
Service Orchestration for Object Detection
on Edge and Cloud in Dependable

Industrial Vehicles

Henri Pettinen1 and David Hästbacka2,∗

1CrossControl, Tampere, Finland
2Tampere University, Tampere, Finland
E-mail: henri.pettinen@gmail.com; david.hastbacka@tuni.fi
∗Corresponding Author

Received 17 November 2020; Accepted 07 May 2021;
Publication 26 August 2021

Abstract

Industrial applications, including autonomous systems and vehicles, rely on
processing data on multiple physical devices. The composition of functional-
ity across heterogeneous computing infrastructure is challenging, and will
likely get even more challenging in the future as software in vehicles is
updated to introduce new features and ensure the safety. New soft real-time
use cases emerge and in such cases the model of offloading processing from
a limited or malfunctioning device is a viable solution. This study examines
orchestration of services across edge and cloud for an industrial vehicle
application use case involving image based object detection using machine
learning (ML) based models. First, service orchestration requirements are
defined taking into account the dependable nature of industrial vehicle
applications. Second, an implementation based on Arrowhead framework is
presented and evaluated. The open Arrowhead framework offers means for
dynamic service discovery, authorization and late binding of computational
units. The feasibility of object detection as a service and the suitability of
Arrowhead framework to support such orchestrations across edge and cloud
is assessed.

Journal of Mobile Multimedia, Vol. 18 1, 1–26.
doi: 10.13052/jmm1550-4646.1811
© 2021 River Publishers

2 H. Pettinen and D. Hästbacka

Keywords: Service-oriented architecture, edge computing, cloud-edge
orchestration, arrowhead framework, industrial vehicles, dependable sys-
tems, object detection.

1 Introduction

Industrial systems, including autonomous systems and vehicles, are moving
towards even more extensive use of data. This includes on the one hand smart
and autonomous operation and on the other hand making use of data for
various services. Data intensive solutions need to collect massive amounts
of data and process it accordingly in order to extract meaningful information
for various purposes. Vehicles are evolving towards mobile sensor platforms
with great computational power. Most of the operational features are already
implemented using electrical components. The role of software running these
complex systems is thus increasing. Some of the non-critical functions, e.g.
gathering the telematics, can be dispatched to a remote database over a mobile
network in a constant interval. In the future, it is expected that some (hard)
real-time functionality could be performed outside the vehicle [30, 44] as
computational needs arise [27], i.e. close to the edge of the network. This
requires an enhanced network infrastructure which is yet to realize on roads
or off-road environments. Even with this kind of computational offloading in
place, vehicles should implement a fallback functionality themselves, in case
networking errors occur.

Cloud computing is an enabling technology for developing software
systems and processing large amounts of data in all areas and domains.
Cloud computing builds on economies of scale in leveraging performance,
scalability and reliability. Edge computing, on the other hand, is characterised
by fast processing and short response times possibly in real-time. It has also
been characterised as the extension of the cloud in close physical proximity
[46] which calls for hybrid (hybrid cloud) solutions combining best of both
worlds. All operations, however, do not require millisecond latency nor deter-
ministic networking and there are plenty of applications where offloading the
processing close to the edge or to cloud is useful. For example, long term
planning or analysis and optimisation of ones own operation.

The composition of functionality across different infrastructures is chal-
lenging. In addition to the cloud, on the edge there are typically varying
hardware and software platforms used to deploy and execute functionality
[16]. New service composition algorithms for handling heterogeneity, han-
dling long-running processes, and tools for managing heterogeneity from

Service Orchestration for Object Detection on Edge and Cloud 3

popular programming languages and frameworks need further research as
explained by [21]. Furthermore, [46] point out that software frameworks need
to implement resilience and methods for failover situations.

One way to achieve highly adaptive system is to embrace the service
oriented software architecture (SOA) [41]. The idea is to have one service
responsible for one feature. When well designed, a dynamic service replace-
ment can be performed by looking for substitutional services implementing
the same functionality. Performing this dynamic service discovery is not a
very common practise so far, especially in industrial context.

In this paper, a dynamic service discovery implementing SOA is inspected
and evaluated for the need of object detection in the context of dependable
industrial vehicles. Research questions and contributions of this paper are
as follows: 1. What are the requirements for hybrid cloud orchestration in
dependable industrial vehicular applications spanning edge and cloud? 2.
How is Arrowhead Framework (AHF) suited for object detection applications
in dependable industrial vehicles?

Following, Section 2 presents computing in industrial vehicles, the con-
text of dependability, edge-cloud computing, service-oriented architecture
and related works. The AHF framework, used in our implementation and
evaluation of the concept, is introduced in Section 3. The requirements for
orchestration of services spanning edge and cloud in a dependable context,
answering the first research question, are defined and explained in Section 4.
The test setup is described in Section 5 and the feasibility of this service
orchestration and suitability of AHF to meet the requirements are evaluated
in Section 6. A discussion and conclusions are provided in Sections 7 and 8,
respectively.

2 Computing in Industrial Vehicles’ Context

Gradually happening shift towards new innovation is typical for vehicles.
Examples of such transitions are advanced driver assistance systems (ADAS)
and over-the-air (OTA) software updates. It is expected, however, that these
will become mainstream characteristics of nearly every vehicle [41, 5].

In [30] they envision edge computing to support the more demanding
compute tasks that individual vehicles cannot tackle on their own. They claim
that the safety and efficient control of e.g. a convoy requires high-frequency
exchanges of each vehicle’s dynamic data. A roadside edge server and a cloud
server can be used to coordinate and manage the vehicles and convoys to go
through crossroads safely.

4 H. Pettinen and D. Hästbacka

Object detection is one of the most critical and essential abilities of
autonomous vehicles. To “see” in different types of environments, multiple
different sensors are needed. [22] This explicitly puts higher demand on data
throughput and processing capability. Limited processing power and possible
real-time demands make this challenging, as studied by [44] in their study
on drone computation offloading, claiming that a combination of on-board
processing and nearby edge processing can save wireless bandwidth, and thus
improve scalability without compromising result accuracy or latency.

