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Abstract

Decompilation is the main process of software development, which is very
important when a program tries to retrieve lost source codes. Although
decompiling Java bytecode is easier than bytecode, many Java decompilers
cannot recover originally lost sources, especially the selection statement,
i.e., if statement. This deficiency affects directly decompilation performance.
In this paper, we propose the methodology for guiding Java decompiler to
deal with the aforementioned problem. In the framework, Java bytecode
is transformed into two kinds of features called frame feature and latent
semantic feature. The former is extracted directly from the bytecode. The
latter is achieved by two-step transforming the Java bytecode to bigram and
then term frequency-inverse document frequency (TFIDF). After that, both
of them are fed to the genetic algorithm to reduce their dimensions. The
proposed feature is achieved by converting the selected TFIDF to a latent
semantic feature and concatenating it with the selected frame feature. Finally,
KNN is used to classify the proposed feature. The experimental results show
that the decompilation accuracy is 93.68 percent, which is obviously better
than Java Decompiler.
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1 Introduction

Software maintenance, which is a process of cognition, knowledge acqui-
sition, and comprehension for the system, can be considered to be the most
important part of software engineering nowadays since it consumes around 70
percent of the programming process [1]. Without source code, decompilation
is the main process for software maintenance. This process is a reverse
transformation from a low-level language to a high-level language [2]. In
legitimate use, decompilation is used to recover the lost source codes for
crucial applications [3].

Java bytecode is a form of low-level data that represents source code
behavior in an executable form. Although it retains some types of infor-
mation, e.g., fields method returns and parameters, but does not contain
some other important information, e.g., local variables. Generally, the local
variable type is one of the required information to analyze. The others
include flattening of stack-based instructions and structuring of loops and
conditionals.

If a simple understanding of a program is the purpose of decompilation,
the syntactical correctness of a completely decompiled program might not be
the main goal. Moreover, in case of a company lost their application’s source
code and want to continue development, the recovery of correct source code
is needed. They must decompile and attempt to recover the originally lost
source, which is easy to maintain and directly suitable for use by the clients
in their rewriting application. This is a crucial characteristic of decompiler,
which has to do decompilation [3].

In the decompiler research, J. Hamilton et al. [4] evaluated Java decom-
piler including the existing commercial, free and open-source, which include
9 decompilers. Their experiment focused on 6 categories of usual Java
compiler including Fibonacci, Casting, InnerClass, TypeInference, TryFi-
nally, and ControlFlow. The effectiveness of those decompilers was reported
that Dava, Java Decompiler, and JODE are the best decompiler. And each
decompiler has different advantages, which can do perfect decompilation
in many categories. However, there is no perfect decompilation in the
ControlFlow category, which represents the ambiguity of those statements.
Jozef et al. [5] repeated the experiment and confirmed a similar result.
Moreover, Nicolas et al. [6, 7] that there are at least three points including
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if statement that decompiled source codes are different from the original
code.

The category of decompilation can be divided into two groups, which
are non-machine learning and machine learning. For the first group, Nico-
las et al. [7] evaluated eight non-machine learning Java decompilers. Each
of them has different advantages in syntactic correctness and semantically
equivalence. And they used them to build Arlecchino, their proposed meta-
decompiler. For the second group, Miller et al. [8] proposed a novel dissemble
technique to deal with the loss of information during the compilation process.
This technique computes a probability to indicate the instruction. While
Schulte et al. [9] prepared “big code” database. They used evolutionary search
to find the equivalent binary and gain its equal source code. Katz et al. [10]
used recurrent neural network (RNN) for decompiling binary code, which
generated more similar human-written code.

To improve the performance of decompilation in the ControlFlow cate-
gory, this paper introduces a methodology that guides the decompiler to select
appropriate characteristics of the control flow statement during the decompi-
lation process. In our framework, we apply bigram to trans form bytecode to
TFIDF. Then a genetic algorithm (GA) is incorporated for selecting important
features that are processed using latent semantic indexing (LSI). Finally, the
selected features are classified using K-nearest neighbor (KNN).

