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Abstract

In this research, the time domain analysis of the fractional order biquadratic
system with nonzero input and nonzero damping ratio has been performed.
Unlike the previous works, the analysis has been generically done with
dimensional consistency awareness without referring to any specific physical
system where nonzero input and nonzero damping ratio have been allowed.
The fractional differential equation of the system has been derived and analyt-
ically solved. The physical measurability of the dimensions of the fractional
derivative terms which have been defined in Caputo sense, and response
with significantly different dynamic from its dimensional consistency ignored
counterpart have been obtained due to our dimensional consistency aware-
ness. The resulting solution is applicable to the fractional biquadratic systems
of any kind with any physical nature. Based on such solution and numerical
simulations, the influence of the fractional order parameter to all major
time domain parameters have been studied in detailed. The obtain results
provide insight to the fractional order biquadratic system with dimensional
consistency awareness in a generic point of view.
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1 Introduction

The fractional calculus which is an extension of the ordinary integer calculus,
has been extensively utilized in various scientific areas e.g., biology [1, 2],
control systems [3, 4], electronics [5, 6], dynamical system [7–9] and image
processing [10, 11]. Its related differential equation namely fractional dif-
ferential equation (FDE) which is an extension of the ordinary differential
equation (ODE), serves as the foundation for modelling the fractional order
system [12–18]. In the past, the time domain analysis of fractional order
system with order lies between 0 and 1 has been performed [19, 20] and the
analysis of the fractional order system with order lies between 0 and 2 which
is also known as the fractional order biquadratic system, has also been done
[21, 22]. Unfortunately, only such biquadratic system with zero input and
that with zero damping ratio i.e., ζ, have been respectively considered due
to its simplicity. Moreover, [19–22] have focused on the electrical systems
i.e., the fractional order passive circuits, only. Previously, we proposed a
time domain analysis of fractional order biquadratic system with nonzero
input and nonzero ζ where the system has been defined in a general point
of view without referring to any specific physical system [23]. Unfortunately,
the dimensional consistency awareness [21] which is crucial for obtaining the
physical measurability of the dimensions of the fractional derivatives within
the FDE, has been ignored.

Therefore, we extend our previous work by also taking such formerly
ignored dimensional consistency into account. As a result, such physical
measurability of the dimensions of fractional derivatives which have also
been defined in Caputo sense [24], and the system’s response with signifi-
cantly different dynamic have been obtained. Unlike [23], the application of
our solution which is also is applicable to the fractional biquadratic systems
of any kind with any physical nature on the electrical system but with
dimensional consistency awareness, has been shown and the influence of the
fractional order derivative parameter i.e., α which is unique to the fractional
order system, to all major time domain parameters of the system i.e., delay
time (td), rise time (tr), settling time (ts), peak time (tp) and maximum
overshoot (Mp), has been studied. The obtain results provide insight to the
fractional order biquadratic system with dimensional consistency awareness
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in a generic point of view regardless to the physical nature of any specific
system.

In the subsequent section, the dimensional consistency aware FDE of
nonzero input/nonzero ζ fractional order biquadratic system and the sys-
tem response will be formulated. The influence of α to td, tr, ts and
Mp will be studied in Section 3. Finally, the conclusion will be drawn in
Section 4.

2 The Dimensional Consistency Aware FDE and Time
Domain Responses of the System

Generally, the ODE of the conventional biquadratic system can be given as
follows

d2

dt2
y(t) + 2ζωn

d

dt
y(t) + ω2

ny(t) = ω2
nx(t) (1)

where ωn denotes the natural undamped frequency [26]. Moreover, x(t) and
y(t) respectively denote time domain system’s input and response.

For obtaining the FDE of the fractional order biquadratic system, the
ordinary derivative in (1) must be transformed into the fractional one. In order
to obtain the dimensional consistency thus the physical measurability of the
dimension of the fractional derivative term, the fractional time component
parameter, σ [21] must be included. Therefore, the following transformation
must be adopted

d

dt
→ 1

σ1−α
dα

dtα
(2)

Since σ has the dimension of sec, the dimension of 1
σ1−α

dα

dtα is given by
sec which is physically measurable. According to (1), σ can be defined as

σ =
α

ωn
√

1− ζ2
(3)

In addition, we let dα

dtα be defined in the Caputo’s sense [23] as follows.