Various reasons seem to foster the use of Ethernet-based communication
in vehicles. The bandwidth requirements are increasing due to autonomous
driving [5]. In addition, Ethernet traffic can be easily transmitted outside the
vehicle without major data conversion. Having such a dominant position in
various industries and consumer use makes Ethernet a familiar technology
for most developers. [15] Real-time communication is also possible using
Ethernet and can be complemented also by e.g. industrial cellular networks
[43].

2.1 Edge vs Cloud Computing

The term edge computing emerged as the counterforce for cloud computing.
When cloud computing centralizes computing resources in remote locations,
edge computing is about distributing them close to the data producer. The
edge device is typically the first internet connected computer in the data flow
pipeline from the data source to the data sink [39, 8].

Edge computing has clear advantages over cloud computing [39, 8]:

• Latency. Round-trip times to edge are presumably shorter than to cloud.
• Privacy. Data travels through fewer processing points and is thus less

prone to unauthorized access.
• Resiliency. Fewer intermediate devices routing the signal makes edge

computing more resilient in comparison to cloud computing.

Whereas cloud computing has:

• Performance. Cloud computing sets only little physical limits for the
computing device.

• Scalability. The performance can be scaled dynamically thanks to the
excessive computing infrastructure.

• Accessibility. Edge devices may be behind firewalls or routers providing
network address translation. Data flowing to cloud is typically easier to
access from anywhere.

Service Orchestration for Object Detection on Edge and Cloud 5

2.2 Dependability in Industrial Vehicle Context

A dependable system is a system that is able to provide its intended service
with a high probability, and does not cause any harm [33]. Any industrial
use vehicle has the potential to cause serious physical harm, economical
loss or even loss of life. This sets high requirements for all the systems and
subsystems embedded to the vehicles.

Overall dependability is a sum of number of components, including [3]:

• Availability
• Reliability
• Safety
• Maintainability

Continuously a bigger share of the vehicle functionality is done by the
Electronic Control Units (ECU) [45]. Consequently, there is a higher chance
of faults caused by one of the ECUs or the connections between them [40].

Vehicles are embedded systems, and the software they execute is embed-
ded software. Requirements for embedded software have been, and still typi-
cally are, various computing resource limitations (e.g. power efficiency, small
memory consumption) and reliability (e.g. fault tolerancy) [26]. Although
the embedded computing resources have developed greatly, they still cannot
compete against the cloud servers in many areas. Embedded systems in
vehicles can be divided in smaller subsystems which are dedicated towards
certain applications [23]. Such systems are for instance fuel injection systems
or infotainment systems. Some systems have hard real-time requirements,
that is, they require a response to an input in specified time constraint. Not
meeting the time constraint may result in a catastrophe, or the system may
end up in unstable state. [23]

Standards, design principles and software architectures enable complex
cyber-physical systems (CPS), such as vehicles, to work. It is essential for
the vehicle vendors to make good software architectural decisions and select
correct tools in order to maximise their functionality, safety and lifespan.

2.3 Service-oriented Architecture

Service-oriented architecture has been a common implementation strategy
for various web applications [4] for the past decade. In industrial vehicles,
orchestration of software components at run-time is not common and they
are typically bound during design. In SOA, the software system consists
of independent and loosely coupled components which provide a single

6 H. Pettinen and D. Hästbacka

functionality as a service. There are two kinds of service parties – ones with
needs and ones with capabilities to fulfill those needs, typically referred to as
consumers and providers. Key requirement for SOA is a mechanism which
assists consumers to find the service providers. This can be referred to as
service discovery or orchestration. [32]

Benefits of SOA are perhaps not that obvious. Some of the advantages
also emerge in the long run. Services as independent and modular software
blocks that are reusable, scalable and sharable [32]. The fourth industrial
revolution, so called Industry 4.0, comprises ideas of flexible and adapt-
able automation [25]. SOA suits well for building this kind of industrial
applications. Furthermore, these aspects enable new business opportunities
by, for example, selling service functionality to other users. Performance
wise, scalability is crucial for dynamic load balancing and the application
deployment is mitigated by the fact that the application consists of smaller
building blocks.

Like all software architectures, SOA has disadvantages. The trade-off
of increased flexibility is overhead. The overhead comes in terms of code
footprint and messaging. The service discovery process is often the culprit.
Moreover, if a system has only one component responsible for the service
discovery, the whole system is prone to a single point of failure and stops
working if it becomes unavailable.

2.4 Service Interoperability and Automation in Industrial Vehicle
Applications

There is a strong need to enhance interoperability and automation among all
the new and future software based features and tools used in vehicles [12].
Furthermore, the new features require a high level of security [5, 37].

Various software frameworks are designed to address these needs.
According to [34], there are for instance Automotive Open System Archi-
tecture (AUTOSAR), BaSys, FIWARE, Industrial Data Space (IDS), Open
Connectivity Foundation (OCF) and IoTivity and Open Mobile Alliance
(OMA) SpecWorks-LWM2M. Most of them targeted to a rather specific
industrial domain.

The AUTOSAR is a software standard mainly targeting the automotive
domain, which makes it an interesting option for industrial vehicles as well.
AUTOSAR comprises two different platforms, Classic and Adaptive. One
of the most notable differences between them is the software architecture.
The Classic has a layered architecture whereas Adaptive utilizes service-
oriented architecture. This makes Adaptive more suitable for new automotive

Service Orchestration for Object Detection on Edge and Cloud 7

applications requiring interoperability and flexibility. Probably the most strin-
gent requirement for AUTOSAR Adaptive compliant applications is that they
must be POSIX compliant [1].