In Section 2, we describe preliminary knowledge. Then, the proposed
framework is introduced in Section 3. Section 4 provides the experimental
results and the discussion is presented in Section 5. Finally, the conclusion
and future work are considered in Section 6.

2 Preliminaries

2.1 Java Bytecode Structure

In this section, we provide the basics of Java bytecode structure. In brief,
it is Java Virtual Machine (JVM) processes regarding the execution of the
bytecode. A JVM is a stack-based machine that contains heaps and many
threads in the runtime data area [11]. Each thread has a JVM stack that stores
frames. The frame consists of an operand stack, an array of local variables,
and the execution environment which references the runtime of a constant
pool of the current method class (Figure 1).

The local variable table or the array of local variables contains several
of the variables that are used by JVM during the execution of the method.
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Figure 1 Java bytecode structure.

Any one of the local variables refers to all method parameters and other
locally defined variables. The local variable table is used to hold the values
of the local variables with sequential formatting. For example, the frame is
a constructor or an instance of the method stored at index 0. Then, the next
instruction contains index 1, and so on. The size of the local variable table
is defined at compilation time by using formal method parameters and the
number of local variables. The final structure of the bytecode concept is the
operand stack having 32-bit slots. The operand stack is used to push and pop
the values of virtual machine instructions.

For working on JVM processes, the bytecode contains many kinds of
instructions. Each instruction consists of a one-byte opcode followed by
zero or more operands. These opcodes are put into the operand stack when
executing the method. For example, a POJO contains an field and getter
method (Figure 2(a)). The getBar() method’s bytecode consists of three
opcode instructions (Figure 2(b)). The opcode has individual characteristics
depending on the objective. For example, i load 0 is an opcode that has a ‘i’
as a prefix. The prefix ‘i’ is used to manipulate an integer value. In the same
way, other opcodes must have a prefix corresponding with the data type. For
this example, Figure 3(a), the aload 0 is the first opcode which stores at index
0 in the local variable table. The next opcode is getfield. This opcode is used
to fetch data from the field that corresponds with its object at execution time.
Then, the instruction ‘this’ is popped from the top of the operation stack. At
the same time, #2 is used to create an index at the constant pool which refers
to a variable bar.
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Figure 2 Examples of Java codes: (a) Java source code and (b) Java bytecode.

For this step, the variable bar is loaded onto the operation stack and is
ready to perform. The last opcode is the areturn that refers to the return type
of the method. The areturn instruction is loaded by JVM to the top of the
operand stack, which is also popped and pushed onto the operand stack during
execution time. The getBar() has 3 index values (0, 1, and 4) that correspond
to the byte array for the method. The byte array corresponds to the index,
which stores the opcode from its parameter. Because the method getBar() has
no parameter, it occupies one byte in the bytecode array for storing the opcode
aload 0 (0x2A) at index 0. The next instruction is getfield (0xB4), which is
stored at index 1 and the local variable table uses two bytes to store this
instruction. Hence, index 4 contains the areturn (0xB0) instruction. The local
variable table is constructed inside the constant pool. Figure 3(a) presents
the bytecode instruction in the getBar() method. The Java class file contains
the bytecode that can be viewed using the hexadecimal editor. Figure 3(b)
presents the hexadecimal format of this method.

As mentioned above, there is a single statement in getBar() method. The
bytecode structure uses three opcodes to describe its function. The program-
ming environment contains many statements and expressions; hence there
are many opcodes in a real-world application. For this reason, the bytecode
structure must be investigated expertly and carefully.
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Figure 3 Java bytecode and hexadecimal format: (a) Java bytecode instruction. (b) Java
bytecode in hexadecimal format.

2.2 Term Frequency-Inverse Document Frequency

TFIDF is a weighting strategy, which is used to indicate the importance of
words or terms in an observed document. The TFIDF scheme assigns weight-
ing terms as a product of the term frequency (TF) and inverse document
frequency (IDF) of an observed document. The TF of the term t can be
computed by normalizing the term’s appearance frequency in an observed
document d as follows.

