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We present a mobile, multimedia system based on a network of body worn motion

sensors, a wearable computer and a visualization engine that is used to produce a visual
enhancement of Butoh dance performance. The core of the system is a novel motion

classification scheme that allows us to capture the emotion expressed by the dancer
during the performance and map it onto scripted visual effects. We describe the artistic

concept behind the multimedia enhancement, the motion classification scheme and the

system architecture. In an experimental evaluation we investigate the usefulness and
the robustness of the wearable computer as well as the classification accuracy of the

motion-sensing system. We also summarize the experiences with using the system for

live performances on stage in several shows.
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1 Introduction

Enhancing artistic expression has always been a fascinating application of multimedia tech-
nology. New systems are eagerly adapted by the art community. Beyond their artistic value
such systems have often been on the forefront of technology exposing scientifically interesting
problems and leading to innovative solutions in computing. This paper describes a system
that demonstrates how the newly emerging wearable computing and sensing technology can
be used to implement a dynamic, emotion driven multimedia enhancement of Butoh dance
performance. Butoh is a mixture between free-form dance, performing arts and meditation,
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as outlined Section 2.1. From a technical point of view, a Butoh dance could be characterized
as a controlled, however amorphous motion of the whole body, through which the dancer
expresses his/her moods and emotions. Emphasizing the artistic aspect of Butoh, it is often
said that ”Butoh is what happens to dancing when the rational mind stays out of the way”
[1, 2]. Butoh performances are often accompanied by music and visual effects. However since
improvisation is central to the Butoh concept, it is difficult to use statically predefined or
pre-recorded effects. Instead it would be desirable to adapt the effects to the dancers perfor-
mance. This is what our work aims to achieve using body-worn acceleration sensors and a
wearable computer. In addition to our interest in arts, we look at the project as a first step
in using some simple wearable sensors to correlate abstract characteristics of human motion
with moods and emotions. (For a discussion of related work see Section 6).

At this time we have implemented a complete system that has been used for live per-
formance on stage at several shows and carried out a systematic study of the recognition
accuracy of the different motion characteristics during the dance. The paper starts with
artists perspective of the problem, the idea behind the project, and the visualization concept
(Sections 2.1 and 2). This artistic part leads to a 3-dimensional dance style classification
scheme. The scheme is the interface to the recognition algorithm which is described and
evaluated in Section . We then continue with the description of the wearable system used in
our experiments and the visualization engine (Section 4). The paper closes with a summary
of the impressions and experiences during several performances on stage.

2 Artistic Concepts

2.1 Butoh Dance

Butoh dance is a contemporary dance improvisation method originating in modern Japan.
The method has already influenced contemporary western dance, performance and dance the-
ater. Butoh’s special combination of meditation with expressive articulation creates an altered
mode of movement, working along a deeper mental and esthetic physiological automatism,
without adhering to explicit forms. This abstraction makes it an interesting model system to
study the structure of abstract esthetic feelings in general and to implement such structures
in practical interactive applications. To the best of our knowledge no such studies have been
done in the past on Butoh. A most recent progress in the research of dance expressivity came
from recent related studies [3, 4] (See Section 2.4 and 6 for a detailed discussion). Although
Butoh uses an unusual kind of movement for a dance style, it makes use of a particularly
broad expressive spectrum and some of its expressive aspects can be compared to natural
movement and possibly to expressivity in other dance styles [4].

2.2 Artistic Idea

Machine-enhanced artistic output is often considered to be interesting, as it is conceptually
new and playful. Still it might be too discontinuous in terms of esthetics and content, to
involve deeper levels of human perception and association. The idea of our work is to enhance
the experience of Butoh performance by providing real-time biofeedback that is continuously
related to an actual state of abstract and esthetic perception by humans, as expressed in the
dance movement.

Rather than taking the simplistic approach of imitating human behavior, our goal remains
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to invent artificial experimental structures that have an inspiring mental effect on the observer.
Our system recognizes different esthetic patterns created by human motion, interprets them in
terms of esthetic feeling, and translates this ’meaning’ into machine-constructed visual effects.
(See Section 5 for more detail.) The interpretation rules presently used, remain simple and
are based on mirroring emotionally expressive states or contiguous sequences of such states.
The feedback of a visual output during an improvisation provokes some fairly challenging
changes in a performance process. Performers can adapt to the interactive instrument by
means of their composition skills or by actually growing into a new motion technique [5], even
including changes of their physical body scheme and proprioception. A growing community
of performance-artists is actively exploring such possibilities [5]; however still little work is
based on expressivity recognition and on an intuitive, ’natural’ movement semantics [6, 3].

Within our framework of a variable composition structure based on a set of emotionally and
esthetically tuned elements, performers can enter intuitively composed forms of improvisation,
reflexive feedback processes or find new forms of interactive collaboration with visual artists.
With our wearable sensing and visualization system, dance performers can include their own
visual articulation in their improvisation work. The real-time visual output can finally serve
as a complementary or interfering language for the spectators’ interpretation of a performance,
adding a further expressive and narrative level to the work.