Autonomous driving functions may be seen as an application of advanced
robotics. Thus it seems natural to have protocols developed on purpose or
borrowed from the robotics industry. What once was a purely research related
software abstraction for robot development [6], Robot Operating System
(ROS), has become mature enough for actual industrial implementations.
This is largely due to its new version, ROS2. ROS2 uses Data Distribution
Service (DDS) as the communication standard [14]. DDS promotes a decen-
tralized, publish-subscribe communication pattern. ROS2 has official support
for Linux, Windows and MacOS [2].

3 Arrowhead Framework as an Enabler of Interoperable
Service Composition

To study the orchestration of services across edge and cloud for industrial
vehicle applications, we choose to adopt the Arrowhead Framework (AHF).
The selection was supported by the fact that it is free and a product of open
source collaboration, has an open model for integration, and allows cus-
tomization [42]. Furthermore, AHF supports security, does not have platform
restrictions, and is easily adoptable both on cloud and edge levels [19].

3.1 Framework Overview

AHF is an open service framework [42] defining a generic and distributed
model for automating Industrial Internet of Things (IIoT) applications [9].
The framework aims to increase the interoperability between heterogenous
industrial systems and devices. In addition, it tries to consolidate the use of
SOA in industrial domains, with Industry4.0 based thinking in mind.

AHF is not an IoT platform but a set of rules for implementing a specific
SOA philosophy. The rules concern only the communication between the
services and systems in different roles and domains. In theory, AHF is pro-
gramming language agnostic, that is, the communication of all components
happens over TCP/IP protocol suite, using HTTP or HTTPS, and the services
obey the Representational State Transfer (REST) principles when interacting
with the framework. The programming language only needs to provide means
for modern web communication.

By utilising the SOA principles, AHF introduces some desirable
design for industrial applications. SOA-based distributed functionality allows

8 H. Pettinen and D. Hästbacka

loosely coupled services on resource-constrained devices to be intercon-
nected at run-time. For example, a dynamic service discovery can be utilized
to switch from faulty service to a functional one. Use of the framework to
direct data flows from measurements through dynamic configuration has also
been proposed in [20]. Thus, the system introduces increased fault toler-
ance. In addition, SOA enables distribution of the application components,
autonomous interaction between the systems and increases the reusability of
software.

3.2 Key Components

AHF comprises a few different abstractions of systems. These are:

• Core Systems – These include the Orchestrator, Authorization and Ser-
vice registry which provide means for service discovery, authorization
and registration, and are mandatory components for every AHF system
[42]. A reference implementation of them is provided by the AHF
development community.

• Supporting Core Systems – Optional Core Systems that help and extend
the functionality of the AHF cloud.

• Application Systems - The service consumers and providers created and
controlled by the users. They implement the actual communication logic
with the help of the Core Systems and optional Supporting Core Sys-
tems. Application systems can expose their services to other application
systems.

Figure 1 presents the composition pattern when using AHF, includ-
ing provider registration, consumer orchestration request, authorization, and

Consumer
Service
Registry

register

Provider
System

Operator

dynamic orchestration

Orchestrator Authorization

register

authorize consumer

communicate

search services

verify access

Figure 1 Sequence of dynamic orchestration process using the Arrowhead Framework.

Service Orchestration for Object Detection on Edge and Cloud 9

finally consumer-provider communication. It should be noted that AHF is
not a middleware for communication but only used initially and all com-
munication between service consumers and providers is direct after the
orchestration.

4 Requirements for Dependable Service Orchestration in
Hybrid Clouds

The characteristics of industrial, dependable, and autonomous vehicle related
computing presented in previous sections are used as the basis when deriv-
ing the requirements for hybrid cloud orchestration (service discovery and
authorization management). As such we have defined the following:

• High availability – It is unacceptable for dependable systems to expe-
rience downtime. Whole SOA becomes inoperative if the orchestration
system is unreachable. [24]

• Fast response time – Some dependable applications require fast and
almost deterministic response times. If one service provider goes down,
the switch to another one needs to happen fast.

• Embedded security and privacy – Security is important for multiple
reasons. Dependable systems can become malfunctional if unauthorised
systems can access the orchestration system. In addition, user privacy
must not be compromised.

• Modifiability – The system must be possible to keep updated. For exam-
ple, security related methods should be modified if new vulnerabilities
are detected. Also new software installations must be supported. [12]

Autonomous driving requires extreme performance and reliability. Let us
examine the requirements this sets for hybrid cloud orchestration through
examples. When a vehicle is driving and an object blocks the road, it must
make fast decisions whether to slow down, stop or dodge the object. If
any service that is used to determine the needed maneuver fails to respond,
a connection to a new one must be acquired extremely quickly. Another
scenario is that an ECU breaks. The services it offers must be then acquired
from some other physical device. At the moment, the alternative services with
hard real-time requirements must be found in the vehicle.

However, this might not be the case in the future as proposed by [13].
Cloud connectivity can become so ubiquitous and reliable that these services
can be deployed off the vehicle. In addition, the connectivity between other
vehicles and the roadside infrastructure might become an important enabler

10 H. Pettinen and D. Hästbacka

Limited
computing
resources

Scalable
computing
resources

Internet

communication

Cloud

Edge

Sensors

High performance computing

Vehicle

Enterprise
or data center

Camera

Dynamic run-time orchestration of
object detection services

Application services Orchestrator &
other core services

Camera Camera

High speed
& reliable

communication

Figure 2 High level overview of a hybrid cloud’s SOA for object detection task.

for autonomous driving. Figure 2 distinguishes the different tiers of hybrid
cloud computing and their characteristics. Furthermore, it illustrates SOA
in dependable hybrid cloud for an object detection use case. As mentioned,
object detection is one of the essential functionalities for autonomous driving.

With increased connectivity comes new threats, and a cyber attacker
might be able to gain control of the vehicle or disable its functionalities [36].
Thus, security is closely linked to safety and not an optional feature in modern
CPS. We see new security exploits constantly happening with servers and
other computing devices. Vehicles make no difference when their computing
devices are accessible from outside. Hence it is also mandatory to have the
possibility to update the software OTA.