TF (t, d) =
Term t frequency in document d

Total word in document d
. (1)

IDF indicates the importance of the term t among the various documents
in the whole dataset, which is calculated as follows.

IDF (t) = loge
Total documents

documents with term t
. (2)

The TFIDF of the term t in an observed document d can be computed as
follows.

TFIDF (t, d) = TF (t, d)× IDF (t). (3)

The TFIDF value of the term t in document d describes its importance to
the whole dataset. On the one hand, a high score means the term t appears
in a small number of documents and is more meaningful, whereas a low
score indicates that the term t generally occurs in many documents and is
less meaningful.

With the TFIDF technique, each document can be transformed into a
vector, in which each element contains the TFIDF score of the correspond-
ing term. Such a TFIDF vector contains non-negative values, though some
elements might be zero where those terms do not occur in the observed
document. TFIDF vectors can be used to construct the term-document matrix,
in which each row represents the TFIDF vector and each column is its
corresponding term.
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2.3 Latent Semantic Index

The LSI is an information retrieval technique that uses a vector space model
to describe the hidden information in the original data [12]. The vector
space model represents the relationship between a set of documents and
the terms by using a one-hot encoding technique. This technique involves
count vectorization because it counts the occurrence of a word. The LSI
is used to construct word embedding that rearranges the document as a
term-document matrix. The LSI takes advantage of the reduced dimension
[12, 13]. It improves vectors by replacing approximation value from single
value decomposition (SVD) [14–16]. SVD is similar to principal component
analysis (PCA), which is used to reduce noise data while preserves the
original signal [17]. By using LSI, the transformed vector has improved data
that is a better representation for text processing [18–20].

Let A be an m-by-n dimension matrix. We can perform SVD to
decompose matrix A into the product of three matrices as follows.

A = UΣV T . (4)

The columns of U and V are orthonormal while Σ is a diagonal matrix.
These matrices have greater robustness regarding numerical error than the
regular form. We can reduce the dimensions of the factors by selecting rank
k and computing the approximated matrix Ak as follows:

Ak = UkΣkV
T
k , (5)

where Uk ∈ Rm×k is the first k columns of U . V T
k ∈ Rk×n is the first

k rows of V T . The diagonal matrix Σk ∈ Rk×k is the first k rows and k
columns of Σ. Each column of V T

k represents the transformed coordinates of
the corresponding column of A in k-dimensional space. Any vector q with m
elements can be transformed to such k-dimensional space as follows:

q′ = qTUkΣ−1k . (6)

The coordinates in k-dimensional space can be used in many distance
measurement methods such as the cosine distance (COS), the Euclidean
distance (EUC), and the Manhattan distance (MAN).

3 The Proposed Method

The main idea of this study is to use bytecode analysis and classification to
enhance Java decompilation. To achieve this, we use a bytecode token-based
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Figure 4 System overview of our framework.

Figure 5 Data collection process: (a) if statement with block of statement.(b) if statement
that removes other statements.

approach on bigram that cooperates with TFIDF, GA, LSI, and KNN. In this
section, we describe all the related steps of the proposed system, which has
three modules: dataset extraction, data pre-processing, and data processing
(Figure 4).

3.1 Dataset Extraction

To evaluate the proposed approach, the dataset was created from two kinds
of sources, namely the bytecode instruction and the stack frame. Firstly,
the bytecode instruction is divided into a piece of code, which is a block
of statements (also known as a document). Each block of statements is
composed of many kinds of statements. To make the dataset concise, our
extraction strategy focuses only on if, ifElse, ifElseIf, and nested if statement
from the document and transforms them to a sequence the bytecode. For
example, Figure 5(a) presents a document composed of an if statement and a
block of statement. We remove other statements except for the if statement,
which is shown in Figure 5(b).
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Figure 6 Instruction frame: (1a) number of instructions; (1b) scope of each frame.