2.3 Mapping motion to emotion

As depicted in Figure2, our multimedia enhancement system comprises the following physical
and logical parts: A body area network made of acceleration sensors and a wearable controller
processing the input into an abstract motion space, mapping it into an abstract emotion space
and passing it on to a visualization engine

The major purpose of the abstract motion and emotion spaces is providing an properly
abstracted framework for the mapping between “motion” and “emotion”.

Taking an artistic perspective, we addressed the problem of relating motion to emotion in
three steps: (1) definition of esthetically and expressively relevant motion criteria covering a
versatile motion system, (2) construction of an organized system of emotions, (3) finding an
intuitive connection between a specific emotion state and a specific motion state.

Fig. 1. Figure: Essential steps of our artistic concept. Sensing the motion, recognition of the

patterns, and mapping them into scripted visual effects
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Naturally, there are many ambiguities in this mapping: A restricted number of motion
states represents a unrestricted continuum of feelings. Furthermore there is often more than
one way to express one kind of feeling. A particular difficulty arises from the fact that Butoh
differentiates highly similar esthetic, motoric and proprioceptive states. A slight change in
associative shading of motion or a slight change of tension of the hand can lead to a radical
change in the expressed feeling. This means that any conventional, rigid motion classification
system remains far too coarse to capture the structure of Butoh. Nevertheless we believe that
it makes sense to construct and to use an approximate structure in the sense of playing a
composition that reflects some limited set of dimensions of emotion.

Motion and emotion are separate languages with generally hidden grammars and there is
neither a formalism nor a simple logic nor any simple theoretical rationale in experimental
psychology behind our choice of expressively relevant dimensions and the motion-emotion
mapping. Experimental psychology is currently just at the beginning to observe such relations
in respect to a commonly understood small set of basic emotions. As far as we know, no system
or mapping has yet been established for the much larger amount of esthetic feelings related
to motion. For these reasons and because our study was originally designed for a subjective
artistic purpose rather than for a scientific study in psychology, we decided to start from a
very subjective description of movements, esthetic emotions and their corresponding mappings
as experienced by a Butoh dancer. In future studies, it would be possible to extend some
aspects of this semantic complex with all the proper methods used in psychology research. A
comparison of our descriptions with other systems and with available experimental results,
suggests that our motion space is comparable to aspects of the Laban theory of effort (see
Section 6 for more detail), to which many authors loosely relate as it is also derived from dance
experience. Based on our experimental experience with performances we can say that many
spectators perceived the visual effects spontaneously as correlated and enhancing - without
any knowledge of the concepts behind our system.
2.4 The motion space

Butoh’s expressivity is structured according to spatial references of a higher order. As a
consequence, computing trajectories out of the acceleration data would not be a viable solution
to capture the essence of Butoh.

We established a systematic protocol of different improvised dance sequences of repro-
ducible expressive states or categories. Our simplified model has been derived from a system-
atic subjective description of the dancer’s mental model of motion (imagery). Initially this
lead to an extensive hierarchical system of 3 basic aspects, branching into finally 50 finely
differentiated hierarchical ’dimensions’. The three most important ones are (a) space aspects,
(b) trajectory aspects and (c) motoric aspects. In a refinement we distinguish between (1)
space (direction and orientation of an imagined forcefield), (2) kinesphere (volume of action
and center of imagined forces) (3) main symmetries (of forcefield and of action), (4) typi-
cal trajectories’ form (relative directionality, fragmentation, shape) (5) trajectories’ ’texture’,
fine articulation, : (6) typical motor condition (typical muscle tension, velocity, dynamics,
rhythmic aspects), (7) posture. For practical reasons we then restricted the system to the
basic aspects and the most common of the ’main dimensions’.

A condensation and rearrangement of these initial descriptive ideas resulted in a further
simplified system of three dimensions, characterized by the three expressive criteria: intensity,
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Fig. 2. Mapping schema between sensor data, the motion patterns and the emotion space and

visual effects.

Fig. 3. Our mapping between the motion categories and the emotion space using polar coordinates
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flow and direction with four levels each. We defined each dimension in terms of a set of features
that can be derived from the tracked data (see Section 3). We collected sensor data patterns of
wrist, upper arm and upper leg) movement and matched them with a given combination of the
abstract expressive criteria. The net result is a three-dimensional abstract space, partitioned
into 4*4*4 = 64 different categories with the following factors and levels:

Intensity. As the name indicates, this dimension captures the intensity (reflected in speed
and also frequency) of the motions which can be: (1) Fine (extremely weak), (2) Medium
(average, normal, relaxed, weak), (3) Strong (forceful), (4) Wild (violent, extremely strong).

Motion Direction The motion direction captures the principal axis of the imaginary force-
stream used in Butoh imagery, and corresponds basically to the axis or plane towards which
the hand motions are statistically most frequently oriented in a given expressive state. It can
be

1. Frontal. This denotes a motion where the arms move around a forward directed hori-
zontal axis, passing mostly frontally with respect to the body, with exceptions when the
body is turning ’in an imaginary tunnel’. The dance also contains a lot of arm motions
going towards and away from the body.