Regarding vehicle middleware, Liu [28] lists low overhead and memory
footprint, edge–cloud interaction, and security and reliability as the main
development areas. Liu et al. [29] examined the suitability of ROS (version 1)
for autonomous vehicle platform. They pointed out reliability, performance
and security as three shortcomings of ROS in vehicle use. However, they also
mention that ROS2 is supposed to solve these issues.

Kugele et al. [24] defined requirements and key quality attributes for auto-
motive SOA. Their listing includes testability which is an important aspect
of increasing interest with the growing use of machine learning (ML) based

Service Orchestration for Object Detection on Edge and Cloud 11

components. The software architecture should offer feasible and straightfor-
ward ways for testing. The importance of this requirement is emphasized in
nowadays common continuous integration and deployment (CI/CD) strategy.

The way these requirements need to be addressed from the technical per-
spective are manifold. First, the system should not introduce a single point of
failure. All the components should have a fallback implementation so that the
availability is not threatened. In addition, if a service goes down, a new one
needs to be searched and provided for the consumer. This procedure includes
ensuring that the fallback service is operational. An important concept here is
adaptability to situational changes. If the local processing can not be scaled
further, the computing tasks need to be dispatched to alternative units. That
is, the cloud or other nearby devices.

Second, the system should have adequate performance. The message
throughput is an essential characteristic and it would be beneficial if the
system could serve multiple requests simultaneously. The system should be
implemented using high performance programming languages.

Third, the communication between distributed components must be
encrypted and the communicating parties authenticated and authorized.
The communication protocol should also strive for efficiency. Fulfilling
these requirements should not however introduce a significant delay to the
communication.

The system must also be modular in order to support the modifiability
requirement. A monolithic application would not work well with resource
constrained devices in any case. Modifiablity requires also possibility for
remote access. Not all updates can be made by the user or the repair ser-
vice provider. Even more importantly, new software components must be
deployed to vehicles throughout their life-cycle. Thus the system must allow
communication with entities outside the vehicle, that is, the local network.

5 Implementing Object Detection as a Service

To address the stated challenges related to vehicle software, and to investigate
the feasibility of hybrid cloud computing in vehicles, we introduce a test setup
with both edge and cloud processing. In the example, basic object detection
tasks are performed for prerecorded video, produced by a frontal view camera
of a small industrial machine. The object detection, in our experience, is
a novel and interesting topic for mobile machine researchers. Applications
linked to object detection also have high dependability requirements which
allows us to test the hybrid cloud computing in demanding use cases.

12 H. Pettinen and D. Hästbacka

5.1 Object Detection Models

Object detection is a computer vision concept. The object detection task
localizes objects in an image and labels these objects as belonging to a target
class. [11] In computer vision, a model is a set of processing operations that
take inputs, like images or videos, and return pre-learned concepts or labels.
An object detection model returns the coordinates and labels of the detected
objects.

There are numerous different object detection models and versions of
them available. In our implementation, we used two object detection specific
models: SSD (Single Shot Multibox Detector) [31] with Mobilenet v2 [38]
and YOLO v4 [7] model. These models’ internal behaviour is out of the scope
of this paper, and is thus not described in detail.

5.2 System Implementation

The main hardware components used in this setup are:

• CCpilot VS display computer (IMX6 board) – the service consumer
application on the industrial vehicle

• Raspberry Pi 3B+ – hosting all AHF core services providing service
discovery, orchestration and authorization

• Nvidia Jetson Nano – object detection as a vehicle on-board edge
processing service

• Nvidia Triton Inference Server1 – object detection as a remote cloud
inference service in a private cloud running on an HP Proliant DL380
server with a Nvidia Tesla P100 GPU.

Figure 3 illustrates how these components are interconnected. On the
network’s edge are the Raspberry Pi, CCpilot VS display and the Jetson Nano,
whilst on the cloud resides the Nvidia Inference Server hosting an Nvidia
Tesla P100 GPU. The edge devices are connected through a network switch
and the switch is connected to the internet through network routers.

The AHF core services are hosted at the edge on the Raspberry Pi. The
used AHF version is 4.1.3.2 Each device in the setup (Arrowhead cloud) are
given a cloud and device specific certificate which is used to both authenticate
the device and encrypt the established communication. All the devices and
their service offerings are posted to the Service Registry core service. In
addition, the consumers are authorised to consume the providing services.

1https://github.com/triton-inference-server/server
2https://github.com/arrowhead-f/core-java-spring

Service Orchestration for Object Detection on Edge and Cloud 13

Data Visualiser
(service consumer)

CCpilot VS
display computer

Object detection
(service provider)

Nvidia Jetson Nano

Arrowhead
Core Systems

Raspberry Pi 3 B+

EDGE (industrial vehicle on-board)

Nvidia Tesla
P100 16 GB

Nvidia Triton Server

REMOTE CLOUD
(inference services)

LAN

Object detection
(service provider)

Object detection
(service provider)

Figure 3 Test setup’s key hardware and software components and their interconnection.

All these actions are carried out remotely utilising a cloud specific system
operator certificate, as illustrated in Figure 1.

Object detection is implemented as Python applications offering a simple
RESTful HTTP(S) service. The services utilise the same Arrowhead cloud
specific SSL/TLS certificates to encrypt all the communication and authen-
ticate themselves. The object detection services are deployed both on the
edge and in the cloud. The services accept jpeg images as inputs, perform
the object detection, and send back the resulting image to the consumer. The
CCpilot VS has the role of the service consumer. In the test setup it plays a
prerecorded video file, sends frames to object detection service and visualises
the output image which is provided in the response on the physical screen.
The service provider address is queried from the AHF core services during
the startup and whenever the connection is lost to the provider.

