Journal of Mobile Multimedia, Vol. 2, No. 2 (2006) 124-145
© Rinton Press

BAZAAR: A MIDDLEWARE FOR
PHYSICAL WORLD ABSTRACTION

KAORI FUJINAMI and TATSUO NAKAJIMA
Department of Computer Science, Waseda University
{fujinami, tatsuo}@dcl.info.waseda.ac.jp

Received March 1, 2006
Revised May 1, 2006

In this paper, we propose a middleware, Bazaar, for building location and context-aware
services without the need to consider the detail of information capturing, but to allow
a developer to concentrate on his/her main task, i.e. the application logic development.
Bazaar abstracts the physical world by separating the structures of information and
the usage from utilization. It also serves as a shared “physical information repository”
to maintain consistency among various applications in the environment, which is often
called the world model. The world model in Bazaar contains a location model and
an artefact model. The former represents the containment relationship between a unit
space like a house and unit regions like the washroom. The static specification and
dynamically changing status of an artefact is handled within the artefact model. Here, a
sensor augmented artefact acts as a building block for a smart space. Usually, the artefact
has a primary role and we have a prior understanding of the meaning of the state-of-
use. We call such an artefact a sentient artefact. This paper describes the design
and implementation of Bazaar with a programming model that reflects the relationship
between locations and objects in the physical environment. Furthermore, we describe
experiences from various application developments with Bazaar.

Keywords: Ubiquitous Computing, Context-Awareness, Sentient Artefact, World Model,
Middleware
Communicated by: 1. Ibrahim

1 Introduction

The advancement of technologies, such as wireless communication and downsized computation
affected by high performance, allows intelligences to be spontaneously added into an everyday
living space and connected us networks[9]. Such computing environments are often referred
to as a ubiquitous computing environment[28], and they have been investigated since early
1990’s. In ubiquitous computing era, the notion of context-awareness plays an important role,
and it is one of the exciting research topics[7][21][20]. A system that is aware of its operating
situation, i.e. context, can adapt its behavior to the user. We consider that this makes
two major contributions to our everyday lives. One is assisting us by extracting relevant
information from the information overloads. For example, let us consider a case in which
networked room lights are installed into an office and a user staying in one room wants to
move to another. The user needs not to be aware of the names or network addresses of the
lights to turn off and on. Instead, he/she should only move to the room, and a context-aware
room light controller should do the rest. The other is enriching our daily living with value

124

K. Fujinami and T. Nakajima 125

added services. For example, if someone forgets to take an important thing that is required
for him /her based on the sensed context, a context-aware memory aids is able to alert that
it is left behind[13].

Contextual information is required to be extracted as implicitly as possible through inter-
action between users and surrounding environments. This leads to the need for a capability
to handle a wide variety of contextual information from the physical world, e.g. the existence
on particular location[16], co-locating[4], the state of use of an everyday object[14], and so on.
Here, an everyday object (artefact) usually has a primary role, and we have a prior under-
standing of the meanings of the state-of-use. Therefore, we consider that an artefact becomes
a building block to build a smart space. We call such a sensor augmented artefact a sentient
artefact[11].

Moreover, the accuracy of the extracted information is important. If the information
corresponds to the real situation and the user’s experience, the user will feel less burdensome
when the system acts autonomously. Furthermore, various different applications in a physical
space can often consume the same kind of contextual information, so the consistency of the
information is required. Such information should neither be extracted by a single application
nor used only by itself. Therefore, it should be managed apart from the application itself and
shared with others.

In this paper, we propose a middleware, Bazaar, so that a developer can concentrate on
building location and context-aware application logics. Bazaar encapsulates the structure of
the information about the physical world. Such information is often called the world model.
The information is shared with different applications so that they can refer a single view of
the world to work consistently. Furthermore, the developer can share the information with
an application to build a smart space easily as if he/she were in the space. The world model
contains a location model and an artefact model. The former represents the containment
relationship between a unit space like a house and unit regions like the washroom. The
static specification and dynamically changing status of a sentient artefact is handled within
the artefact model. The design and implementation of Bazaar is described with a program-
ming model. Furthermore, we report the experiences from various application development
experiments.

2 Smart Space with Sentient Artefacts

In this section, we describe the motivation for building a sentient artefact-based smart space
with a concrete scenario.

2.1 A Scenario

The following scenario illustrates how the appropriate information and services are provided
at a proper timing in a daily life.

A Tokyo resident, Hanako, made an appointment to meet her friend in Yokohama. She
registered the appointment with the schedule management application running on her cellular
phone, and she put it on her favorite phone cradle. She went into bed after setting the alarm
clock on the bedside. She received a call during the night, but as her cradle knew she was
sleeping, the call was not notified with a sound. On the next morning, she woke up before the

126 Bazaar: A Middleware for Physical World Abstraction

alarm and went to the washroom to brush her teeth. The alarm was cancelled automatically.
During brushing her teeth, information was presented on the surface of the mirror and she
noticed that the weather in Yokohama would get worse and that there had been a railway
accident on the train line she was thinking to use. Therefore, she decided to change her
clothes as well as the path to go there. After she returned to her bedroom, she noticed that
the cradle was dazzling to tell her about the call received. In the night, she met her younger
sister and she was asked to exchange their cradles because her cradle was so cute.

2.2 Sentient Artefact-based Smart Space Building

The above scenario can be realized by existing technologies. Location sensing systems that
provide highly accurate information help the applications to extract more abstract contextual
information than presence at a specific location. However, they require complex infrastruc-
tures embedded into the environment from the very beginning of the construction, and this
increases the deployment and management cost[15]. Also, new type of devices that require
the user to learn their usage might provide him/her a cognitive burden.

To address these issues, we are working on augmenting daily objects with computing
capabilities, such as sensors and actuators. We call the daily object a “sentient artefact”[11].
We use a sentient artefact as a daily object that has inherent and ordinary functionalities.
In addition, it is utilized as a “context sensor” that detects its state-of-use as a basis to
extract more abstract context, which is natural because every artefact has its specific role (or
characteristic) and the state-of-use should reflect it. In the above scenario, an alarm clock is
utilized as an ordinary alarm clock. However, a system can additionally perceive whether the
user is sleeping or not, and it can change its behavior according to the contextual information.
We also consider that various services that utilize a user’s context will be installed into our
surrounding environments in the near future. This development moves us away from only
using traditional computers. In this case, the artefacts can be utilized as outputs by leveraging
their natural understandings, e.g. a mirror[10]. Table 1 shows that the specific application
functionalities in the scenario are realized using the artefacts that have the specific capabilities.
The important things here are that every artefact is responsible for a specific functionality
of the application and that an artefact is replaceable with another that has the same role
or characteristic. Thus, we believe that the sentient artefact approach allows a developer to
build context-aware applications easily. Furthermore, from the user’s point of view, he/she can
utilize a context-aware service implicitly and naturally through the interaction with various
sentient artefacts.