Definition 1: Let f (t) be arbitrary function of t where t ∈ < and 0 < α = 1
where α ∈ <, dα

dtα f(t) can be given in the Caputo’s sense as

dα

dtα
f(t) =

1

Γ(1− α)

∫ t

0
(t− τ)−α

d

dτ
f(τ)dτ (4)
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After applying the transformation given by (2) to (1), we have

1

σ2−2α
d2α

dt2α
y(t) +

2ζωn
σ1−α

dα

dtα
y(t) + ω2

ny(t) = ω2
nx(t) (5)

Noted that the order of (5) is 2α where 0 < 2α = 2.
For determining y(t), (5) must be solved. Since (5) is linear as the linear

system has been assumed in this work, y(t) can be obtained by using the
following theorem.

Theorem 1: Let t ∈ < and v(t) be the solution of any linear nonhomogeneous
differential equation of arbitrary order with u(t) as the input term where v(0)
denotes the initial value of v(t), v(t) can be given by [25]

v(t) = v(t)|u(t)=0 + v(t)|v(0)=0 (6)

As a result of Theorem 1, we have

y(t) = y(t)|x(t)=0 + y(t)|y(0)=0 (7)

where y(t)|x(t)=0 can be obtained by solving the following equation

1

σ2−2α
d2α

dt2α
[y(t)|x(t)=0] +

2ζωn
σ1−α

dα

dtα
[y(t)|x(t)=0] + ω2

ny(t)|x(t)=0 = 0

(8)

On the other hand, y(t)|y(0)=0 can be obtained by using (5) under the
assumption that y(0) = 0.

For solving (8) the Laplace/inverse Laplace transformation method has
been adopted. By taking the Laplace transformation to (8) and performing
some rearrangement, we have

Y0(s) =
y(0)( 1

σ2−2α s
2α−1 + 2ζωn

σ1−α s
α−1)

1
σ2−2α s2α + 2ζωn

σ1−α sα + ω2
n

(9)

where Y0(s) denotes y(t)|y(0)=0 in the s-domain.
After taking the inverse transformation to both sides of (9), y(t)|x(t)=0

can be obtained as follows

y(t)|x(t)=0 = y(0)Eα[−ζωnσ1−αtα]E2α[−ω2
nσ

2−2α(1− ζ2)t2α]

(10)
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where Eβ[ ] stands for the Mittag-Leffler function [27] which can be defined
in term of arbitrary variable, z as

Eβ(z) =
∞∑
k=0

[
zk

Γ(βk + 1)

]
(11)

For determining y(t)|y(0)=0 on the other hand, the following theorem
must be applied.

Theorem 2: Let t ∈ < and u(t) and v(t) be the input and response of any
linear system of arbitrary order where v(0) = 0, v(t) can be given in term of
u(t) by [26]

v(t) =

∫ t

0
u(t− τ)h(τ)dτ (12)

where h(t) denotes the impulse response of the system and can be obtained
from the inverse Laplace transformation of system transfer function, H(s)
which can be given by

H(s) =
V (s)

U(s)
(13)

where U(s) and V(s) are u(t) and v(t) in the s-domain respectively. It should
be mentioned here that this theorem is commonly known as the convolution
theorem [26].

As a result of Theorem 2, we have

y(t)|y(0)=0 =

∫ t

0
x(t− τ)h(τ)dτ (14)

where
h(t) = L−1[H(s)] (15)

and

H(s) =
ω2
n

1
σ2−2α s2α + 2ζωn

σ1−α sα + ω2
n

(16)

Therefore, we have

h(t) = ω2
nσ

2−2αtαEα[−ζωnσ1−αtα]E2α,2α[−ω2
nσ

2−2α(1− ζ2)t2α]

(17)
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Noted that Eβ,γ [ ] denotes the generalized Mittag-Leffler function [27]
which can be defined as

Eβ,γ(z) =
∞∑
k=0

[
zk

Γ(βk + γ)

]
(18)

By combining the results obtained from both theorems, y(t) can be finally
given as follows

y(t) = y(0)Eα[−ζωnσ1−αtα]E2α[−ω2
nσ

2−2α(1− ζ2)t2α]

+ ω2
nσ

2−2α
∫ t

0
x(t− τ)ταEα[−ζωnσ1−ατα]

