. Considering the sheer size of images, the multiple resolutions consume the network 
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bandwidth and mobile node power. In contrast, SAIR offers more efficient processing in terms of 
system resources. As a final note, the indexing hierarchy also offers better load balancing through 
dynamic reconfiguration of the network according to the query distribution. 

•  Search Cost 

The search cost can be evaluated from two perspectives: 1) the number of local nodes visited to 
achieve an expect accuracy (in term of matching percentage of results); 2) the average number of hops 
traversed by the search message to the destination. 

Figure 8 illustrates the study of search cost based on the number of local nodes visited. As 
expected, the flooding strategy needs to visit more nodes to achieve an expected accuracy. Notice that 
the flooding strategy visits almost all mobile nodes (120 out of 128) to achieve the accuracy over 50%, 
while SAIR only need to visit less than 10 nodes for the same accuracy. 
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Figure 8 Visited nodes for expected accuracy. 
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Figure 9 Average number of messages per query. 
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Figure 9 shows the average number of messages spent on resolving a query. This set of simulation 
run confirms the capability of SAIR in reducing the search cost. Moreover, the search cost of SAIR 
only has slight increase as the number of local nodes increases. Hence, SAIR is a low-cost search 
scheme with steady quality. 

•  Scalability 

In terms of scalability to network size, we varied the number of nodes from 27 to 212 to evaluate 
the search complexity and maintenance cost. In this simulation run, we used the synthetic dataset of 
65,536 data points. 
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Figure 10 Search and maintenance cost of SAIR (65,536 data points). 
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Figure 11 Search and maintenance cost of flooding (65,536 data points). 

An important issue of SAIR is the maintenance overhead of its indexing hierarchy due to the 
changes in network configuration. Whether the benefit obtained from content-based indexing can 
compensate this overhead should be considered in the large-scale networks, since the data contents 
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change more frequently. In contrast to SAIR, the maintenance overhead is not significant in the 
flooding strategy. Its maintenance cost only includes messages to update the neighborhood relationship 
between mobile nodes. The queries are broadcast to every node in the network; hence it is not 
necessary to keep the proactive indexing information in the flooding scheme. Figure 10 shows the 
average search cost and the maintenance cost of SAIR as the number of mobile nodes increases. Figure 
11 depicts the average search cost and the maintenance cost of the flooding strategy under the same 
condition. As one can conclude, with the consideration of maintenance overhead, SAIR still provides 
better performance than flooding. 

5. Conclusions 

In this paper, we proposed a self-adaptive semantic-based indexing scheme, SAIR, to facilitate 
content-based image retrieval in ad hoc networks. This scheme has several innovative characteristics 
such as logic-based content representation and semantic-based clustering of mobile nodes. 

The proposed scheme makes use of the data content distribution in ad hoc networks to reduce the 
search cost without incurring high maintenance overhead. We have quantified the efficiency and 
effectiveness of our scheme with respect to various performance metrics ─ retrieval accuracy, search 
cost, scalability, and maintenance overhead. Through extensive theoretical and experimental analysis, 
we found that our search method has the following features: 

•  SAIR is a decentralized non-flooding search strategy performing content-based image retrieval 
in ad hoc networks. It offers similar accuracy as centralized search scheme while visiting a 
small portion of mobile nodes. 

•  We employed semantic-based clustering to organize image data. The content-related mobile 
nodes are grouped into clusters, which drastically reduce the search cost of content-based image 
retrieval. 

•  Our method has the capability of self-organizing according to the data content distribution and 
topology changes in an ad hoc network. This feature indicates the scalability and robustness of 
our method in large-scale networks. 

We are intended to expand the scope of this work to include multimedia data sources (e.g. audio, 
video, and text). In addition, we are interested in integrating the proposed method with other mobile 
environments such as WLAN and cellular networks to allow global sharing among mobile nodes in 
larger distributed environment. 
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