Table 1 Artefacts as Building-blocks

Application Functionality Role or Characteristic Artefact
Call notification while awake Detection of “sleeping” Alarm clock
Detection of the exclusive tasks | Toothbrush
Information provision during Identification of the user Toothbrush
tooth brushing in front of a mirror | Provision on the periphery Mirror

A sentient artefact is expected to play a key role in realizing a ubiquitous computing
environment in a practical way. The advantages are, as follows:

e A smart space can be incrementally built by the growing numbers of sentient artefacts

K. Fujinami and T. Nakajima 127

based on the requirements of an application.

e The user does not need to learn the artefact’s usage because it keeps its metaphor and
does not change its original functionalities.

e The artefact can extract the user’s context implicitly and naturally through the original
usage.

2.3 World Model

To be benefitted from the characteristics of the sentient artefact, we should introduce the
notion of the world model [16][19]. The term world model is utilized to represent structured
information related to the physical world and the computational entities existing there. Now,
we describe the role of a world model consisting of sentient artefacts.

2.3.1 Shared Knowledge between Applications

Different applications might need to access the same artefact in the environment. Let us
think about the characteristics of a toothbrush; it is not utilized during sleeping and it is not
shared with others. One application might consume the state-of-use as a cue of the user’s
waking up, while another wants to know the user of the toothbrush. To keep the information
utilized by both applications consistent, it should be shared with applications. Moreover,
combining information from multiple artefacts can make an application more reliable in terms
of context inference, as well as extracting higher level knowledge. The user’s state sleeping
will become more reliable when information from the alarm clock and from the toothbrush
are combined. These two examples indicate that a shared model of the world is required.
Otherwise applications have to extract contextual information by themselves even if there are
two applications that utilize the same information. This is burdensome for the developer, and
there is a chance that the user is provided incorrect information/service because of the low
reliability and inconsistency.

2.3.2 Shared Knowledge between a Developer and the Environment

In addition to the advantage of sharing information among applications, the developers can
benefit from the similarity to the world in terms of the structure they live in. They can easily
find and use an appropriate component for building an application, e.g. physical object,
sensor, and context, by physical attributes, e.g. location, color, or state of object of interest.
For example, if a query like “select states from the mirror where the location is the washroom”
is put to the world model, a software component which represents the states of the mirror
located in the washroom is expected to return. This requires neither the knowledge of the IP
address nor the ID of the mirror. Instead, this utilizes highly abstract information which is
familiar to a person living in the physical world. The developer can build an application as if
he/she were in the application space.

3 Middleware Design

The developer needs to access to the world model without taking account of the detail of
sensing and extracting context, executing an actuator (optional), getting information from
location systems, etc. In this section, we describe the design of a middleware called Bazaar

128 Bazaar: A Middleware for Physical World Abstraction

that provides abstractions suitable for dealing with sentient artefacts distributed in indoor
environment.

3.1 Requirements

A list of requirements for the world model is as follows:

1. Wide variety of shared information
2. Extensibility of the information

3. Minimum level of sharing

4. Extensibility of the smart space

5. Transparent use of non-sentient artefact’s information

The first requirement means that various information can be used as contextual informa-
tion and some of them need to be shared. Such information includes the dynamic features like
location and state-of-use as well as the more static information, e.g. the type of an artefact,
the owner, etc. For example, in the previous scenario, the owner and the user of a toothbrush
can be linked because of the fact that a toothbrush is hardly ever shared with others. During
the long life span of actually using a smart environment, the amount and types of information
is expected to increase. This requires the extensibility of the shared information (the second
requirement). The third requirement indicates that a minimum level of information should
be shared and a mechanism should be provided so that the developer can easily compose the
application specific information. For example, the context “sleeping” should not be shared
because the meaning differ from application to application. This requirement can avoid mak-
ing the structure of the shared information complex. The fourth requirement calls for the
extensibility of the smart space, which is crucial for our sentient artefact-based approach.
In this approach, we do not need to install any dense location sensing infrastructure from
the beginning for each room or building. Instead, appropriate sentient artefacts and their
identification system are added in an on-demand basis. Finally, the fifth requirement is im-
portant because non-sentient artefact that has no computational capability can be utilized as
a landmark like “in the same area as Hanako’s bag”.

3.2 Architectural Design

In this section, we describe the overall architecture of Bazaar and the representation of the
world model with an example.

3.2.1 Prerequisites

We assume that every artefact is assigned with an ID observable by an external entity. The
detailed information about the artefact that is linked to the ID is provided by the manufac-
turer. There could be various schema to represent the information. However, in our model, it
is unified or transformed into a single representation before the integration by a translation
service or a standardization process. A central processing entity, such as a home gateway,
a set top box, etc., is responsible for managing the world model and providing higher level
access to the applications.

K. Fujinami and T. Nakajima 129

3.2.2 Components

Figure 1 shows the overall architecture of Bazaar. Bazaar consists of six major parts. This
includes, 1) the identifiable object (artefact) as a source of low level contextual information, 2)
ID detector that serves as a location identifier, 3) the Bazaar World Model Manager(BWMM)
that constructs and maintains a certain unit space, 4) the context extraction framework that
interprets and makes the low level contextual information available to applications as highly
abstract information, 5) the application logic that a developer has to develop, and 6) the
IDResolver that resolves the location of the file describing the detail of the artefact on the
Internet. It is similar to Auto-ID’s Object Name Service (ONS)[2].

Bazaar’s core concept is the representation of a physical world with self-descriptive objects.
The detailed information, i.e. self-descriptive information, is obtained from the manufacturer’s
site once the ID assigned to a specific artefact is detected by an IDDetector. The name of
the location that the detector is installed to is then interpreted as the location of the artefact
and the descriptive information is integrated into the Bazaar’s world model. This allows
the developer to scale-up the size of the space very easily, which is pointed as the fourth
requirement. Moreover, this method can integrate non-sentient artefact seamlessly (the fifth
requirement). Bazaar also provides a programming model that is specific to the sentient
artefact-based application development, which we will describe in section 4. In the next
section, we show the world model consisting of a location model and an artefact model.

Application Logic |

L
L
L

actuate

High Level AP| - — - —HEE-. — . —
High-level Context

Extraction R

Framework 1 B

Low Level AP : o

Bazaar World Model Manager (BWM/M}

Description N
File

ID
Resolver

The Internet ... > Detector

o :
Non-intelligent
Artefact

Fig. 1. Overall architecture of Bazaar

130 Bazaar: A Middleware for Physical World Abstraction

3.3 World Model Design
3.3.1 Representation by RDF: A Brief Introduction of RDF

Resource Description Framework (RDF)[18] that is getting much attention in the semantic
web technology|[25] provides interoperability between computational entities and utilized for
the representation of the world model. In RDF, every attribute can be simply represented as
a form of triples: a subject (or resource), a predicate, and an object. For example, a statement
like “the mirror located in the washroom is being used by someone” can be represented as
follows.