5.3 Orchestration for Exchangeable Services

In our setup, the orchestration request is always so called dynamic. In AHF
configuration that means that there are no predefined rules to find the appro-
priate providers for the consumer. Suitable providers are instead searched
based on the orchestration request parameters. The dynamic orchestration is
set by using so called orchestration flags in the request. Other flags we utilise
are the pingProviders and matchmaking. The former makes the Orchestrator
check whether the suitable providers are alive by pinging them. The latter
requires the Orchestrator to return only one provider address, which it thinks
is the best one.

14 H. Pettinen and D. Hästbacka

Both provider systems offer similar remote procedure call (RPC) end-
points for the object detection task. This means that they are fully exchange-
able in a plug and play manner. However, their inner implementation is
different. First of all, Jetson Nano utilises the SSD Mobilenet v2 model
whereas the cloud server has the YOLO v4 model. Before feeding the images
to the inference model, both implementations use the OpenCV library for
preprocessing. Jetson Nano has its own inference related library called Jetson
Inference,3 which takes care of most of the ML tasks, such as loading the
model from memory, communicating with the GPU cores and performing the
inference. The cloud implementation utilises Nvidia’s Triton server, which
hosts the inference model, and thus also performs the inference. Triton is
deployed as a prebuilt Docker container which eases the inference setup
greatly. The cloud RPC endpoint preprocesses the input images and then
sends them in the correct form to Triton. The request is made using gRPC
protocol. After the inference is done and the possible objects are identified,
both implementations utilise OpenCV again to draw bounding boxes over the
objects on the image. Then the images are returned to the consumer.

6 Evaluation and Results

In this section the technical approach from section 5 is tested and evaluated.
The suitability of AHF for object detection service orchestration and the
feasibility for inference as a service in a dependable industrial vehicle context
is evaluated and compared against the derived requirements of Section 4.

6.1 Evaluation Methods

To evaluate the suitability of AHF’s service discovery process in the repre-
sented test setup we introduce multiple scenarios. By going through these
scenarios it is possible to obtain either quantitative or qualitative data. The
scenarios are:

1. Disconnection occurs between the object detection provider and con-
sumer application.

2. Load balancing necessary by the orchestrator service (e.g. one provider
is too busy).

3. Recovering from brief provider unavailability.

3https://github.com/dusty-nv/jetson-inference

Service Orchestration for Object Detection on Edge and Cloud 15

Figure 4 Image captured from the video of the industrial vehicle for which object detection
using service based inference and service orchestration is studied. On the left the original
image and on the right the object detection output with a bounding box.

In the tests we use a prerecorded video filmed from the front of a small
wheel loader. On the video, the wheel loader is both stationary and in motion.
The frames have size of 1280x720 pixels and the frame rate is 25 per second.
The video shows two identifiable objects, a person and a tractor although the
object detection itself is not in the scope of this paper. An example excerpt
from the video is shown in Figure 4.

Regarding the first scenario, we are particularly interested in how quickly
a new service endpoint is obtained. We measure this using a timer in the
client application. The timer is set to measure the time between sending the
orchestration request and arrival of the response. In Figure 5 the sequence of
switching from service provider to another is depicted. After the consumer
notices the disconnection or a timeout it sends a new orchestration request to
the AHF Orchestrator service. The Orchestrator will internally call Service
Registry which will look up for known providers. In addition, it will ping the
providers to assure that they are reachable. If there are providers available,
the consumer gets a new address to connect to as a response.

The second scenario addresses the situation of multiple consumers over-
loading one or a few of the providers and in turn some only get a few
requests. This can be examined by launching multiple service consumers
simultaneously and then inspecting the share of connections to each provider.

16 H. Pettinen and D. Hästbacka

Consumer
Service
Registry

Provider #1 Provider #2

dynamic orchestration

Orchestrator Authorization

connect

search services

verify access

Connect

Disconnect

Ping providers

Ping providers

Figure 5 Sequence of switching the service provider using Arrowhead core services.

In the third scenario there is only one service provider available for the
consumer. If that goes down briefly, how does the system react? This is simply
observed by closing the provider for a while and then restarting it.

6.2 Results from Evaluation Scenarios

The plot in Figure 6 illustrates the response times of 31 orchestration requests
for AHF. The average time is 223.8 ms and median is 188 ms. Compar-
ing these to the average times spent for the actual object detection tasks
(excluding network delays) gives us perspective. For Jetson Nano, the object
detection takes 42.3 ms on average, median being 39.8 (115 samples). For the
Nvidia Triton Inference Server with Tesla P100 the same samples took 14.8
ms on average with a standard deviation of 0.366 ms. The underlying models
also differ, as explained in Section 5. The inference numbers already give
an indication of performance difference but the parallel compute capacity of
a powerful GPU versus the Jetson Nano is unrivaled (3584 vs 128 CUDA
cores), and the Nvidia Triton Inference Server can serve multiple consumers
concurrently.

From the graph it can be seen that orchestration including the autho-
rization process easily takes a significant amount of time that might affect
functionality in critical applications. In comparison to object detection oper-
ating in near real-time it could mean that the consumer application logic may
need to take safety precaution, e.g. slow down or stop its operation, until a
service connection is restored.

Service Orchestration for Object Detection on Edge and Cloud 17

0 5 10 15 20 25 30
0

200

400

600

800

1,000

1,200
Ti

m
e

[m
s]

Service orchestration times

Figure 6 Alternation of service orchestration response times.

The second scenario with load balancing feature is not supported in
the AHF community implementation (in the chosen dynamic orchestration
mode). However, as the service interfaces between the core services are open
it does not prevent one from implementing the orchestrator according to
ones needs and thus having load balancing implemented as required for that
application. For this study it was not implemented for the test setup.

Going through the third scenario showed that the consumer is able to
recover if it starts polling the orchestration when it looses the connection
to the provider. The orchestrator will return an empty response immediately
if it does not find alive providers. This is avoidable by omitting the ping-
Providers orchestration flag. However, this will most probably lead to the
consumer trying to connect to an unavailable service. By pinging all the
possible providers, the Orchestrator has the best chance to know the available
providers the quickest.