2. Horizontal. This signifies a motion where the dancer imagines a horizontally irradiating
force field. The arms mostly move rather stretched out laterally from the body in a
horizontal plane, often seemingly turning around a vertical axis passing through the
body, (Since with this imagery the dancer tends to turn like a structure floating around
horizontally).

3. Vertical. Here the arms perform a lot of up and down motions towards an imaginary
vertical axis through the body.

4. Spherical. Means an imagery of spatially unrestricted and spherically irradiating forces.
A good balance between vertical and horizontal motions.

Motion Flow The motion flow dimension attempts to describe our intuitive notion about
motions being smooth, fragmented (hectic) or swinging as reflected by the temporal profile
of velocity or acceleration. Possible values for this dimension are:

1. Rigid, (hard, resistant, containing elongated pauses or slow decelerations and accelera-
tions sometimes with edgy direction changes)

2. Continuous (smooth, gliding, fluent, relatively calm)

3. Swinging (dynamic, flexible)

4. Fragmented (staccato, discontinuous, breaking directions) Contains a lot of sudden stops
and accelerations.
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2.5 The emotion space as our narrative structure

Studies investigating artificial emotions and expressivity face the problem of how to define
or describe a certain nonverbal expressive state. The circumplex model of emotions is widely
used in psychology to build a topological model of a continuous emotion space [7]. More
complex models underlying the semantics of emotion are an issue of current psychological
research [4, 8].

We basically adapted the circumplex model to our study with Butoh and arranged the
emotions in segments of a circular plane spanned by two orthogonal dimensions, representing
pleasantness (horizontal, x axis from negative, painful dark to positive, bright,) and activa-
tion (vertical, y axis from introvert to extrovert) as depicted in Figure 2 (right). Thus, the
increasing radius from the center represents the intensity of a rather similar emotional quality.
Finally, a third dimension was added in order to be able to capture altered narrative levels
and different styles of scenery. Roughly spoken, an animation sequence is a path in the emo-
tion space that may or may not jump to different levels, depending on the expressive states
traveled through. It should again be noted that we treat the emotion space as a subjectively
organized narrative structure and not as an objectively derived circumplex model.

The same is true for our mappings from motion to emotion and to visual effect (animation).
So far, the mappings result from individual subjective annotations that can be subject to an
artistic process of rearrangement modification of meaning and even replacement, depending
on a specific experience or on a new thematic focus.

2.6 Artistic visual design

A crucial task is the design of animation sceneries corresponding to the different segments
in the emotion space. Originally, we aimed at using static photographic background with
moving abstract symbols, filled with photographic or graphic contents, inspired by a medi-
tative imagery. In our prototype, we modified this idea slightly and are now using Chinese
characters instead of abstract symbols. We treat the characters symbolically and as abstract
’actors’. They are chosen and interpreted on a purely esthetic basis and treated as merely
moving areas and spots that may vary dynamically in size, contents and brightness, so to
create abstract patterns interacting with the photographic fore- and backgrounds.

3 Recognition Methodology

The recognition problem outlined in Section 2.4 is quite different from the typical activity
recognition tasks for which acceleration sensors are often used [9, 10].

Thus for example an arm moving into a horizontal position followed by a vertical oscillating
motion and by the arm being lowered again might signify that the user has greeted someone
through a handshake [11]. Unlike typical activity recognition that can be reduced to a simple
trajectory classification task, our butoh dance style classification task can be characterized as
follows:

1. The aim is to recognize certain abstract characteristics of the motion rather then certain
motion sequences. Thus depending on the way they are conducted two motions with
identical trajectories could represent different classes.

2. In general, for every classification dimension, the dancer is likely to maintain a certain
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class of dancing for anything between tens of seconds to a few minutes. However this
does not mean that every single motion conducted during this period will actually belong
to this class. Instead a certain period needs to be classified according to the dominant
motion type. This means that the system needs to be able to identify transitions between
periods with different dominating motion classes.

3. At times the classification can be ambiguous, in particular where neighboring classes
are concerned. As an example while the distinction between e.g. wild and fine is always
clear, it is less clear when a motions stops being wild and starts being strong. This
means that the exact point of transition between two different periods is not alway
exactly defined.

From the above considerations it can be seen that the problem at hand involves two different
time scales. The first one concerns individual movements, which are on the order of 1 sec.
The second one concerns segments belonging to a single class which last tens of seconds up
to a few minutes. This has lead us to the following two step recognition methodology:
Individual Movement Characterization: In a sliding window chosen to fit the first time
scale (approx 1 sec) appropriate features are computed from the sensors signals. The features
are a physical representation of the three classification dimensions.
Transition Detection: To map the first time scale events into the second time scale classi-
fication of dance periods, a Hidden Markov Model (HMM) is defined for every classification
dimension. Each model takes features defined for the corresponding dimension in a single
sliding window as observables. A state or a group of states is then taken to correspond to
a certain class and the Viterbi algorithm is used to determine the current state. Appropri-
ate choice of the model parameters makes sure that a transition between states (or state
groups) takes place only when the dominant style has changed and is not unduly influenced
by variations of individual motions.