(urn:abc001, vi:type, "mirror")
(urn:abc001, v2:detectedBy, urn:detector:b)
(urn:detector:b, vi:name, "washroom")
(urn:abc001, v3:state, urn:state:m)

(urn:state:m, v3:current, "appeared")

The first column is a subject. Here, “abc001” in the subjects is the ID of the mirror. The
second and the third are a predicate and an object which stands for the name and the value
of the attribute, respectively. In an RDF representation with triples, an object needs not only
to be literal value, but it can also be a resource pointing to another triple. This allows the
description to be extensible in a recursive manner. Furthermore, the manipulation is easy
as well as the expression is simple and powerful. In case of adding a new attribute like “the
owner is Hanako Yamada”, only one row needs to be written:

(urn:abc001, vi:owner, "Hanako Yamada")

In addition, RDF allows powerful searching methods that utilize pattern matching. For ex-
ample, a query like, “What is located in the washroom?” can be queried with three steps: 1)
search the resource of the location washroom and get the answer urn:detector:b (the third
row), 2) find an object whose location is urn:detector:b and get urn:abc001 (the second
row), and 3) get the final answer mirror by obtaining the object of the predicate v1:type
(the first row).

Thus, representation by RDF provides strong expressiveness while the syntax is quite
simple. Our first and second requirements are met due to the flexibility and powerful char-
acteristics of RDF. However, the semantic transcoding is quite a challengeable issue. In the
above statement, three vocabularies are used: v1, v2, and v3. They exist as a prefix in the
predicate of each statement and indicate namespaces. If two same kind of objects have dif-
ferent vocabularies, for example v2:1location and v4:loc as a location of an object, then a
software entity should internally exchange one to another like a translator to encapsulate the
difference. Furthermore, there is a more complex case with 1-to-N relationship. As assumed
in section 3.2.1, our model does not consider this®. In the following two sections, both the
location model and artefact model are presented.

®The predicate should also be represented with an appropriate namespace, however, we omit this in the latter
part of this paper for simplicity.

K. Fujinami and T. Nakajima 131

8.3.2 Location Model

As can be seen in Figure 2, the location model in Bazaar represents the containment rela-
tionship between a unit space, e.g. room, building, and unit regions identified by symbolic
names. Any place that has a significant meaning to an application can be a unit region: the
washroom, Hanako’s room, the entrance, around the kitchen table, etc. The unit region is
defined for each IDDetector, and the detected physical object (artefact) is linked to the ID-
Detector that detects the artefact. Thus, the location of the artefact is fixed and represented
in the world model.

Unit Space

Unit Region

Hanako’s Sister’'s

J Washroom J Hanako’s Room J
Room

Fig. 2. The relationship between a unit space and unit regions

Figure 3-a) illustrates an example of the location model by the RDF graph representation®

The graph indicates that three IDDetectors exist in a unit space (apartment) named 505, and
they correspond to the three unit regions representing “Hanako’s sister’s room”, the wash-
room, and “Hanako’s room”. Additionally, an artefact identified by urn:abc001 is detected by
the IDDetector linked to the washroom, while urn:abc002 and urn:abc003 are in Hanako’s
room. Our location model excludes the topological relationship like neighborhood between
unit regions and the containment between unit spaces because of the simplicity. The latter
means that one BWMM can manage more than two unit spaces, however the relationship is
defined outside the BWMM. It should be dealt as an application specific matter.

3.3.8 Artefact Model

The artefact model represents the static specification and dynamically changing status of an
artefact. Six types of static information are specified as the low level shareable information:
the type, a state-of-use, a location (detector), the specification of the actuation functionality,
the owner, and the network information (IP address). An example of the RDF graph rep-
resentation is shown in Figure 3-b), which indicates that “The owner of the mirror with ID
(urn:abc001) located in the washroom is Ms. Hanako Yamada. It has an actuation function-
ality with commands: turn_on and turn_off to show personalized information. The turn_on
command accepts the user ID as an argument by String and returns the result by boolean.
Now, someone is in front of it.”

In the model, one artefact might have more than two locations at a time since this could

bIn Figure 3, the oval, arrow, and ractangle indicate resource, predicate, and literal, respectively. The source
of the arrow represents subject, while the destination object.

132 Bazaar: A Middleware for Physical World Abstraction

apanment
urn:room:01
5 detectors
'g name I
£
g detector) detector
'ﬁ detector urn:detector:h ¢ =-~._, -
§ urn:detector:s urn:detectorb) name "\\
) name S name anako s room |« detectedBy \,\
i -~ N
Hanako's sister's room |+ washroom | RN N
detectedBy,; \ v
T T
! .
urn:abc001 ipaddress urn:abc003 urn:abc002
/_ 19216802| sh ed i _
mirror oW personalized In ‘ormation I
4 actuator /—/
_ owner state e description
3 Hanako Yamda | type : . command
o P command
E type
5 presence dISplay urn:command:2
2 urn:command: 1
8 descnptlon urn:state:m responses
/ name name
= Presence in front of it /\/ argumnents argurhents
candidates current i tun _on respogises tun
e e, 0
. name (/
disappeared | appeared I" name type ;
userid | type result NULL ype

String | Boolean NULL |

Fig. 3. A World model by the RDF graph representation: a) Location model and b) Artefact
model

happen near the border of the detection ranges of IDDetectors. We consider it is a fact of the
physical world and it should be handled on the application side in an appropriate way. Also,
more than two state-of-use can belong to one physical object. For example, a chair might
have both “seat state” and “direction of the seat back” as the state-of-uses. Furthermore,
information to access a sentient artefact might be set to an artefact that has an actuation
functionality. This includes the name of the actuation command, the name and the type of
the argument, and those of the return value. In addition to requesting the callee artefact a
specific actuation, these types of information are utilized to validate the parameter that a
developer sets and the value that the callee returns.

These are illustrated as the nodes under urn:actuator:m in Figure 3. In terms of the
owner attribute, it is replaceable with the “user” as previously described. Finally, the network
address is utilized to access the sentient artefact from the application and BWMM sides. The
links of the state-of-use and the location are dynamically changed on the detection of the
change (the dotted lines in Figure 3), while other information is updated (rewritten).

4 API Design

In this section, the application programming interface (API) is designed.