In this step, we extract the list of the bytecode instruction S =
[s1, . . . , sn], which is directly converted from the remaining sequence of
statements from the .class file. Note that si is the ith bytecode instruction
and n is the number of bytecode instructions in the statement sequence. The
second extraction source is from the stack frame. Normally, the bytecode
structure has a Java stack composed of several stack frames. Such stack
frames store the indices of the instruction set, which describes Java method
invocation. We collect the list of the number of jump instructions in each
frame. Note that T = [t1, . . . , tm] is the list of the number of jump instruc-
tions, ti is the number of jump instructions in frame ith, and m is the number
of frames in the Java method. Figure 6 presents the strategy of our data
collection.

3.2 Data Pre-processing

The main pre-processing step in this study is the construction of features
from two sets of data (S and T ). To produce compact sets of features that
represent the dependency relationship among the documents, the bytecode
instruction si is transformed to its corresponding category. Table 1 presents a
list of defined categories of bytecode sequence Y = [y1, y2, . . . , ym] where yi
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Table 1 Groups of instruction

Group Type of Instruction Opcodes

1 Constants 00–20

2 Loads 22–53

3 Stores 54–86

4 Stack 87–95

5 Math 1 96–131

6 Math 2 132

7 Conversion 133–147

8 Comparison 1 148–152

9 Comparison 2 153–166 , 198–199

10 Control 1 167–169

11 Control 2 170–171

12 Control 3 172–177

13 References 1 178–186

14 References 2 187–190

15 References 3 191–195

16 Others 196–197 , 200–201

represents the ith category of instruction si, and n is the number of bytecode
instructions in the statement sequence.

The data type used in this study is the sequence of bytecode categories, in
which each word has some relationship with its neighbors. To take advantage
of such information, we use bigram analysis for all instruction categories. The
bigram of instruction categories represents co-occurrence between connected
categories of instructions yi and yi+1. For example, for the category of
bytecode sequence Y = [1, 2, 3, 2, 2], to change an input string, this process
constructs the mapping table that defines the conversion between adjacent
categories of bytecode and bigram number as shown in Figure 7(a). After
mapping the table, this process replaces the adjacency category of bytecode
yi and yi+1 by its corresponding bigram number into a new co-occurrence
structure as [2, 6, 8, 5]. Figure 7(b) illustrates how to apply bigram to build
a new string for the input sequence. Let Bi = [bi1, . . . , b

i
N ] be a bigram

sequence of the document i, where N = n− 1.
We denote h as the number of documents. After that, we construct a term-

by-document matrixDTD fromBi. Note thatDTD is an h-by-l matrix where
l is the number of bigram instruction categories. The element dij contains the
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Figure 7 Bigram transformation process: (a) representing an example of the mapping table.
(b) representing the bigram transformation process.

number of bigrams times the number at ith co-occurrence in document jth.
Then DTD is transformed to DTFIDF by using Equation (3). Matrix τ can
be computed to represent the number of jump instructions in each frame of
all documents. DenoteM as the maximum number of frames in our collected
document. τij is the number of jump instructions within the jth frame of the
ith document.

Finally, we concatenate features from matrices DTFIDF and τ to create
the training dataset P ∈ Rh×u as P = [τDTFIDF ]. Note that row i of P is
the feature vector of document i which composed of ith row of DTFIDF , the
list of the numbers of jump instructions of document i, and u is l +M .

3.3 Data Processing

3.3.1 Features selection
GA is applied in this study for features selection (FS), which aims to remove
redundancies and to select relevant features. In GA, the quality of the pop-
ulation has a direct effect on the success rate, which is a key performance
factor. Achieving good performance depends on quantity and diversity. The
population size must start with a proper number. The mating contains a pool
of these chromosomes. Each generation of GA is a chromosome that has an
optimal fitness value [21–23]. In this step, the input data P must be selected
by the chromosome cFS . It is encoded as an u elementary binary vector,
where cFS = [cFS1 cFS

2 . . . cFSu ]
T

. Each element cFS
i ∈ {0, 1} represents

the selection or elimination features of P in column i. We denote the selected
features of τ and DTFIDF as τFS and DFS respectively.
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3.3.2 LSI and KNN classification
KNN is a lazy-learning algorithm that captures information on all training
cases. It takes the k closest neighbors to a point (closest depends on the
distance metric chosen) and each neighbor constitutes a vote for its label.
Simply, the KNN algorithm is a classification algorithm based on feature
similarity.