3.1 Individual Movement Classification

The individual movement classification involves three issues: the decision on the placement
of sensors, the choice of features to be computed from those sensors and a choice of an
appropriate window size.
Sensor Placement Close analysis of a number of dance sequences and interviews with the
performer have revealed that the key information about dance style can be found in the arm’s
motion. Although the performer has argued that leg motions are irrelevant, signals from the
upper legs have been also found to be useful for the separation of some classes. This is due
to the fact that leg movements are used mostly to compensate for arm-motions allowing the
dancer to keep her balance. Thus they are correlated with the style.

As a consequence of the above we have decided to use sensors placed on the wrist, the
upper arm and the upper leg. Since, with respect to the dance style, there is no different
between right and left arm/leg, sensors were placed only on the right upper arm, wrist and
leg.
Feature Selection The features are the physical representation of the motion characteristics
used for the dance style classification. As such they could in principle be derived from physical
considerations. As an example motion power is obviously related to the energy contained in
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the signal. Similarly information about the motion direction should be contained in the
ratio of the vertical and horizontal acceleration components. However due to the subjective
nature of some classifications and the fact that the acceleration signal without any supporting
position-information is only indirectly related to many of the characteristics finding features
that provide perfect separation purely from physical considerations is not feasible. For this
reason a two step process has been employed for feature selection. First a number of features
have been selected based on physical considerations. These are

• Standard statistical evaluation parameters specifically standard deviation (STD), mean,
median, variance, maximum and RMS (root mean square) of the acceleration signal.

• A time domain analysis of the number and size of peaks contained in the acceleration
signal. The peaks were derived using a standard hill climbing algorithm

• Frequency-domain-analysis based on an exponential fit of the logarithm of the amplitude
of the Fourier transform of the signal. Assuming

amplitude(frequency) = A · eb·freqeuncy + c

the three parameters A, b and c were fitted and used as features.

The above are defined on each acceleration axis: ax, ay, az, and the norm (
√

a2
x + a2

y + a2
z of

each sensor.
In a second step, those features were tested on a number of dance sequences to interactively

determine which combinations provide best separation for which classification dimensions.
Example of such evaluation for a good set of features on a sequence containing movements of
one style only is shown in Figure 5b. As a result the analysis following feature combinations
have been found:
Intensity The intensity-classification does not depend on the motion direction which means
that most information is contained in the norm. In terms of features mostly intensity and
energy related features such as RMS mean and peaks are relevant. The features used are:

• Wrist: std, RMS, number of peaks, and mean peak size on the norm, mean peak size
on the X- and Y- direction, RMS on the Z-direction

• Upper Arm: mean and mean peak size on the norm; mean peak size on the Y- and
Z-axis

• Leg: mean peak size on the X- and Y-direction

Direction: The direction is mostly determined by the ratio of X-, Y- and Z-components of
the individual sensors. The leg sensor is not relevant. The features used are:

• Wrist: median, STD on the norm, median on the X-and Y-direction, maximum on the
Z-direction

• Upper Arm: mean peak size and RMS on the Y direction

Flow: Flow is mostly derived from dynamics related features in particular frequency domain
parameters and peaks analysis.
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• Wrist: number of peaks, mean peak size and Fourier fit parameters for the norm; number
of peaks and Fourier fit parameters for the Z-direction

• Upper Arm: number of peaks, mean peak size and Fourier fit for the norm

• Leg: number of peaks, mean peak size and Fourier fit for the X-direction

Window Size The size of the jumping window needs to correspond to the first time scale
which means a length of about 1 sec. Experiments have shown a length of 2 sec corresponding
to 20 samples to be most efficient. In addition to reduce the computational complexity a pure
sliding window has been replaced by a jumping window which was moved by 50 samples on
each time step.

3.2 HMM Based Transition Detection

HMMs are often used for the modeling of time dependent signals and have been quite suc-
cessful in such applications as speech or motion recognition. In most motion recognition
applications individual states are used to model different phases of the motion with the obser-
vation probabilities accounting for the possible trajectory variations. Thus mostly sequential
models with a separate multi-state model for every class are used. Since in our case there
are no distinguishable phases an ergodic model with a single state for every possible class
was first defined for each classification dimension. For the performance evaluation the mixed
model alternatives were also considered. The difference is apparent in Figure 4.

class 1 class 2

class 3 class 4

class 1 class 2

class 3 class 4

class 2
(private)

class 4
(private)

Fig. 4. The HMM models used for classification on all three axes. Left picture shows the purely

ergodic model. On the right a mixed models with some private states is shown.