4.1 Programming Model

As described in the previous section, the sentient artefact-based approach aims at extracting
more information than the location specific context. Also, information/service provision is

K. Fujinami and T. Nakajima 133

done through sentient artefacts. Therefore, the API needs to be designed to support the
developer for this purpose. The utilization of the API is separated into two types: 1) “Bazaar-
driven” and 2) “application-driven”.

4.1.1 Bazaar-Driven Access

This is often referred to as an event-driven model, where the application is notified of an
event if it registers the interests in a specific change of states, i.e. state-of-use and location.
Figure 4 shows three types of events generated by Bazaar: ES, EL1, and EL2. The change
of the state-of-use is generated by an artefact (ES). Regarding the location specific event, the
following two types are supported: EL1) the change of the location of a specific artefact, and
EL2) the change of contents at a specific location. For example, in the case EL1, the event
is published when Hanako’s toothbrush is taken from the washroom to Hanako’s room. For
EL2, the detection of whether a toothbrush is in the washroom generates the event. However,
the reference to the software object corresponding to the event source needs to be obtained
in a way that is described in the next section.

EL2: Change of the content

ES: Change of the state-of-use (enterfleave)

EL1: Change of the location Bazaar

e
* W:rlg
ﬂ\j\)/: Model

Manager

Washroom Hanako's Software object Software object Washroom
room representing the representing the
toothbrush washroom

Fig. 4. The event model in Bazaar: ES and EL1 are generated from an artefact. They are
indicating the change of the state-of-use (ES) and that of the location (EL1), respectively, while
EL2 is raised on the detection of an artefact’s entering/leaving.

4.1.2 Application-Driven Access

To provide an application the way to obtain the information or the reference to a specific
software object, the API contains so-called “getter” methods. Especially, the objects rep-
resenting an artefact and location are the basis of the application programming and should
be obtained in the early stage. They are shown as resources represented with urn:abcXXX
and urn:detector:X, respectively. After obtaining them, the other types of information
are retrieved through the appropriate getter methods, where the information represented as
resources in Figure 3 is provided with inherent classes, and literals (rectangular form) are
represented with String or a primitive type in Java. The latter includes, for example, the
owner and the type of the artefact.

4.2 API

A generic class is provided for each type of the resource depicted in Figure 3 since the artefact
model is represented in a unified schema. So, the class includes World, Artefact, Location,
State, Actuator, and Command, where they correspond to a unit space, a sentient/non-
sentient artefact, a unit region, a type of state-of-use, an actuation functionality, and a control
command to the actuator. The concrete information that is depicted in Figure 3 is stored

134 Bazaar: A Middleware for Physical World Abstraction

as a literal in the instantiated object, and accessed by a generic getter method. Therefore,
the API can handle the increasing number of the attributes for a long period of time, which
allows the extensibility of the information listed as the second requirement in section 3.1. In
the following sections, typical methods are introduced.

4.2.1 World: The Class of a Unit Space

This is the entry point to obtain the basic classes, i.e. Artefact and Location, by a wide
varieties of attributes from BWMM. We consider that this sort of interaction between the
developer and BWMM is easy to understand because it is similar to the action of searching
objects in the physical space. The methods with the postfix ByAttrs indicate that they re-
turn the required information by handling the passed arguments in a hash table, where the
multiple elements are combined with the logical-AND operation in a query condition. This
type of methods also exist in the other classes, however, we omit it.

Location[] getLocationsByAttrs(Hashtable a)
Location[] getLocationsByID(String id)

Artefact getArtefactByID(String id)

Artefact[] getArtefactsByLocation(Location 1)
Artefact[] getArtefactsByState(String s, String v)
Artefact[] getArtefactsByAttrs(Hashtable a)

4.2.2 Location: The Class of a Unit Region

This class represents the notion of the unit region. It provides methods for adding/removing
the callback DetectionListener for the event notification as well as obtaining the symbolic
name. The callback method is invoked when something enters to or leaves the location, and
the DetectionEvent is thrown with the name of the location and the time of the event.

void addDetectionListener(DetectionListener dl)

void removeDetectionListener (DetectionListener dl)

4.2.3 Artefact: The Class of an Artefact

This is the class representing the artefact model, where the methods for acquiring the dedi-
cated references to the software objects in the model , i.e. Location, State, and Actuator,
are provided. Also, the methods for special attributes like the name, the type, and the
owner, are included. Additionally, it contains methods for adding/removing the callback
LocationListener. The listener is called when the location of the artefact is changed. The
method for removing the callback is useful when the application is only interested in the ex-
istence at a specific location. The application removes it after it is notified about the change
of the location so that it can avoid receiving unnecessary events.

State getStateByType(String t)

Location getLocationByName (String n)
Actuator getActuatorByType(String t)

void addLocationListener(LocationListener 11)

void removeLocationListener (LocationListener 11)

K. Fujinami and T. Nakajima 135

String getType()
String getOwner ()

4.2.4 State: The Class of a State

This class indicates a type of state-of-use of a sentient artefact, where every instance of the
class contains the type of the state and the value at a certain point. For example, the type of
the state-of-use of the mirror in Figure 3 is “presence”, and the value is either “appeared” or
“disappeared”. An event StateChangeEvent is generated on detection of the change of the
value. This class also provides the method to get the most recent value on demand as well as
the methods for adding/removing an event listener StateListener.

void addStateListener(StateListener sl)

String getCurrentState()

4.2.5 Actuator: The Class of an Actuator

This class is used to control an actuator. So, it has one or more references to Command objects
internally, and it provides a method execute to invoke the commands. The method below
takes two arguments: the name of the command as String and the parameter as Hashtable,
and returns the response including name-value pairs of the results.

Response execute(String n, Hashtable p)

4.2.6 Command: The Class of an Actuation Command

This class encapsulates the processing of a remote command execution from the developer by
passing only contents as arguments. The network address registered on the artefact initial-
ization stage is internally utilized to access it. Here, Response indicates the return value of
the command, and is forwarded to the caller, i.e. Actuator.

Response execute(Hashtable params)

The API presented here is primitive and referred to as low level API in Figure 1. By
leveraging this, high level APIs are to be developed: inferencing context that is based on the
first order predicate, modeling the spatio-temporal relationship among events, etc.

4.3 Code Example

In this section, we show an example program code utilizing the API. The example is a part
of the scenario introduced in section 2.1, which describes the following logic: “When the
condition that someone is in front of the mirror in the washroom and a toothbrush is used
there is satisfied, the information related to the user of the toothbrush is provided through
The possible situations are illustrated in Figure 5, where only the person 2 is
provided the personalized information. The code is shown in Figure 6. The double-quoted
character strings correspond to the predicates (arrow) or objects (rectangle) in Figure 3. Also,
w indicates the reference to the unit space World. In this figure, the logics to handle a zero-
result in querying and an exception are omitted.