To classify by KNN, we transform the DFS to LSI called DLSI . Finally,
we construct the input for the classification algorithm as PFS = [τFS DLSI ].
The accuracy of our classification algorithm becomes the fitness value for to
evaluation of the next chromosome cFS .

After the document (training data and validation data) has been trans-
formed by the LSI into new query vector coordinates, it has an appropriate
format ready has to be used for measurement, with the EUC being the
most common matrix used, while the MAN is also a very useful matrix for
continuous variables. Therefore, our approach selects the EUC and MAN for
the measurement distance matrix. The EUC can be defined as:

dEUC (p, q) =

√√√√ n∑
i=1

(pi − qi)2. (7)

The MAN can be defined as

dMAN (p, q) =
n∑

i=1

|pi − qi|. (8)

Note that p =
[
p1 p2 . . . pn

]T
and q =

[
q1 q2 . . . qn

]T
.

4 Experimental Results

To reveal the performance of Java Bytecode Control Flow Classification
framework, a set of experiments and their results are presented in this section.
Each experiment aims to show the significant factor that can improve the
system performance. Firstly, the frame feature on the framework is explored.
Then, the classification performance with bigram is exhibited. After that,
the proper number of nearest neighbors and SVD ranks, which effect on
classification performance, is evaluated. Finally, the comparison of classi-
fication performance between the proposed framework and Java Decompiler
is presented.



Java Bytecode Control Flow Classification 191

Table 2 Number of test cases for each class in the three datasets

Class

Dataset 1 2 3 4 5 Total

Eclipse.jdt.core 45 441 225 66 148 925

Apache BCEL 6.3.1 2 8 50 11 11 82

Apache Ant 1.9.14 31 322 267 67 46 733

Total 78 771 542 144 205 1740

% 4.48 44.31 31.15 8.28 11.78

Table 3 Categories of if statement

Class Statement

1 if(expr && expr && expr) stmt

2 if(expr && expr) stmt

3 if(expr) stmt else stmt

4 if(expr) stmt else if(expr) stmt else stmt

5 if(expr) if(expr) stmt

We used three Java open source projects, named Eclipse.jdt.core
4.5.0 [24], Apache Commons BCEL 6.3.1 [25], and Apache Ant 1.9.14 [26]
for training and testing our algorithm. The details of the datasets are described
in Table 2. After data extraction, we had 1740 records, which explain the
number of classes from each open source in Table 2. To clarify the category
of if statement, we defined five classes of if statement as shown in Table 3.
All experiments were conducted by using Python 3.5.2 with dependency
libraries such as Numpy 1.16.1 and Scikit-learn 0.19.1 on a computer with
an Intel(R) Core(TM) i3-2120 CPU @ 3.30 GHz and 8 GB RAM, running
Ubuntu 16.04.5 LTS.

4.1 Frame Feature Evaluation

As we mentioned above, this section investigates the effectiveness of the
frame feature. We conducted 5-fold cross validation to evaluate the per-
formance of our methodology. The mean accuracy as well as its standard
deviation were reported. Firstly, we evaluated the dataset using three distance
measurement methods (COS, EUC, and MAN).