The observables are the features described above with the observation probabilities be-
ing trained from labeled dance segments (see section 3.3). Best results were obtained with
Gaussian mixture distributions. The ratio of transition probabilities to the probabilities of
remaining in a given state reflect the empirical knowledge on the average duration of a dance
segment of a certain class. For the classification the features were fed into the model and
the Viterbi algorithm was used to determine the most probable state sequence. The state
sequence was then translated into classification by labeling every time segment during which
the model remained in a given state with the corresponding class.
Model Improvements Later experiments have shown that for certain classes two state
representations are more appropriate. Thus an additional ’private’ state was assigned to
some class representations as shown in Figure 4. The training of the resulting two state
model included both the observation probabilities in both states per class and the transitions
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between the different states. The transition probabilities to the states corresponding to other
classes were the same as in the single state case. The classes that were assigned a two state
model are: swinging, rigid and fragmented for the flow, horizontal for the direction and strong
and fine for the intensity. In section 3.3 the effect of this improvement are shown.

3.3 Systematic Accuracy Evaluation

To evaluate the classification performance of our method a dance scene several minutes long
has been recorded for each possible combination of classes. All together to cover the three
dimension, each consisting of four classes, 64 scenes were recorded. All scenes were recorded
on video and reviewed by the dancer to verify the labeling. Some scenes, for which the dancer
was found not to have consistently held the required dimension constant were re-recorded.

For training and testing each recorded scene was partitioned into 20sec long segments. Of
those segments 70% were randomly used for training while the remaining 30% were withheld
for testing.

Training For each class of every classification dimension the observation probabilities for
the corresponding state need to be trained from the recorded data. In addition to this, the
transition probabilities of the model with additional ’private’ states need to be determined.
To this end the 70 % training segments from all scenes, in which a particular classification
dimension was fixed to a given value were used in a standard Baum-Welsh iterative training
procedure.

Testing Procedure To test recognition accuracy the 30% segments reserved for this purpose
were concatenated in a random sequence. This sequences represented a possible dance perfor-
mance in which the style would vary in a certain way. It was fed into the three HMMs (one for
each classification dimension) and evaluated using the Viterbi algorithm. The resulting state
sequence, with each state corresponding to a class, was then compared to the ground truth.
The latter was given by the scenes from which the individual segments were taken. Since the
results had considerable variations depending on the random choice of sequences they were
averaged over 25 sequences. An graphical example of the evaluation is given in figure 5.
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Fig. 6. Average recognition accuracy over all four states for the three models direction, flow and

intensity.

3.4 Recognition Results

The overall recognition accuracy is shown in Figure 5. The figure also shows a comparison
between the three models used. It is obvious, that the average recognition of the intensity is
very model-dependent, whilst direction and flow recognition are quite stable.
Flow Obviously rigid and swinging are often mistaken. As rigid is seen by the dancer to
have lots of sub-states, that were neglected, by assembling them to a single state in our
simplified state-model, this is probably the main explanation for their confusion. There is
also some confusion between swinging and fragmented, which we hope to be able to eliminate
by smoothing the data.
Directions Mainly Frontal and Horizontal are confused, which is comprehensible, as both
movements take place in a Horizontal plane. The vertical and spherical confusion can be
explained by the fact, that vertical contains both upward and downward motion, so that the
change between these two directions is interpreted as spherical movement.
Intensity Recognition of intensity is extremely good. There is some confusion between wild
and strong however, which could be explained by the fact, that strong movements are at the
limit of the dancers capabilities, so that its quite difficult to increase energy to reach a wild
state.
Conclusion In summary we see that with few exceptions the recognition rates are over 90%.
Taking into account the fact that the classification is at time ambiguous and might differ from
artist to artist this can be considered satisfactory. This is even more so since most errors occur
between similar categories as discussed above.

The detailed results can be seen in the confusion matrices in Table 7.
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flow
state swing rigid frag. cont.
swing. 93.9987 25.7113 10.4210 1.3207
rigid 3.4914 72.5205 5.4978 0.6310
frag. 0.6556 0.7224 83.8877 0.1665
cont. 1.8543 1.0458 0.1934 97.8817

intensity

state wild strong medium fine
wild 98.0040 10.9807 0.1872 0

strong 1.9938 89.0118 0.6387 0
medium 0.0021 0.0075 99.0833 0.0647

fine 0 0 0.0908 99.9353

directions
state front vert horiz spher
front 96.3836 0.6637 17.2152 3.3347
vert 0.4375 94.2264 0.4744 11.0621
horiz 1.7827 0.2700 75.2993 2.4161
spher 1.3962 4.8399 7.0111 83.1871

Fig. 7. The confusion matrices for the three classification axes.

4 System Implementation

From a hardware perspective, our system comprises: a number of sensor nodes plus a cen-
tral controller, a wearable controller and a stationary recognition and visualization engine.
Roughly speaking, these components form a pipeline that generates, coordinates, analyzes,
interprets and visualizes a stream of motion data, sampled at a sufficiently high rate (100 Hz
in most experiments). We shall explain these components in some detail in the next sections.