Let us walk through the code. The method init is called on the first stage, where

the mirror.”

136 Bazaar: A Middleware for Physical World Abstraction

Detection range of

Brushing teeth nearby
RFID reader

but not in front of

Brushing teeth in
another area

Stay in front of , bu
Mirror and toothbrush
not co-located 1 2

|, Tag

v,

Fig. 5. The possible situations among a toothbrush, mirror, and person. The personalized infor-
mation is provided only when the person using a toothbrush is detected in front of the mirror.

(case 2)
1: boolean appeared, brushing, lsnrAdded; 27: void onStateChanged (StateChangeEvent e) {
2: Artefact mrr, tooth; 28: String s=e.getType () ;
29: String v=e.getChangedState() ;
: void init () { 30: if (s.equals (“presence”)) {
Location wr = new Location(“washroom”) ; 31: if (v.equals (“appeared”) appeared=true;
wr.addDetectionListener (this) ; 32: else appeared=false;
33:)
Artefact[] m = w.getArtefactByLocation (wr) ; 34: if (s.equals (“brushState”) {
for(int i=0;i<m.length;i++){ 35: if (v.equals (“started”) brushing=true;
String artefactName=m[i] .getType () ; 36: }
if (artefactName.equals (“mirror”)) { 37: if (appeared && brushing) {
mrr=m[i] .clone() ; 38: String owner=tooth.getOwner () ;
mrr.addStateListener (this) ; 39: showInformation (owner, true);
break; 40: telse{
} 41: showInformation (null, false);
:) 42: }
15: } 43: }
16: void onEntered (LocationChangeEvent e) { 44: void showInformation (String owner, boolean on) {
17: Artefact a=w.getArtefactByID(e.getID()); 45: Actuator act=mrr.getActuatorByType (“display”);
18: String type=a.getType(); 46: if (on) {
19: if (type.equals (“toothbrush”) &&!lsnrAdded) { 47: Hashtable arg=new Hashtable();
20: tooth=a.clone() ; 48: arg.add (“userid”, owner) ;
21: tooth.addStateListener (this) ; 49: act.execute (“turn_on”, arg);
22: lsnrAdded=true; 50: Jelse{
23: 51: act.execute (“turn_off”, null) ;
24: } 52:
53: }
25: void onRemoved (LocationChangeEnvet e) {
26: }

Fig. 6. Sample code using Bazaar Low-level API. This represents the logic “When the condition
that someone is in front of the mirror in the washroom and a toothbrush is used there is satisfied,
the information related to the user of the toothbrush is provided through the mirror.”

K. Fujinami and T. Nakajima 137

Location representing the washroom is obtained (line 4), and DetectionListener is reg-
istered with it for the notification of the change (line 5). Then, an array of Artefacts is
acquired by the Location (line 6), filtered out objects for a mirror since there might be vari-
ous types of artefacts in the location, and StateChangeListener is registered to be notified of
the change of the mirror’s state (line 7-11). These are the basic procedures in the initialization
phase.

The methods in DetectionListener are onEntered (linel6) and onRemoved (line 25),
and they handle the event in the washroom. On the detection of entering, StateListener
is registered only when the detected artefact is a toothbrush and it has not been registered
yet. On the other hand, in onRemoved method, the removal of the registered listener and the
control of the display functionality, turn_off need to be written, however, they are omitted
here.

The method onStateChanged (line 27) is defined in StateListener, and it is utilized
to handle the event indicating the change of the state-of-use. The type of the event source
artefact and the changed value are obtained from StateChangeEvent, which is utilized to make
a decision on the timing of displaying information on the mirror (line 37). If the condition
in line 37 is satisfied, the owner is obtained (line 38) and showInformation is called, where
the actuator for the display is acquired (line 45), set the required parameter (line 48), and
invoked the displaying command (line 49). Thus, the programming on Bazaar is simple and
easy to understand with the support of the API.

5 Implementation

In this section, we describe the implementation of Bazaar. Figure 7 illustrates the relationship
between a sentient artefact, an IDDetector, BWMM, and an application.

5.1 Language and Operating Environments

BWMM is written in Java (Sun J2SE1.4 or higher), and as assumed in section 3.2.1, it runs on
a central server like a home gateway, a set top box, etc. A sentient artefact discovers BWMM
using multicasting, and they communicate each other via HTTP, which means the sentient
artfefacts can be implemented by any language. An IDDetector also discovers BWMM and
registers its information, i.e. the corresponding name of the location and the ID. We have
utilized RFCode Inc.’s Spider active RF-tag reader as a location detection system. It has
approximately 3 meter accuracy. However, as described before, any kind of location system
that detects/recognizes the artefact’s ID is applicable. The IDResolver component in Figure
1 is currently realized by looking up the table containing the artefact’s ID and the URL of the
descriptive file. However, if the ID is based on the Electronic Product Code (EPC) standards,
the Object Naming System (ONS) proposed in the community is applicable. In the current
implementation, the context-extraction framework depicted in Figure 1 does not exit. So, the
applications described below were implemented using the low level API shown in section 4.1.

As described in section 3.3.1, both the location and artefact models are represented by
RDF. We have utilized Jena2[23] as a library to parse, query, and manipulate the RDF-based
models, where Jena2 internally processes the RDF Data Query Language (RDQL) [22]. There
are several ways to encode RDF-based information like XML, Notation3[5], N-Triples[3], etc.
However, we have utilized XML since it represents the structure of the model that is readable

138 Bazaar: A Middleware for Physical World Abstraction

by human and highly expressive compared with others.

5.2 World Model inside Bazaar

The description file for each artefact is downloaded from the manufacturer’s site once the
artefact is installed into the environment. The RDF document is parsed into an internal
tree model and continuously updated on receiving the events representing the change of the
location and state-of-use. At the same time, the attributes are stored in the dedicated objects.

The duality comes from the flexibility of RDF-based querying and the usability of the
inherent classes in Bazaar. The tree model is utilized to search the keys to get the requested
objects from the rmiregistry, and also utilized to identify the node in the tree to update
changes. The RDQL query mechanism is so powerful that the issuer can obtain the results by
partial matching. However, the issuer needs to take into account of the structure of the tree,
which makes the development complex. Therefore, we have decided to provide the inherent
classes described in section 4.2. Certain getter methods, like getArtefactsByAttrs in World,
internally issue the RDQL queries.