In the first experiment, we transformed the sequence of bytecode to
TFIDF terms. Then, the frame feature was applied to TFIDF and compared



192 S. Sateanpattanakul et al.

Table 4 The accuracies of TFIDF and TFIDF with frame feature on three measurement
methods

Methods No Frame Feature Frame Feature

COS 65.46(7.45) 87.99(1.08)

EUC 71.72(2.30) 89.66(1.83)

MAN 72.59(2.42) 88.56(1.53)

Table 5 The accuracy of No Bigram and Bigram on EUC and MAN distance methods

Methods No Bigram Bigram

EUC 89.08(1.20) 91.55(1.01)

MAN 89.37(1.95) 91.03(1.29)

both datasets with three measurement methods. The results in Table 4 present
that the classification performance increases by applying frame feature, from
65.46 to 87.99 for COS, 71.72 to 89.66 for EUC, 72.59 to 88.56 for MAN.
Furthermore, the standard deviation of all measurements also decreases, from
7.45 to 1.08 for COS, 2.30 to 1.80 for EUC, and 2.42 to 1.53 for MAN. These
results reveal the advantage of the frame feature, which improves the accuracy
and stability of classification.

4.2 Performance Evaluation of Bigram and Number of Nearest
Neighbor

In the second experiment, we compare two kinds of the dataset. The first
dataset is the category of bytecode sequence, which is transformed to TFIDF
and concatenated with frame feature (No Bigram). For the second dataset, we
created it as same as the first dataset, except applying bigram at the beginning
step. After that, we evaluated both EUC and MAN distances. Note that the
COS similarity was ignored here because it has less efficiency than other
distance measurements.

The result in Table 5 shows the effectiveness of the bigram technique. the
mean accuracy is improved from 89.08 to 91.55 percent and from 89.08 to
91.55 percent for EUC and MAN respectively. When applying bigram, the
bytecode form is a sequence that properly extracts relationship information
between bits. For this reason, the accuracy of the Bigram framework is higher
than the No Bigram framework for both measurement methods.

The accuracy of KNN depends on the number of the assigned k-nearest
neighbors. This experiment investigated the appropriate number of k
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Figure 8 Accuracy of each method with differing numbers of nearest neighbors.

Table 6 The accuracy of NB SVD and B SVD on EUC and MAN distance methods

Methods NB SVD B SVD

EUC 91.32 (1.17), r = 2 92.18 (1.97), r = 12

MAN 91.26 (1.53), r = 2 91.84 (1.91), r = 13

neighbors. Figure 8 demonstrates the mean accuracies of the KNN algorithm
based on two distance measurements. The highest score was achieved when
k was set to 1 for both measurement methods.

4.3 Low-rank Approximation

In this experiment, we applied SVD on TFIDF to No Bigram and Bigram
datasets and denoted them with NB SVD and B SVD, respectively. SVD
projects an n-dimensional space onto an r-dimensional space, where n > r
and n is the number of word types in the collection [16]. Each r value
contributes the classification accuracy of each rank, and each value has an
individual accuracy. This experiment investigated the SVD rank representing
the highest accuracy based on a low-rank approximation technique [27].
Table 6 presents the optimal SVD rank from all measurement methods based
on the LSI methodology. The highest accuracy is 92.18 on SVD rank 12 from
B SVD, which is performed by EUC measurement method.
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4.4 Performance of GA on TFIDF and Latent Dimension Space

We investigated GA to reduce the dimensional space. GA is a sub-optimal
search method [18, 28], which is used to provide the approximated value for
the optimal solution. To find the potential of the method, we applied GA
to No Bigram and Bigram datasets and transformed them to SVD. Then,
they were evaluated by using two measurement methods, EUC and MAN
(see Section 3.3.2) compared with the original JD. To position the proposed
frameworks clearly, we also compared them with two well-known classifiers,
which are random forest (RF) and support vector machine (SVM). Support
vector machine is one of the most successful classifiers in many applications
including text classification. Hence, many researchers used SVM with dimen-
sionality reduction to improve their studies [29–31]. Random forest is also a
famous classification method for text classification [32]. It provides a good
computational cost with high accuracy in both document categorization [33]
and text classification [34]. As shown in Figure 9, the highest accuracy is
own by EUC, which is 93.68 percent. While MAN and JD achieve 93.28 and
92.85 percent, respectively.