× E2α,2α[−ω2
nσ

2−2α(1− ζ2)τ2αdτ (19)

From (19), y(t) with dimensional consistency awareness due to any x(t)
can be determined. As an example, ys(t) i.e. y(t) due to x(t) = s(t) which
stands for the step function with unity magnitude and zero delay, can be
given by

ys(t) = ys(0)Eα[−ζωnσ1−αtα]E2α[−ω2
nσ

2−2α(1− ζ2)t2α]

+ 1− [(
√

1− ζ2)−1Eα[−ζωnσ1−αtα](ωnσ
1−α
√

1− ζ2tα

+ cos−1(ζ))E2α,2α[−(ωnσ
1−α
√

1− ζ2tα+ cos−1(ζ))2] (20)

It should be mentioned here that ys(t) has the steady state value of 1 as
s(t) has unity magnitude and y(t) due to other x(t)’s can be determined in a
similar manner.

Moreover, it can be seen that (19) is also applicable for determining
the response of the fractional order biquadratic system of any kind with
any physical nature by simply substituting the appropriated x(t), y(t), ωn
and ζ. As a result, the tedious case by case analysis can be avoid. For an
illustration, we consider the source free fractional RLC circuit [22] which is
an electrical system. Noted that such fractional circuit is the generalization of
the conventional source free series RLC circuit depicted in Figure 1. By using
(10), the capacitive charge, q(t) of circuit [22] can be instantly formulated by
substituting x(t) = 0, y(t) = q(t), ωn = 1/(LC)0.5 and ζ = 0.5R(C/L)0.5

as given by (21) without any necessity of tedious circuit analysis. Noted also
that σ = α

ωn
√

(LC)−1−(0.5RL−1)2
in this scenario. For other systems e.g., the
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Figure 1 A source free series RLC circuit.

fractional mass spring damper which is a mechanical system etc., different
sets of x(t), y(t), ωn and ζ must be applied.

q(t) = q(0)Eα

[
−Rσ

1−α

2L
tα
]
E2α

[
−

(
1

LC
−
(
R

2L

)2
)
σ2−2αt2α

]
(21)

3 The Time Domain Behavioral Analysis

As stated above, the time domain behaviors of the system can be analyzed by
study the influence of α to td, tr, ts, tp and Mp. Noted that α is of interested
because it does not exist in the conventional biquadratic system but unique
to the fractional one under consideration. In order to do perform the study,
ys(t) must be used. For simplicity, we let ys(0) = 0 in (20). As a result, ys(t)
become

ys(t) = 1− [(
√

1− ζ2)−1Eα[−ζωnσ1−αtα]

× (ωnσ
1−α
√

1− ζ2tα + cos−1(ζ))

× E2α,2α[−(ωnσ
1−α
√

1− ζ2tα + cos−1(ζ))2] (22)

and can be simulated by assuming that ωn = 3 rad/sec and ζ = 0.5 which
is a typical value [26], similarly to [23] as shown in Figure 2. Noted that this
simulation and the rests have been performed by using MATHEMATICA.
From Figure 2, a significantly different dynamic of ys(t) from that of the pre-
vious dimensional consistency ignored step response [23] can be observed.
In the following subsections, the influence of α to td, tr, ts, tp and Mp will
be respectively studied by assuming the above parameters.
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Figure 2 ys(t) v.s. t and α.

3.1 The Influence of α to td
Before proceed further, it should be mentioned here that since 0 < 2α = 1
if 0 < α = 0.5, 1 < 2α = 2 if 0.5 < α = 1 and the order of the system of
our interested is 2α, such system become a fractional order system with order
ranged from 0 to 1 i.e., the maximum order is 1, and from 1 to 2 i.e., the maxi-
mum order is 2, when 0 < α = 0.5 and 0.5 < α = 1 respectively. Therefore,
td can be mathematically defined based on the following definitions

Definition 2: Let t ∈ < and vs(t) be the response to s(t) of arbitrary linear
1st order system, td can be defined as [19]

vs(td) = 0.1 (23)

Definition 3: Let t ∈ < and vs(t) be the response to s(t) of arbitrary linear
2nd order system, td can be defined as [26]

vs(td) = 0.5 (24)

As a result, we have

ys(td) =

{
0.1 0 ≤ α < 0.5

0.5 0.5 ≤ α < 1
(25)
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              α 

 
log10[td] 

0.2 0.4 0.6 0.8

15

10

5

Figure 3 log10[td] v.s. α.