Sentient Artefact e
e.g. command = “turn_on’, id = “Hanako” Application

Sentient Artefact actuator) Logic .
as “Actuator” HTTP %_ state |
location artefact
Sentient Artefact Bazaar Low- 7"_)

as “Context Sensor’ level API vl 4

ID, Timestamp, Changed state, . Http->RMI Bridge i RMI

e.g. 123", “12:20:00", “appeared o stateChange

e S)
Object
| locationChange Updater Acctjassor
—————>
J
I HTTP! Update changing
IDDetector o -
s

7/ Serviet

/ World Model
ID, Timestamp, Changed state,’detector, — by RDF
e.g. “123", “12:30:10", “entered”, “det01” =5

—
©eq®
‘ . sLookup “xxx”

Remote Object by RMI +*Add “yyy’Listener
Bazaar World Model Manager (BWMM) *Fired Event

RDF Query Processor (Jena2)

Fig. 7. Relationship between sentient artefact, IDDetector, BWMM, and applications

The updating of both the objects and RDF tree is handled by a component “Updater” in
Figure 7. For example, in Figure 3 the value pointed by current is switched from appeared
to disappeared when BWMM receives the event with the ID abc001 and presence for the
type of the state-of-use. The ID is utilized as the key to identify the corresponding State
object in the rmiregistry, and then the change is notified to the application that registers
StateListener. At the same time, the RDF tree is updated by identifying the corresponding
node using an RDQL query.

The four classes in the API, World, Location, Artefact, and State, are implemented

K. Fujinami and T. Nakajima 139

as remote objects in Java RMI. So, an application logic running on the different host can
communicate with BWMM for the listener registration and the event notification.

6 Evaluation through the Application Development

In this section, we evaluate Bazaar as a tool to support the application developer with the
abstraction of the physical world access. We have developed several applications on top of
Bazaar. Here, we introduce two applications: “Unobtrusive Cradle” and “AwareMirror”. The
usage scenarios were introduced in section 2.1. Figure 8 illustrates the relationship between
the two applications and Bazaar, where the information from a phone cradle, an alarm clock,
a toothbrush, and a mirror, and their locations are shared in Bazaar. The two integrated
applications control two actuators: the vibration of the cradle and the display of the mirror.
Also, Figure 9 shows the deployment of the artefacts and a scene of using them.

Information in Cyber World

—N—
____________ _ High-level I The Internet
} controlling information !
(a) Sentient Cradle | i
E (c) AwareMirror l
Ul Aware Front End Presentation
Cradle Mirror Mode
Controller Transition

O
ON/OFF Integrated APPs o‘ﬁj’/o#F

Event/ Polliffg

; Physical World Information
e
y “\ Manager

(GEPCED) (d) Sentient Toothbrush

5 __________ Low-level context,
H i.e. Location and State-of-use
i
i

e Information in Physical World

Fig. 8. The relationship between the two applications and Bazaar

6.1 Unobtrusice Cradle

An application “Unobtrusive cradle” [12] controls the actuation functionality of a cradle based
on the user’s interruptibility, i.e. sleeping or not sleeping. The cradle is augmented with two-
axis accelerometer and starts vibrating on detecting a specific pattern of a call on a cellular
phone. A servo motor controlling the cradle’s leg movement makes noise. So, it should move
only when its owner is not in sleep, which also contributes to reduce the power consumption.
The context sleeping is defined by two complementary types of the state-of-use: 1) the state-
of-use of an artefact that is not utilized during sleeping, and 2) the one that is used for the
sleeping. We have utilized a toothbrush and an alarm clock for these purposes, respectively.
Brushing teeth is “exclusive” activity during sleeping. On the other hand, an alarm clock
is basically used for waking up at a certain time. Therefore, this common sense and prior
understanding about the artefacts support extracting higher level information easily. The

140 Bazaar: A Middleware for Physical World Abstraction

toothbrush we have utilized was augmented with two axis accelerometer to detect the shaking
pattern, while the switch for the alarm is utilized to detect whether the alarm clock is used
or not.

The issue in the development is to consider the “exchanging” with other persons. In the
scenario, her younger sister uses Hanako’s cradle. This means that the application cannot
utilize the information of the cradle’s owner to control the vibration because it might be
utilized by the different user of the toothbrush. It might be the same case as the alarm
clock. So, we have decided to pay attention to the unit region named “Hanako’s room”.
Firstly, Location for the region is obtained, and then Artefacts representing the cradle and
the alarm clock are retrieved using the object reference. This means that the co-location of
the two objects is utilzied as can be seen in Figure 9-(a). In terms of the toothbrush, we
have leveraged the pre-knowledge of the developer that the owner of the room is “Hanako”,
and thus we obtain the object representing the toothbrush and the owner is also “Hanako”.
However, the pre-knowledge is not machine-understandable although the name of the location
is “Hanako’s room” (see Figure 3). This means the “linkage” needs to be established by the
developer. In Figure 3, appending a new predicate representing the owner, e.g. owner, to the
resource of an IDDetector urn:detector: N can address this issue. This allows the application
to obtain the toothbrush from Location without the knowledge of the developer. Thus, we
can say that the two requirements: the heterogeneity of the shared information and the
extensibility of the world model are satisfied.

An artefact like a cradle can be moved by someone during its long lifetime. So, the artefact
becomes useless if the application is interested in the artefact at a specific location. Moreover,
an artefact with the same type but with the different ID might be installed later, i.e. replace-
ment. Therefore, the registered event listener for the state-of-use (StateListener) needs to
be removed on the detection of the removal. And then, the developer should implement the
procedures like: 1) finding alternatives, 2) waiting for the missing artefact, 3) notifying the
user or administrator of the space, etc. We consider LocationListener supports this with
the notification of the arrival/removal of the artefact.

In this application, Bazaar encapsulates the detailed ways to capture information of 1)
the locations of the cradle and the alarm clock, 2) the owner of the toothbrush and the
cradle, and 3) the state-of-use of the three artefacts. It also allows the developer to control
an artefact, i.e. the cradle, without being aware of the distributed nature. The developer just
has to retrieve the corresponding software object and invoke a method with the controlling
parameters. The important thing here is that the higher level of activity context, i.e. “sleeping
or not”, can be easily extracted using the artefacts’ state-of-use since their original roles help
the system to narrow the candidates. Moreover, the redundancy of the low level contextual
information can improve the confidence of the inferred context, where an erroneous extraction
by a sentient artefact should be handle in an appropriate way. In the current implementation,
information from the two sentient artefacts is simply processed by the logical-OR operator
in the application logic. However, there could be a case that the command is “turn on” if
one of them is misinterpreted that the user is “not sleeping”. Therefore, a more sophisticated
algorithm that resolves the conflict needs to be investigated. That might work either in the
application logic or high-level context extraction framework layer that can be seen in Figure 1.
The latter is, for example, an algorithm that utilizes the confidence parameter of the provided

K. Fujinami and T. Nakajima 141

information with a threshold to select only the reliable one. In any case, Bazaar provides
information for this purpose in a unified and consistent way.