6.3 Evaluating Feasibility of Approach Using AHF

The following requirements were previously defined for dependable service
orchestration (see Section 4): high availability, fast response time, embedded
security and privacy, and modifiability.

18 H. Pettinen and D. Hästbacka

High availability is affected positively to a small extent by the decou-
pled model of independent service components in the implementation and
fundamental nature of AHF. On the negative side, AHF has the core services
as a single point of failure and its service model introduces dependency on
the network layer for which there are no embedded features for improving or
ensuring availability requirements.

Fast and deterministic response time are needed by some applications.
As AHF is only brokering connection establishing and not acting as a mid-
dleware through which all communication takes place, it enables and allows
the implementation of (hard) real-time communication between service con-
sumers and providers. AHF does not mind what protocols the parties use
after the orchestration process is completed. Re-orchestration requests, in
which AHF takes part, are within reasonable limits as shown in our tests
but may require additional safety measures on the consumer side to ensure
safe operation in some use cases, e.g. when doing a failover orchestration.

Embedded security and privacy is of increasing importance as systems
are connected and multiple systems and devices share the same networks. In
the implementation, based on AHF, service consumers and service providers
are identified using certificates, and an authorization service grants access
tokens in order for consumers to be able to use the provided services. In
the implementation, the object detection services implement secure HTTPS
interfaces encrypting all requests between each other. As a result the identity
of parties, authorization, and integrity of exchanges can be ensured using
standard well-established information security practices.

Modifiability is a requirement as CPS and data-driven applications evolve
as new use cases emerge. AHF strives to enable dynamic compositions from
independent service components and facilitates this requirement. The inde-
pendent nature means that service providers and service consumers can be
developed fully independently, and, due to the loosely coupled service nature,
implemented using different implementation methods, tools and platforms, if
desired and as shown in our tests. As long as the service interfaces are known
and remain unchanged there are no changes needed to the consumers or
service providers (neither regarding authorizations or connection strings) as
they are always provided by the AHF core infrastructure. In a traditional point
to point setup the case is often that all consumers need to be reconfigured
independently and, if lacking a trust relationship model, also the service
providers need to be reconfigured who is authorized to consume each service.
Regarding the remote access requirement, AHF enables it in a secure manner
by utilising a special certificate.

Service Orchestration for Object Detection on Edge and Cloud 19

7 Discussion

Autonomous vehicles such as cars or machines need to process data from
a wide range of sensors in their operation. Additionally, when operating
together they will need to process even more information shared from other
vehicles. This calls for new methods to distribute intelligence as well as to
compose functionality.

An interesting thought is having nodes not restricted by power or com-
putational capacity to serve as additional computing capacity, as suggested
by [18], underpinning the need for frameworks and platforms to share the
resources. ML is typically compute intensive, especially model training, but
increasingly also the inference when multiple video streams are used.

The Nvidia Triton Inference Server providing GPU accelerated infer-
ence in combination with a well established service framework shows that
inference as a service is a viable solution to implement offloading between
restricted devices, the edge and even the cloud, as demonstrated in this
study. There can be more and faster compute capacity available from a cloud
resource but one needs to take into account the latencies as well.

In the dependable systems context there are still several challenges asso-
ciated with deterministic networking and computing that are far from solved.
Hard real-time networking can be achieved locally but guaranteed compute
is still under development unless dedicated hardware solutions are used.

Fortunately there are many use cases where soft real-time is sufficient,
e.g. tasks where a higher precision for path planning is obtained from a
remote resource whereas immediate actions are computed locally. Another
safety implementation strategy is to require additional logic on the control
part to ensure safe and proper operation if deterministic communication and
computation is not achieved, i.e. slowing down or halting operations until the
dependencies are restored to an adequate level.

AHF is an open service framework with several characteristics suited
for automating IIoT applications. In comparison to approaches such as OPC
UA and DDS it focuses on the service composition layer and authorization
models for application ecosystems without interfering in the actual com-
munication between systems. This means that (real-time) communication
between individual components can be implemented regardless of AHF. OPC
UA has its own supported protocols, including support for Time-Sensitive
Networking (TSN), and DDS relies on streaming of data using its real-time
publish-subscribe wire protocol. These trade-offs come with limitation in
how individual application system components can be implemented. OPC UA
interoperability with AHF has been proposed [10] with translator adapters.

20 H. Pettinen and D. Hästbacka

Unlike AUTOSAR Adaptive and ROS2, AHF does not specify the mes-
sage structure between peers. AUTOSAR applications must be made using
C/C++ and they need to implement a set of software functionalities to be
AUTOSAR compatible, whereas ROS2 and AHF do not limit the use of
any programming language. These things considered, it is fair to say that
AHF offers a great amount of flexibility in comparison to other similar
frameworks. Frameworks such as AHF also target the broader application
ecosystems spanning across the Internet. AHF even introduces the concept
of inter cloud communication in which AHF instances are relayed to each
other using brokers establishing a chain of trust [17]. In the relayed model,
however, real-time communication cannot be achieved nor are there any other
means available to ensure quality of service among components.

The challenges of authentication and authorization of inter-vehicular sig-
nals and services carrying safety commands have been analyzed for vehicle
platoons in [35]. In their solution, also utilizing the AHF model, they propose
a contract-based approach for specifying safety constraints. Their conclusions
also confirm one of our conclusions that this is not always enough and
additional safety measures might be needed. An example of this is the need
to start a braking sequence before all commands can be authenticated and
authorized in the vehicle platoon.

More generally, there is not yet that much edge native similar to what
is referred as cloud native on cloud infrastructure. One reason for this is
the heterogeneity of edge resources onto which the cloud-edge continuum
would need to be extended that would require unified provision of resources,
security and a chain of trust of services as well as device hardware, and finally
interoperable orchestration and integration models of service components.
Such means would allow to seamlessly move computational functions across
edge and cloud optimising their trade offs.