4.1 The Sensor System

The sensor nodes used are provided by the Pad’Net (Physical Activity Detection Network)
wearable sensor network developed at the ETH and described in detail in [12]. It consists
of multiple sensor nodes interconnected in a hierarchical network. The purpose of a sensor
node is to provide a physical interface for different sensor types, to read out the corresponding
sensor signal, to provide certain computation power for signal preprocessing and to enable
communication between the other sensor nodes in the network. Figure 9 shows such a sensor
node with its corresponding block diagram. For the experiments three 3D-accelerometers
(ADXL202E from Analog Devices) were used. The analog signals from the sensor were low-
pass filtered (fcutoff=50Hz), AD-converted with 12Bit resolution using a sampling rate of
100Hz.
Sensor Placement Close analysis of a number of dance sequences and interviews with the
performer have revealed that the key information about dance style can be found in the arm’s
motion. Although the performer has argued that leg motions are irrelevant, signals from the
upper legs have been also found to be useful for the separation of some classes. This is due
to the fact that leg movements are used mostly to compensate for arm-motions allowing the
dancer to keep her balance. Thus they are correlated with the style.
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Fig. 8. Overall system architecture with the sensors, the wearable and the visualization machine.

Fig. 9. The components of the wearable subsystem: left a node of the PadNET sensor network,

center the boards of the WearARM wearable computer and right the QBIC system packaged in a
belt buckle.

As a consequence of the above we have decided to use sensors placed on the wrist, the
upper arm and the upper leg. Since, with respect to the dance style, there is no different
between right and left arm/leg, sensors were placed only on the right upper arm, wrist and
leg.

4.2 The Wearable Controller

The choice of a wearable controller depends on the amount of processing that it needs to do.
In the simplest case it just needs to collect the raw signals from the sensors and send them the
visualization system. For this case the top level node of the PadNet hierarchy was connected
to a Bluetooth module.

In general however, it is desirable to perform parts or all of the pattern classification task
on the wearable system. This has two reasons. The first one is technical: transmitting raw
data from all sensors to a stationary machine over a wireless network requires more energy
then doing the classification locally and transmitting selected events. The second one is
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conceptual. Different performers might want to have their personal mapping of motions to
classes and visualization events. Thus it makes sense for the recognition to be done by a
personal device which is fully controlled by the user.

For the above reasons experiments were conducted using different mobile and wearable
devices. In addition to the IPAQ PDA the WearARM (see figure 9) system developed by our
group [13] and the MASC wearable used in the 2Wear EU project [14] were tested. In the
future our next generation wearable, the QBIC [15] will be used. Alternatively to its function
as a real-time data streaming device, the wearable was used by the dancer off-line to record
sample motion patterns. Obviously, the resources provided by a device small enough to be
worn comfortably by a dancer are scarce compared to typical portable or stationary hardware.
For this reason and considering our plans of future research in power awareness, we refrained
from using down-scaled standard software and developed a custom runtime kernel instead,
with an emphasis on ultimate resource efficiency. The resulting system is a fully managed
and modular runtime, programmed uniformly in a high-level language called Active Oberon,
a descendant of Pascal and Modula-2. On top of the kernel, we implemented a memory
file management and up streaming functionality based on the L2CAP layer of the Bluetooth
protocol stack.
The Stationary System The two functional components of the stationary animation system
are the recognition/analyzer module and the visualization engine, with an event oriented
interface. The visualization system has been designed and implemented for this project from
the ground up, and it relies on the same runtime kernel as the wearable controller.

4.3 The Visualization Engine

Corresponding to the typical, silent nature of Butoh dance, we decided in favor of a visual
approach to feedback, in contrast to the more common audio oriented systems. After extensive
discussions, we agreed on a two-level, event based animation policy. Events of both levels are
generated by the recognition/analyzing subsystem and sent to the visualization engine via
TCP/IP. Basically, first level events are used to select the animation scenery corresponding
to the current expressive category, while second level events reflect motion features such as
root mean square or number of peaks and control animation parameters within the current
scenery, for example the size and color of actor objects, their trajectory and speed. The
benefit of the two-level visual system is the option of creating interesting overlays of direct
kinematic feedback and less direct symbolic effects. Obviously, the handling of events arriving
at a high pace in real time is a demanding task that relies on super-efficient processing. For
this reason and for the sake of flexibility, we refrained from using off-the-shelf software and
developed a custom animation system instead [16], running on top of a custom operating
kernel called AOS [17].

The animation system is characterized by the following highlights:

• Each scenery is a stack of (arbitrarily nested) views, each view with its own contents,
properties, event specifications and sub-views.

• Animation sceneries are specified statically as scripts in the form of XML-documents,
internalized at loading time and interpreted dynamically at run time.
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• Typical contents of sceneries comprise pictures and vector graphics, for example Chinese
character glyphs.

It is worth noting that the animation system supports a rich variety of scenarios by
providing full flexibility regarding the use of filling patterns (for example, it allows feeding
life video into a vector graphic) and the nesting of contents. The system exports a set of
built-in event types, among them the scenery-selector Emotion-Event (see first XML sample
document below) but it also allows users to extend this set by arbitrary event types (see
second XML sample document).