Sentient
Alarm Clock

==

Sentient

. Cradle 4 3 4 [y |
: = AwareMirror

(a) Unobtrusive Cradle (b) AwareMirror

Fig. 9. Sentient Artefacts Deployment in the Prototype Applications: a) Unobtrusive Cradle, and
b) AwareMirror

6.2 AwareMirror

AwareMirror (on the right side in Figure 9-(b)) is an augmented mirror that displays infor-
mation relevant to the person in front of it on the periphery of his/her sights[10]. As can be
seen in the scenario, the user can change his/her behavior through the information provided
by AwareMirror in a very natural way. A fragment of the application logic and the figure
illustrating the possible situations has already been provided in section 4.3. The state-of-use
of the mirror is defined as the detection of something in front of it, which has been realized
by two infra-red range finders in consideration of a feeling of privacy violation. Because of
the low-level sensor data, it is not sufficient to identify the user by the mirror itself. The
detection of utilization of a co-located sentient toothbrush (left in Figure 9-(b)) is utilized for
this purpose, where the information is shared with “Unobtrusive Cradle” and kept consistent
among them.

We consider that new attributes that indicates the characteristic and the role of an artefact
make artefacts replaceable. Currently, the toothbrush is utilized for identifying the user,
however a comb and a shaver are also applicable since they have the same characteristic,
i.e. “non-shareable” personal items. So, in the method onEntered (line 16, in Figure 6),
the application developer needs to list-up all the types of the possible artefacts that might
appear in the future, which loses the extensibility of the application. On the other hand, the
role of an artefact is considered to be the capability that the artefact can perform like “the
identification of the user” and “the presence of an object”. They can be easily applied to
the current Bazaar implementation without any change in the program code. It is done by
adding a predicate like characteristic and role into the artefact model. The information
is obtained by using the generic method, getArtefactsByAttr, that accepts key-value pairs
like. This realizes the heterogeneous and extensive information sharing.

For this application, another toothbrush was not installed into the space since “Unobtru-
sive Cradle” had already utilized one. So, the developer just needed to install an IDDetector

142 Bazaar: A Middleware for Physical World Abstraction

in the washroom, and the location model was automatically extended by adding a new object
for the predicate detector. The simple and high extensibility listed as the fourth requirement
allows the smart space to “grow up” incrementally.

7 Discussions

7.1 Gap between the World Model and the User

Bazaar provides a world model that reflects the information in the physical space and com-
putational entities existing there. The more accurate the information becomes, the better the
application can act on behalf of the user. However, it is quite difficult to provide completely
matched one since the model itself is designed by a person, which means it depends on his/her
view of the world. Furthermore, the difficulty comes from the inaccuracy in the sensor data
and the context, i.e. state-of-use, and its extraction algorithm. The issue is still an open
research issue, where the minimum involvement of the user is crucial requirement.

7.2 Installation Policies of RF-tag Reader

As described previously, we have utilized an ID recognition-based system, i.e. RFID, to
identify approximate position of a tagged object. Regarding the installation of the location
system, there can be two options: 1) installation at a fixed position with no intention, and
2) installation into a place where a significant activity can occur. The former means the
detectors are located in a certain order, e.g. lattice. We have utilized the latter one, namely
the installation into a closed area “Hanako’s room” and the “washroom”. We believe that the
approach is right since the installation is on-demand basis that allows the user to be provided
the service at a minimal setting and cost.

7.3 Extension of the Unit Space

We consider that the flexible extensibility of the unit space is important for the large scale
world model management, e.g. floor scale, building scale, campus scale, etc. Currently, the
unit space is the top level notion in the world model, which means the number of the unit
region and that of the artefacts in the regions are huge if the unit space is defined as a
university campus. For load balancing and fault tolerance, the interconnection with the unit
spaces that are distributed in different hosts is required. One way to realize this is what we call
“micro World Model”, where the unit space is defined as a limited set of information around
the user or artefact, and it is stored on each device, e.g. the user’s cellular phone, mirror, etc.
In the “micro World Model”-based architecture, the operation is basically done against the
local world model, and the query goes outside the world to obtain missing information.

7.4 Toward Reliable Context Extraction

A semantically rich model of the physical world allows an application to utilize reliable contex-
tual information. For example, suppose that a single alarm clock is detected in two locations
which are 20 meters away almost at the same time, e.g. within one second. In this case, one
or both of them is considered to be incorrect detection. This can be detected if the world
model has topological relationship and geometric value between detectors and a knowledge
representing the impossibility to move so fast is utilized. However, we consider that such
knowledge should not be handled within the world model since it is application specific. In

K. Fujinami and T. Nakajima 143

addition, in case that a sentient artefact extracts contextual information with low confidence,
it can improve this by asking appropriate one(s). Here, the world model is utilized to search
suitable one(s) with many kinds of attributes. Thus, the world model supported by Bazaar
is expected to provide an application with reliable context-awareness.

8 Related Work

Here, we examine related work regarding: 1) smart space construction, 2) representation of a
physical world model in an infrastructure, and 3) APIL

8.1 Smart Space Construction

We have utilized an augmented artefact, sentient artefact, as a building block for a smart
space. To extract a user’s context, location-based[1, 27|, and image analysis-based[6, 17] ap-
proaches are well known. However, for the precise location detection, the detection system
needs to be carefully installed, where the sensors are densely attached on the ceiling consider-
ing the effect of obstacles. Besides, it requires continuous maintenance, which costs a lot[15].
In case of image analysis-based approach, the advantage is that the person does not need to
take anything with him/her for the ID detection. However, the sensitivity against the changes
of the shape and background requires the system high computational power. Furthermore,
the user might feel privacy obtrusiveness because of the “observing” nature.

On the other hand, our sentient artefact-based approach does not require precise location
information since sentient artefact provides various information beyond mere state-of-use,
which means the location information is not the primary context information. Therefore, as
described in section 7.3, the location detector can be installed on demand basis, and thus it
allows to reduce the total cost of ownership (ToC).

The MediaCups project [4] and its succeeding project of SmartITs[24] provide insights
into the augmentation of artefacts with sensing and proecssing. The notion of artefacts com-
puting composed of sensor augmented artefact provides a mean to obtaining human context
implicitly, which has been greatly influenced the notion of sentient artefact. We are work-
ing on representing an artefact formally and integrating them systematically, which must be
applicable to sentient artefacts based on the SmartITs platform.