8 Conclusion

In this paper we studied orchestration of ML based object detection services
across edge and cloud for industrial vehicle applications. First, requirements
were defined taking into account the dependable nature of industrial vehicle
applications. Following, an implementation based on AHF was presented
and evaluated in which object detection services on both edge and cloud
were orchestrated to a service consumer application running on an embedded
computer typical to industrial vehicles.

Service Orchestration for Object Detection on Edge and Cloud 21

As a result it was shown that dynamic orchestration across edge and
cloud is possible using AHF and that AHF supports many of the sought-
after requirements such as fast response time, security and modifiability.
As AHF is not a middleware and doesn’t have the means to ensure high
availability it is not necessarily adequate for all use cases with deterministic
real-time requirements unless client side precautions are taken. It is, however,
anticipated that new soft real-time use cases emerge and in such cases the
demonstrated model of offloading processing from a limited device is a viable
solution and AHF can support that in many ways.

As future work it was identified that services could benefit from a prior-
itization model, especially when performing inference tasks as a service for
various types of needs. If and when these types of service models establish
themselves on dependable systems, such as industrial vehicles, more research
is also needed on frameworks and service platforms to ensure quality of
service both regarding monitoring of individual service executions as well
as their compositions.

Acknowledgment

This research has received funding from the EU ECSEL Joint Undertaking
under grant agreement no. 737459 and from the partners’ national funding
authority Business Finland in the Productive4.0 project.

References

[1] Autosar adaptive platform release 19-11 overview. https://www.autosar.
org/fileadmin/user upload/standards/adaptive/19-11/AUTOSAR TR A
daptivePlatformReleaseOverview.pdf. Accessed: 2021-03-29.

[2] Ros2 installation. https://index.ros.org/doc/ros2/Installation, October
2020. Accessed: 2021-03-29.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, 2004.

[4] A. Banijamali, P. Heisig, J. Kristan, P. Kuvaja, and M. Oivo. Software
architecture design of cloud platforms in automotive domain: An online
survey. In 2019 IEEE 12th Conference on Service-Oriented Computing
and Applications (SOCA), pages 168–175, 2019.

https://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_TR_AdaptivePlatformReleaseOverview.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_TR_AdaptivePlatformReleaseOverview.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/19-11/AUTOSAR_TR_AdaptivePlatformReleaseOverview.pdf
https://index.ros.org/doc/ros2/Installation

22 H. Pettinen and D. Hästbacka

[5] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara. Recent advances
and trends in on-board embedded and networked automotive systems.
IEEE Transactions on Industrial Informatics, 15(2):1038–1051, 2019.

[6] E. Berger and K. Wyrobek. Stanford personal robotics program. http:
//personalrobotics.stanford.edu/, May 2008. Accessed: 2021-03-29.

[7] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao. Yolov4: Optimal speed
and accuracy of object detection. https://arxiv.org/abs/2004.10934v1,
2020.

[8] J. Cao, Q. Zhang, and W. Shi. Conclusions. In Edge Computing: A
Primer, pages 89–90. Springer International Publishing, 2018.

[9] H. Derhamy, J. Eliasson, and J. Delsing. System of system composi-
tion based on decentralized service-oriented architecture. IEEE Systems
Journal, pages 1–12, 2019.

[10] H. Derhamy, J. Rönnholm, J. Delsing, J. Eliasson, and J. van Deventer.
Protocol interoperability of opc ua in service oriented architectures.
In 2017 IEEE 15th International Conference on Industrial Informatics
(INDIN), pages 44–50, 2017.

[11] K. Fessel. A beginner’s guide to object detection. https://www.thisis
metis.com/blog/a-beginners-guide-to-object-detection. Accessed:
2020-04-27.

[12] S. Fürst and M. Bechter. Autosar for connected and autonomous vehi-
cles: The autosar adaptive platform. In 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Work-
shop (DSN-W), pages 215–217, 2016.

[13] M. Gerla, E. Lee, G. Pau, and U. Lee. Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds. In 2014 IEEE
World Forum on Internet of Things (WF-IoT), pages 241–246, 2014.

[14] O. M. Group. Data distribution service. https://www.omg.org/spec/D
DS/1.4/PDF, March 2015. Accessed: 2021-03-29.

[15] P. Hank, S. Müller, O. Vermesan, and J. Van Den Keybus. Automotive
ethernet: In-vehicle networking and smart mobility. In 2013 Design,
Automation Test in Europe Conference Exhibition, pages 1735–1739,
March 2013.

[16] N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran. The role of
edge computing in internet of things. IEEE Communications Magazine,
56(11):110–115, November 2018.

[17] C. Hegedus, P. Varga, and A. Frankó. Secure and trusted inter-cloud
communications in the arrowhead framework. In 2018 IEEE Industrial
Cyber-Physical Systems (ICPS), pages 755–760, May 2018.

http://personalrobotics.stanford.edu/
http://personalrobotics.stanford.edu/
https://arxiv.org/abs/2004.10934v1
https://www.thisismetis.com/blog/a-beginners-guide-to-object-detection
https://www.thisismetis.com/blog/a-beginners-guide-to-object-detection
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF

Service Orchestration for Object Detection on Edge and Cloud 23

[18] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen. Vehicular
fog computing: A viewpoint of vehicles as the infrastructures. IEEE
Transactions on Vehicular Technology, 65(6):3860–3873, 2016.

[19] D. Hästbacka, J. Halme, L. Barna, H. Hoikka, H. Pettinen, M. Lar-
ranaga, M. Bjorkbom, H. Mesia, A. Jaatinen, and M. Elo. Dynamic
edge and cloud service integration for industrial iot and production
monitoring applications of industrial cyber-physical systems. IEEE
Transactions on Industrial Informatics, pages 1–1, 2021.