<Animation scriptversion="1.0">

<SizeX>1024</SizeX><SizeY>768</SizeY>
<Left>0</Left><Top>0</Top>

<Title>3D Emotion Space</Title>
<Description>Scenery selector</Description>
<Author>Martin Gernss</Author>

<IViewCollection>
<Views>
<IViewRectangle>
<Properties>
<SizeX>1024</SizeX><SizeY>768</SizeY>
<Color><B>255></B></Color>

</Properties>
</IViewRectangle>
<IView3DSpace>
<Properties>
<Speed>0</Speed>

</Properties>
<Events>
<EmotionEvent>
<Coords>
<X><EventData1/></X>
<Y><EventData2/></Y>
<Z><EventData3/></Z>

</Coords>
</EmotionEvent>

</Events>
<Views>
<ExternView fname="World.XML" X=1 Y=1 Z=0/>
<ExternView fname="Trans.XML" X=2 Y=1 Z=0/>
...
<ExternView fname="Dark.XML" X=0 Y=0 Z=1/>

</Views>
</IView3DSpace>

</Views>
</IViewCollection>

</Animation> (a)

<IViewCollection>
<Properties>
<TranslateX>3</TranslateX><TranslateY>0</TranslateY>
<Wrapping/>

</Properties>
<Views>
<IViewChineseGlyphEx>
<Properties>
<PosY>250</PosY><SizeX>300</SizeX><SizeY>150</SizeY>
<Glyph><No>15322></No></Glyph>

</Properties>
<Events>
<ContentEvent subtype="0">
<Glyph><No><EventData1/></No></Glyph>

</ContentEvent>
<ContentEvent subtype="1">
<SizeX><EventData1/></SizeX><SizeY><EventData2/></SizeY>

</ContentEvent>
</Events>
<Views>
<IViewCollection>
<Properties>
<TranslateX>3</TranslateX><TranslateY>2</TranslateY>
<Wrapping/>

</Properties>
<Views>
<IViewStillImage>
<Properties>
<SizeX>800</SizeX><SizeY>600</SizeY>
<Image>Pommes.png</Image>

</Properties>
</IViewStillImage>

</Views>
</IViewCollection>

</Views>
</IViewChineseGlyphEx>
...
</IViewChineseGlyphEx>

</Views>
</IViewCollection> (b)

Fig. 10. Listing of the XML Script controlling the visualization. The code part (a) selects a

scenery and the code part (b) describes a scenery and specifies the real time effects.

The sample script in Figure 10a acts as a selector of sceneries. Essentially, it consists of a
3D space view corresponding to the ”emotion space” of the Butoh dancer. Its Events section
specifies how each emotion event selects a view in the emotion space corresponding to the
three coordinates X, Y and Z as delivered by the arguments EventData1, EventData2 and
EventData3 respectively.

The script in Figure 10b depicts an example of an XML animation script, a collection
consisting of two Chinese glyph views, moving along a horizontal line at constant speed is
specified, the first of which, in turn, consists of another collection of just one view, this time
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a still image used for filling the glyph. The event section of the Chinese glyph advises this
view to translate the user defined ContentEvent subtypes 0 and 1 into a change of the glyph
(code) and its size respectively.

We should add that, thanks to the clearly defined event interface, the custom animation
engine can easily be replaced by any other. In particular, we recently experimented with
Max/MSP as an alternative visualization back-end.

5 Presentation Experience

Performances were shown in autumn 2003 in the performance center for multi-medial arts
“plug.in” in Basel, Switzerland, in the “Disappearing Computer Jamboree” 2003 at the in-
stitute of media design in Ivrea, Italy and during the 150 years celebrations of the ETH in
Zurich. The performances had a demonstration character. The dancer felt that the interac-
tion with the system added dramaturgic tension to the show and the simultaneous interaction
with the image and public was challenging. The reception by the public showed that people
were perceiving some correlation of movement and image. They were looking for the nature of
correspondences between dance and the image and were expecting possible interpretations of
the visual story . Our experience stresses the point that as an addition to the dance, the visual
language should be relatively simple esthetically well-readable and intuitively interpretable
so that the public can grasp some essence of the interaction in an immediate way. Some
parallels of visual movement and the movement of the dance is interesting. Our future visual
representations will explore several choreographic possibilities. During the performances and
in our tests, the wearable computer proved to be a non-disturbing and easily portable device
that the dancer could relatively easily learn to control.

In visual and performance art, meaning, expression and re-interpretation are a priori
ambiguous and in a constant process of subtle change. While our system could detect and
feed back either ’emotionally consequent’ or ’irrational’ human interpretations at the level
of an esthetic approximation, it will, as any machine will, always deviate from its precise
nuance. In contrast to verbal language, this actually poses a conceptual problem in a refined
abstract esthetic perception, where each nuance per se is absolutely significant. This is an
issue that has to be addressed and accounted for in the artistic strategy, either by consciously
taking advantage of the discrepancies, or by choosing a stable esthetic and thematic focus or
by perpetually catching deviating mental and visual episodes.