8.2 Physical World Representation

An ontology-base approach is utilized to define an ontology that represents a meaning of a
concept like a person, an object, a place, etc., and a relationship between these concepts. The
approach tries to realize highly intelligent processing like reasoning and automatic adaptation.
Among these, CoBrA[8] and Semantic Spaces[26] are infrastructures for building a smart
space, where their own ontologies are developed so that the meaning of information can be
annotated as a kind of tag. This differs from Bazaar’s approach in that the existence of the
shared information repository. However, the integration of the ontological aspect into Bazaar
allows a system to flexibly define the description files described in section 3.3. Moreover, the
functionality /characteristic and replaceability introduced in section 6 can be defined, which
allows a smart space to be built flexibly as well. The inference or reasoning engine is provided
as a “high-level context extraction framework” that can be seen in Fig. 1.

144 Bazaar: A Middleware for Physical World Abstraction

8.3 API

Bazaar represents general concepts like an artefact, location as classes, rather than a particu-
lar type of things like a toothbrush, an entrance. On the other hand, The Sentient Computing
project[1] targets an indoor application with the Active Bat location system. It has limited
numbers of physical object model like people, computers, keyboards and telephones. It was
implemented using Common Object Request Broker Architecture(CORBA), and thus the
object modelling requires careful analysis. In contrast, Bazaar defines the artefact specific
information only in the description file with generic methods to access the specific attributes.
Therefore, it provides a system with robustness against the increasing types of information
after installation.

9 Conclusions

In this paper, we proposed a middleware Bazaar to support the developer with the abstraction
of the physical world access. We also introduced the notion of a sentient artefact as a building
block of smart spaces. Bazaar manages a world model consisting of the two models: location
model and artefact model. In the artefact model, various information like the type, the owner,
the state-of-use, etc. are defined. The programming model provides a high level access to the
world model encapsulating the detail of the device access and querying mechanism so that
the developer can concentrate on the application logic development. We have showen the
effectiveness and expressiveness of the proposed API. The architecture maintaining the world
model can flexibly extend the smart space by defining a new attributes and adding a new unit
region of interest, which is required to realize the true notion of ubiquitous computing.

References

1. M. Addlesee, R. Curwen, S. Hodges, J. Newman, A. Ward, and A. Hopper. Implementing a
Sentient Computing System. IEEE Computer Society, pages 50-56, Aug. 2001.

2. Auto-ID Center. Web site:. URL: <http://www.autoidcenter.org/>.

3. D. Beckett and A. Barstow. N-Triples, W3C RDF Core WG Internal Working Draft. URL: <http:
//www.w3.0rg/2001/sw/RDFCore/ntriples>.

4. M. Beigl, H.-W. Gellersen, and A. Schmidt. MediaCups: Experience with Design and Use of
Computer-Augmented Everyday Objects. Computer Networks, Special Issue on Pervasive Com-
puting, 35(4):401-409, March 2001.

5. T. Berners-Lee. Notation3: Ideas about Web Architecture - yet another notation. URL: <http:
//www.w3.org/DesignIssues/Notation3>.

6. B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer. EasyLiving: Technologies for Intelligent
Environments. In Proceedings of the 2nd International Symposium on Handheld and Ubiquitous
Computing (HUC2K), pages 12-29, September 2000.

7. G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research. Technical Report
TR2000-381, Department of Computer Science, Dartmouth College, 2000.

8. H. Chen, T. Finin, and A. Joshi. Using OWL in a Pervasive Computing Broker. In Proceedings
of the Workshop on Ontologies in Agent Systems(0OAS2003), pages 9-16, 2003.

9. Computer Science and Telecommunications Board. Embedded, Everywhere, A Research Agenda
for Networked Systems of Embedded Computers. National Research Council, 2001.

10. K. Fyjinami, F. Kawsar, and T. Nakajima. AwareMirror: A Personalized Display using a Mirror.
In Proceedings of International Conference on Pervasive Computing, Pervasive2005, LNCS 3468,
pages 315-332, May 2005.

11. K. Fujinami and T. Nakajima. Sentient Artefact: Acquiring User’s Context Through Daily Objects.
In Proceedings of the 2nd International Symposium on Ubiquitous Intelligence and Smart Worlds

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.
23.
24.
25.
26.
27.

28.

K. Fujinami and T. Nakajima 145

(UISW2005), LNCS 3823, pages 335-344, December 2005.

K. Fujinami and T. Nakajima. Towards System Software for Physical Space Applications. In
Proceedings of ACM Symposium on Applied Computing(SAC) 2005, pages 1613-1620, March 2005.
K. Fujinami, T. Yamabe, and T. Nakajima. “Take me with you!”: A Case Study of Context-aware
Application integrating Cyber and Physical Spaces. In Proceedings of ACM Symposium on Applied
Computing(SAC) 2004, pages 1607-1614, Mar. 2004.

H. Gellersen, A. Schmidt, and M. Beigl. Multi-Sensor Context-Awareness in Mobile Devices
and Smart Artifacts. Journal on Mobile Networks and Applications, Special Issue on Mobility of
Systems, Users, Data and Computing (MONET), 7(5):341-351, Oct. 2002.

R. K. Harle and A. Hopper. Deploying and evaluating a location-aware system. In MobiSys, pages
219-232, 2005.

A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The Anatomy of a Context-Aware
Application. In Mobile Computing and Networking, pages 59—68, 1999.

J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer. Multi-camera Multi-person
Tracking for EasyLiving. In Proceedings of the 3rd IEEE Workshop on Visual Surveillance, July
2000.

O. Lassila and R. Swick. Resource Description Framework(RDF) Model and Syntax Specification.
URL: <http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/>.

D. Nicklas, M. Grofimann, T. Schwarz, S. Volz, and B. Mitschang. A Model-Based, Open Architec-
ture for Mobile, Spatially Aware Applications. In Proceedings of the 7th International Symposium
on Spatial and Temporal Databases: SSTD 2001, pages 117-135, Jul. 2001.

B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications. In Proceedings of
IEEE Workshop on Mobile Computing Systems and Applications, 1994.

A. Schmidt. Implicit Human Computer Interaction Through Context. Personal Technologies,
4(2-3):191-199, June 2000.

A. Seaborne. RDQL - A Query Language for RDF. URL: <http://www.w3.org/Submission/
2004/SUBM-RDQL-20040109/>.

Source forge. Jena-a semantic web framework for java. URL: <http://jena.sourceforge.net>.

The Smart-ITs project. The smart-its. URL: <http://www.smart-its.org/>.

W3C. Semantic web. URL: <http://www.w3.org/2001/sw/>.

X. Wang, J. S. Dong, C. Y. Chin, and S. R. Hettiarachchi. Semantic Space: An Infrastructure for
Smart Spaces. IEEE Pervasive Computing, 3(3):32-39, July-September 2004.

R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location System. ACM
Transaction on Information Systems, 10(1):91-102, January 1992.

M. Weiser. The Computer for the Twenty-First Century. Scientific American, pages 94-104, Sep.
1991.