By using (22), (25) and Newton-Raphson method [25], td can be
numerically determined in an iterative manner as follows

t
(n+1)
d = t

(n)
d −

f(t
(n)
d )

f ′(t
(n)
d )

(26)

where (n) means nth iteration of the Newton-Raphson method. Noted that
f(t

(n)
d ) can be given by

f(t
(n)
d ) =

ys(t
(n)
d )− 0.1 = 0 0 ≤ α < 0.5

ys(t
(n)
d )− 0.5 = 0 0.5 ≤ α < 1

(27)

Therefore f ′(t(n)d ) can be similarly given for both ranges of α as follows

f ′(t
(n)
d ) = y′s(t

(n)
d ) (28)

By using (26)–(28), td can be simulated as a function of α as depicted in
Figure 3 which shows that log10[td] is an increasing function of α, however,
the increasing rate is gradually lowered with higher α. Therefore, td is also
an increasing function of α with such gradually lowered increasing rate. This
implies that the rate of change of ys(t) in the transient state is a decreasing
function of α according to the definition of td. It can also be stated that such
decreasing in the rate of change at low values of α is more significant than
that at high values.
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3.2 The Influence of α to tr
According to [26], the definition of tr can be given in term of ys(t) as follows.

Definition 4: Let t ∈ <, ys(t0.1) = 0.1 and ys(t0.9) = 0.9, tr can be given by

tr = t0.9 − t0.1 (29)

As a result, tr can be numerically determined by using Newton-Raphson
method as

t(n)r = t
(n)
0.9 − t

(n)
0.1 (30)

where

t
(n+1)
0.1 = t

(n)
0.1 −

l(t
(n)
0.1 )

l′(t
(n)
0.1 )

(31)

t
(n+1)
0.9 = t

(n)
0.9 −

h(t
(n)
0.9 )

h′(t
(n)
0.9 )

(32)

l(t
(n)
0.1 ) = ys(t

(n)
0.1 )− 0.1 = 0 (33)

h(t
(n)
0.9 ) = ys(t

(n)
0.9 )− 0.9 = 0 (34)

l′(t
(n)
0.1 ) = y′s(t

(n)
0.1 ) (35)

h′(t
(n)
0.9 ) = y′s(t

(n)
0.9 ) (36)

By using (30)–(36), tr can be simulated as a function of α as depicted
in Figure 3. Like td, it has been found that tr is also an increasing function
of α with lower increasing rate when α become higher as log10[tr] does.
Such lowering increasing rate of tr become obvious when α = α1 where
α1 = 0.275 under the assumed parameters as can be seen from Figure 4.
Noted that different α1 can be obtained if different sets of system parameters
have been adopted. By the definition of tr, it can be pointed out that the rate
of change of the magnitude of ys(t) in its transient state from 10% to 90% of
its steady state value is a decreasing function of α where such decreasing is
significant at α < α1.

3.3 The Influence of α to ts
Before we proceed further, the definition of ts should be given as follows.
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          α 

 
log10[tr] 

0.2 0.4 0.6 0.8

15

10

5

Figure 4 log10[tr] v.s. α.

Definition 5: Let x(t) = s(t) where t ∈ <, ts can be defined as

ys(ts) = 0.999 (37)

Therefore, ts can be found numerically by using the Newton-Raphson
method as

t(n+1)
s = t(n)s −

g(t
(n)
s )

g′(t
(n)
s )

(38)

where

g(t(n)s ) = ys(t
(n)
s )− 0.999 = 0 (39)

g′(t(n)s ) = y′s(t
(n)
s ) (40)

By using (38)–(40), we can simulate α as a function of ts as depicted in
Figure 5 which shows that the relationship between α and ts displays a non-
monotonic behavior. It has been found that ts is a decreasing function of α
i.e., t′s(α) < 0, when 0 < α < αcri and vice versa when αcri < α = 1. Noted
that αcri stands for the critical value of α which yields the minimum value of
ts i.e., tsmin. Therefore, αcri and tsmin can be numerically determined by
using (38)–(40) and the following equations

t′s(αcri) = 0 (41)

tsmin = ts(αcri) (42)
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ts (sec) 

                                             α 

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.5

2.0

2.5

3.0

3.5

4.0

Figure 5 ts v.s. α.