 
Figure 9 Accuracy of our framework using MAN and EUC measurement distance methods
compared with Java decompiler, random forest, and support vector machine.
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4.5 Performance of the Java Decompiler

To evaluate the performance of the other Java decompiler, we selected an
effective Java Decompiler (JD) tool named JD to use as a baseline to compare
with our proposed framework. JD is an efficient decompiler, which received
the highest score when compared with other Java decompilers and it has been
accepted as one of the best tools for decompiling Java bytecode [4], which is
used by current studies.

In term of mean accuracy, the proposed framework achieves 93.68 per-
cent, which is 0.83 percent higher than those of JD. For a more detailed
comparison, the performances of both were compared by using a confusion
matrix as shown in Tables 7 and 8. Table 2 presents that there are five classes
of statement and the test cases of class 1 to 5 is 4.48, 44.31, 31.15, 8.28,
and 11.78 percent, respectively. As shown in Table 8, the accuracy of the
proposed framework for class 5 is 83.90 percent, which is hugely better than
JD (47.80 percent). For classes 2 and 3, the accuracies of our framework
are 95.85 and 96.49 percent, while the accuracies of JD are 99.61 and 99.26
percent, respectively. For classes 1 and 4, the accuracies of our framework
are 85.90 and 89.58 percent, while the accuracies of JD are 96.15 and 95.14
percent, respectively.

Table 7 Confusion matrix for JD tool

Predicted Class

1 2 3 4 5

A
ct

ua
lc

la
ss

1 96.15 3.85 0.00 0.00 0.00

2 0.00 99.61 0.00 0.26 0.13

3 0.37 0.18 99.26 0.18 0.00

4 2.08 2.08 0.69 95.14 0.00

5 14.63 37.56 0.00 0.00 47.80

Table 8 Confusion matrix for our framework

Predicted Class

1 2 3 4 5

A
ct

ua
lc

la
ss

1 85.90 0.00 2.56 1.28 10.26

2 0.00 95.85 0.13 0.13 3.89

3 0.00 0.74 96.49 1.66 1.11

4 0.69 2.08 5.56 89.58 2.08

5 6.34 4.39 3.90 1.46 83.90
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Table 9 Confusion matrix for JD with an extension module

Predicted Class

1 2 3 4 5

A
ct

ua
lc

la
ss

1 96.15 0.00 0.00 0.00 3.85

2 0.00 95.85 0.00 0.26 3.89

3 0.37 0.18 99.26 0.18 0.00

4 2.08 2.08 0.69 95.14 0.00

5 14.63 1.95 0.00 0.00 83.41

Moreover, the proposed framework can be used as an extension module
to assist the other decompilers, such as JD, in classifying their ambiguous
input. Table 9 illustrates the confusion matrix of the classification accuracies
for JD by using our framework as an extension module. This module is used
by JD to predict the aforementioned inputs when JD has predicted as class
2. The classification performance is increased from 47.80 to 83.41 in class 5.
The decompilation accuracy has a 2.6% improvement, from 92.85 to 95.40%,
when includes an extension module.

5 Discussion

The first experiment focused on evaluating the performance of the input
data with and without frame feature on three distance measurement methods
(COS, EUC, and MAN). Its results are shown in Table 4. Without frame
feature, the classification accuracy of COS, EUC, and MAN is 65.46, 71.72,
and 72.59 respectively. With frame feature, the classification accuracies
increase to be 87.99, 88.56, and 89.66 respectively. These results reveal
the effectiveness of the frame feature, which improves the classification
accuracy significantly. Moreover, the standard deviations of all measurements
are narrow, which means the stability of the classification system. Then, the
input data were transformed into the TFIDF matrix after which we applied
the bigram technique to the TFIDF matrix and measured the distance of two
compared features in the classification step based on two significant methods
(EUC and MAN). The effect of using bigram and the various distance
measurements are evaluated in this section. Table 5 illustrates the classifi-
cation accuracy in those various processing strategies. Without bigram, the
classification accuracy of the two distance methods was 89.08 and 89.37
percent. With bigram, the classification accuracy of the two distance methods
was 91.55 and 91.03. These experimental results reveal two notable points.
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First, the frame feature and instruction feature have a major impact on the
classification of the dataset. Second, performance is improved when applying
the bigram technique. This means that there is a relationship between each
pair of bytecode instructions. Therefore, bigram is the relevant technique to
take advantage of this information in bytecode classification.