[20] D. Hästbacka, J. Halme, M. Larrañaga, R. More, H. Mesiä,
M. Björkbom, L. Barna, H. Pettinen, M. Elo, A. Jaatinen, and
H. Hoikka. Dynamic and flexible data acquisition and data analytics
system software architecture. In 2019 IEEE SENSORS, pages 1–4, 2019.

[21] A. Huf and F. Siqueira. Composition of heterogeneous web services:
A systematic review. Journal of Network and Computer Applications,
143:89–110, 2019.

[22] R. Hussain and S. Zeadally. Autonomous cars: Research results,
issues, and future challenges. IEEE Communications Surveys Tutorials,
21(2):1275–1313, 2019.

[23] H. Kopetz. Real-Time Systems : Design Principles for Distributed
Embedded Applications. Springer, New York, NY, 2 edition, 2011.

[24] S. Kugele, D. Hettler, and J. Peter. Data-centric communication and
containerization for future automotive software architectures. In 2018
IEEE International Conference on Software Architecture (ICSA), pages
65–6509, 2018.

[25] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann. Industry
4.0. Business & Information Systems Engineering, 6(4):239–242, 2014.

[26] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pages 363–369, 2008.

[27] X. Li, Y. Dang, M. Aazam, X. Peng, T. Chen, and C. Chen. Energy-
efficient computation offloading in vehicular edge cloud computing.
IEEE Access, 8:37632–37644, 2020.

[28] S. Liu. Edge Computing for Autonomous Vehicles, pages 171–181. 03
2020.

[29] S. Liu, L. Li, J. Tang, S. Wu, and J. L. Gaudiot. Creating Autonomous
Vehicle Systems. Morgan & Claypool, 2017.

[30] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi. Edge computing for
autonomous driving: Opportunities and challenges. Proceedings of the
IEEE, 107(8):1697–1716, 2019.

24 H. Pettinen and D. Hästbacka

[31] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg. Ssd: Single shot multibox detector. In B. Leibe, J. Matas, N. Sebe,
and M. Welling, editors, Computer Vision – ECCV 2016, pages 21–37,
Cham, 2016. Springer International Publishing.

[32] C. MacKenzie, K. Laskey, F. Mccabe, P. Brown, and R. Metz. Oasis
standard: Reference model for service oriented architecture 1.0. 08
2006.

[33] P. Marwedel. Embedded System Design: Embedded Systems Founda-
tions of Cyber-Physical Systems, and the Internet of Things, pages 1–25.
Springer International Publishing, 2018.

[34] C. Paniagua and J. Delsing. Industrial frameworks for internet of things:
A survey. IEEE Systems Journal, pp. 1–11, 05 2020.

[35] R. Passerone, D. Cancila, M. Albano, S. Mouelhi, S. Plosz, E. Jantunen,
A. Ryabokon, E. Laarouchi, C. Hegedűs, and P. Varga. A methodol-
ogy for the design of safety-compliant and secure communication of
autonomous vehicles. IEEE Access, 7:125022–125037, 2019.

[36] J. Petit and S. E. Shladover. Potential cyberattacks on automated
vehicles. IEEE Transactions on Intelligent Transportation Systems,
16(2):546–556, 2015.

[37] M. Rumez, D. Grimm, R. Kriesten, and E. Sax. An overview of
automotive service-oriented architectures and implications for security
countermeasures. IEEE Access, 8:221852–221870, 2020.

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[39] M. Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[40] A. Theissler. Detecting known and unknown faults in automotive
systems using ensemble-based anomaly detection. Knowledge-Based
Systems, 123:163–173, 2017.

[41] M. Traub, A. Maier, and K. L. Barbehön. Future automotive architecture
and the impact of it trends. IEEE Software, 34(3):27–32, 2017.

[42] P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson, J. Dels-
ing, and I. M. de Soria. Making system of systems interoperable - the
core components of the arrowhead framework. Journal of Network and
Computer Applications, 81:85–95, 2017.

[43] S. Vitturi, C. Zunino, and T. Sauter. Industrial communication sys-
tems and their future challenges: Next-generation ethernet, iiot, and 5g.
Proceedings of the IEEE, 107(6):944–961, 2019.

Service Orchestration for Object Detection on Edge and Cloud 25

[44] J. Wang, Z. Feng, Z. Chen, S. A. George, M. Bala, P. Pillai, S. Yang, and
M. Satyanarayanan. Edge-based live video analytics for drones. IEEE
Internet Computing, 23(4):27–34, 2019.

[45] A. Winning. Number of automotive ECUs continues to rise. https://ww
w.eenewsautomotive.com/news/number-automotive-ecus-continues-ris
e, 2019. Accessed: 2020-10-27.

[46] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue. All one needs to know about fog computing
and related edge computing paradigms: A complete survey. Journal of
Systems Architecture, 98:289–330, 2019.

Biographies

Henri Pettinen received the M.Sc. (Tech.) degree in automation engineering
from Tampere University in 2020. His research interests include architectures
for cyber-physical systems and edge computing.

David Hästbacka is an Assistant Professor (tenure track) at Tampere Uni-
versity, Finland. He received his D.Sc.(Tech.) degree (with distinction) in
2013 and M.Sc. (Tech.) degree in 2007 at Tampere University of Tech-
nology. His research interests are in system and software architectures,
and interoperability of software systems in production and energy systems
applications.

https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise
https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise
https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise

	Introduction
	Computing in Industrial Vehicles' Context
	Edge vs Cloud Computing
	Dependability in Industrial Vehicle Context
	Service-oriented Architecture
	Service Interoperability and Automation in Industrial Vehicle Applications

	Arrowhead Framework as an Enabler of Interoperable Service Composition
	Framework Overview
	Key Components

	Requirements for Dependable Service Orchestration in Hybrid Clouds
	Implementing Object Detection as a Service
	Object Detection Models
	System Implementation
	Orchestration for Exchangeable Services

	Evaluation and Results
	Evaluation Methods
	Results from Evaluation Scenarios
	Evaluating Feasibility of Approach Using AHF

	Discussion
	Conclusion