Since the system begins to enter its steady state at ts, it has been found that
the system with α = αcri requires minimum time for being steady otherwise
more time is needed. With (38)–(42), αcri and tsmin can be found as αcri =
0.572131 and tsmin = 1.3037 sec based on the assumed parameters stated
above. Noted that different αcri and tsmin can be obtained if different sets of
system parameters have been adopted.

3.4 The Influence of α to tp

Since ys(t) reaches its peak at t = tp, it can be seen that

y′s(tp) = 0 (43)

Therefore, tp can be determined by using the following equation

t(n+1)
p = t(n)p −

y′s(t
(n)
p )

y′′s (t
(n)
p )

(44)

As a result, we can simulate the relationship between tp and α as depicted
in Figure 6 where only α > 0.5 has been considered. This is because the
overshoot of ys(t) does exists if and only if α > 0.5 as can be seen from
Figure 1. It has been found that tp is an increasing function of α and its
rates of change is gradually increased with respected to α. This implies that
the ys(t) of the system with α > 0.5 reach its peak with faster speed if α
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tp (sec) 

         α 

0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Figure 6 tp v.s. α.

approaches 0.5 and become slower if α approaches 1 where the decreasing
in such speed when α approaches 1 is more significant than that when α
approaches 0.5.

3.5 The Influence of α to Mp

At this point, the definition of Mp will be given.

Definition 6: Let x(t) = s(t) where t ∈ <, Mp can be given by

Mp = ys(tp)− 1 (45)

By using this definition and tp numerically determined in the previous
subsection, the relationship between Mp and α can be graphically portrayed
as depicted in Figure 7 where only α > 0.5 has been considered similarly to
Figure 6.

From Figure 7, it has been found thatMp is also an increasing function of
α with the gradually increased rate of change with respected to α. However,
unlike that of tp, the rate of change of Mp is lowered as α approaches 1 and
Mp reach its maximum value i.e., Mpmax, at certain value of α i.e. αmax.
Based on the assumed parameters, αmax and Mpmax can be numerically
determined by using (43)–(47) as αmax = 0.9534 andMpmax = 0.170037. It
should be mentioned here that that different αmax andMpmax can be obtained
if different sets of system parameters have been adopted. Before we proceed
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Mp 

 
        α 

0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.05

0.10

0.15

Figure 7 Mp v.s. α.

Table 1 Prominent features of the proposed research and related previous works
Range Considered Dimensional

of Physical Consistency
Researches α System Awareness Remark
The proposed research 0–2 Arbitrary Included Assuming arbitrary input

and arbitrary ζ.
Application to electrical
system has been shown.
Influence of α to td, tr ,
ts, tp and Mp has been
studied.

[19] 0–1 Electrical Not included –
[20] 0–1 Electrical Not included –
[21] 0–2 Electrical Included Assuming zero input and

zero ζ.
[22] 0–2 Electrical Not included Assuming zero input and

zero ζ.
[23] 0–2 Arbitrary Not included Assuming arbitrary input

and arbitrary ζ.

to the conclusion, it is worthy to present a comparative summary of prominent
features of this and related previous works as shown in Table 1.

M ′p(αmax) = 0 (46)

Mpmax = Mp(αmax) (47)
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4 Conclusion

The dimensional consistency aware time domain analysis of fractional order
biquadratic system with nonzero input and nonzero ζ has been performed
in this research. The fractional derivative terms of the system’s FDE which
σ have been included, have been interpreted in the Caputo’s sense and the
system’s response which employs a significantly different dynamic from its
previous dimensional consistency ignored counterpart [23], has been analyt-
ically determined by solving such FDE. Also unlike [23], the application
of the solution of system’s FDE on the electrical system has been shown
and the influence of α to td, tr, ts and Mp has been studied. The obtain
results provide much insight to the fractional order biquadratic system with
dimensional consistency awareness in a generic point of view regardless to
the physical nature of any specific system. Therefore, this work has been
found to be beneficial to the analysis/design of the fractional order systems
and their related research areas.
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