Because all measurement methods were performed on the KNN classifier,
the number of nearest neighbors directly affects the classification accuracy
and this was also investigated. Figure 8 illustrates the accuracy of the KNN
classification with various numbers of neighbors. The k = 1 shows the
highest accuracy of all measurements and datasets. The reason for this phe-
nomenon is that the bytecode of each class consists of various programming
patterns from many conditions and data types. This makes the bytecode
format of each class be formed in multiple variations. As a result, the data
from the same class are distributed in different locations in the feature space.
Conversely, for the same reason, many classes have similar bytecodes in some
cases. This makes some data from different classes to be intersected in the
feature space. Therefore, the use of k = 1 can be better aided in classification
than k > 1, which might lead to the intersection problem of the different
classes as we mentioned above. The result of this experiment represents the
nature of text data, which is quite similar. For this reason, we use this k
neighbors on the rest of the experiments. Table 6 shows the classification
accuracies when we applied bigram and decomposed the TFIDF feature by
SVD to produce the latent space dimensions. The number of TFIDF features
was reduced by the low-rank approximation method. Without a severe loss of
descriptiveness, we found different optimum accuracies when we reduced the
latent dimension based on the two measurement methods (EUC and MAN).
The highest accuracies for each combination were: B SVD, 92.18 percent on
SVD rank 12; and B SVD, 91.84 percent on SVD rank 13.

To improve the performance of the system, some features have to be
removed before decomposing by SVD. Because GA can be used to clean up
inappropriate features, it has the potential to solve the very large number of
factors in this dataset. Therefore, we applied GA to select the proper features
on TFIDF with decomposition by SVD. The results in Figure 9 show that
after applying this strategy, the recognition rates increase to 93.68 and 93.28
for EUC and MAN respectively. These are higher than JD tool, which its
recognition rate is 92.85.

Tables 7 and 8 present the classification performance of JD tool and
our framework in terms of the confusion matrix. Compared with JD, the
overall performance of the proposed framework is noticeably better than JD,
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especially when performed on class 5. The proposed approach and JD have
quite similar performances when performed in classes 2 and 3. Meanwhile,
our approach has lower accuracies than JD for classifying classes 1 and 4.
However, these data are seldom found in real-world applications. Note that,
the bytecode from classes 3 and 4 has an obvious sequence, which can be
easily detected by JD. On the other hand, the bytecode from class 2 and 5
has a quite similar sequence, which made a lot of fault classification to the
classifier, from class 5 to class 2 (see Table 7). In this situation, our method
has more accurate than JD to classify it. Overall, our approach has a potential
that can be used as an extension module to support the others decompiler
tools such as JD and Arlecchino for decompiling bytecode.

6 Conclusion and Future Works

This paper focuses on the framework to correct recovering control flow
statement of Java source from the Java bytecode as a classification problem.
In the framework, firstly, Java bytecode is transformed into a frame feature
concatenated with the latent semantic feature. The frame feature is extracted
directly from the bytecode. While the latent semantic feature is extracted by
transforming the Java bytecode to bigram and then TFIDF. Secondly, both
of them are fed to the genetic algorithm to reduce their dimensions. Thirdly,
the proposed feature is achieved by converting the selected TFIDF to a latent
semantic feature and concatenating it with the selected frame feature. Finally,
each composed feature is classified by KNN. The classification accuracy of
our approach is 93.68 percent based on specific statements, which can be used
as a guideline for decompiling and recovering the correct original form of the
source code. The next step of research can be expanding the framework to
other complex condition statements and other control statements. Moreover,
other word-embedding models such as Word2vec, GloVe, and TextRank as
they are particularly computational and efficiently predictive model for learn-
ing word embeddings from raw text, as well as other efficient classification
models such as a number of deep learning approaches, are included in our
area of interest.
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