Following a very different approach, the direct streaming of a range of features from the
originally expressive criteria to the animation system might lead to results that are pattern-
wise related without being obvious and that can inspire without giving an interpretation. This
position fits well the concept of Butoh. An abstract pattern or texture-like visual language
might well support the constructive character of this approach.

With this experience we can consciously make use of structural invention, of restricted
esthetic tendencies and of randomness in the future.

6 Related Work

The interdisciplinary nature of our work means that it is related to a number of different
research areas and that the space constraints of a conference paper will prevent us from
presenting even a nearly complete survey. As particularly relevant we consider the general
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Fig. 11. Visually enhanced Butoh dance performance in the multi-media performance space ”plug-
in” in Basel, Switzerland. A similar performance and demonstration of the technology was given

at the Institute of Media Design in Ivrea, Italy.

Fig. 12. Performance given at the 150 year celebrations of ETH Zurich

motion analysis with wearable sensors, emotion analysis using wearable sensors, wearable arts
related applications, and other dance, in particular Butoh analysis and visualization attempts.

Many authors in the field refer loosely to the Laban Theory of Movement [18]. Laban’s
theory of effort represents the quality (effort) of a motion in an abstract 4-dimensional space.
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Our three dimensional system loosely matches Labans concept, yet the whole concept and def-
inition of space is different. What Laban corresponds to strength we correspond to intensity.
Laban’s aspect of time and flow and trajectory-space is what we have merged into a concept of
flow. Our concept of direction is similar to Laban’s dynamosphere. Laban’s expressive dance
concept and the modern dance are built upon explicit body forms and directions, whereas
Butoh uses referential forms and force-fields hat constrain free movement. Accordingly to
this, the body centered movement area or ’kinesphere’ in Butoh is not oriented relative to the
body, but relative to outer space.

So far motion analysis using acceleration sensors has been mostly applied to two areas: ac-
tivity recognition (e.g. [9, 11]) and medically motivated biomechanical analysis (e.g. [19, 20])
To our knowledge so far acceleration sensors have not been used for emotion analysis. Instead,
the author of [21] mostly uses physiological parameters such as galvanic skin response pulse.
Here the majority of work has been done in the context of so called affective computing [22].
In the multimedia area the work on emotion analysis aims at video classification [23] or at the
extraction of emotions from sound and gesture [24, 25]. An interesting dance visualization
system emphasizing the localization in space is the body brush which is based on infrared
illumination ([26]). A more general framework for the vision based recognition of gestures and
enhancement of artistic expression is described in [27]. Using acceleration sensor technology,
the TGarden Project [28] explores behavior in artificially constraining costumes and audio-
visual spaces, following a less semantic approach, by direct translation from low level gestural
parameters into low level parameters of the visual language (video effects). In the artistically
sensitive and innovative artwork of Levin and Lieberman generative graphics are controlled by
voice sound patterns, optimally merging constructive rules with intuitive ’synaesthetic’ per-
ception. Of particular interest to our work is an effort to extract emotion based information
from dance and movement sequences using video signal described in [29, 3, 30, 31, 4]. These
studies refer to a limited amount of psychological emotion categories related to a ’naive’ body
language (happiness, anger, fear etc) while in our approach we aim at differentiating and rec-
ognizing a larger amount of more abstract esthetic feeling states and connotations typically
created by dancers and perceivable by public. In a recent and ongoing study investigating the
objective psychological nature of such movement perceptions, the generality of some Butoh
expressive categories was shown in terms of recognition and sorting by other subjects[4].

7 Conclusion and Future Work

We have shown that visual animations based on the emotion classification can be used in a
artistic performance in such a way that is perceived as an enrichment by the artist and the
audience.

At the conceptual level our artistic project provides technology applicable to a wider scope
of applications. We are currently studying modifications to our classification and recognition
scheme that deal with casual everyday motions rather instead of dedicated expressive motions
in a dance.

There are limitations of our system at several levels of abstraction. The proposed motion
to emotion mapping is ambiguous to some extent by its design. The reduction of motions and
emotions to our set of categories, their mapping as a linear representation and the criteria of
separation could be questioned asking for more specific psychological research to justify our
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assumptions. Still our categories seem to be pronounced enough to perform a quality test of
the recognition and most of the classes are consciously created and reproducibly recognized.
We are currently investigating an enhanced real-time analysis in more quantitative terms, in
respect to the tradeoff between recognition quality and the delay of the real-time recognition.
To ensure the effect of the visual enhancement, the recognitions delays need to be either
minimized or otherwise conceptually integrated.

Finally we achieved to develop a physically robust wearable system in a novel application.
The intensity of some of the motion patterns put a hard test to the prototype equipment.
Several phases of debugging and re-engineering were required until the hardware, the system
software and the wireless communication equipment were robust enough for a live perfor-
mance. We experienced that the new QBIC device embedded in a belt buckle and some
newer wireless sensors have further improved performer comfort and allow more complex
data processing right at the source of data.
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