
Design and Performance Evaluation
of Soft 3D Models using Metaball

in Unreal Engine 4

Youngsik Kim

Dept. of Game and Multimedia Engineering, Tech University of Korea,
Republic of Korea
E-mail: kys@tukorea.ac.kr

Received 27 April 2021; Accepted 06 January 2022;
Publication 05 July 2022

Abstract

Soft 3D models such as Slime need to use a variety of different animations in
the same situation in order to show a natural dynamic appearance. Metaball
can express soft objects well with a small amount of data, but it requires a lot
of computation time for real-time rendering. Because of this, it is difficult
to find models using Metaball in 3D games. This paper developed a 3D
slime game character using Metaball by applying ray marching technique
in Unreal Engine 4. In addition, 3D games including slime characters and
general fixed game character models were produced and the performance of
it were evaluated. Even if the number of slime characters is changed from 0
to 40, it has been verified that the rendering speed is maintained at 30 FPS
(Frames Per Second) or more, so that the game can be played.

Keywords: Soft 3D models, Slime, Unreal Engine 4, Metaball, performance
evaluation.

Journal of Mobile Multimedia, Vol. 18 6, 1795–1810.
doi: 10.13052/jmm1550-4646.18614
© 2022 River Publishers

1796 Y. Kim

1 Introduction

In modern 3D games, modelling and production of fixed game characters
includes many animations, but the same animation is played in the same
situation. However, soft game character models, such as fluid slime, must
use a variety of different animations in the same situation in order to show
a natural dynamic appearance. However, in many cases, one animation is
processed in the same situation due to various animation production costs
and performance problems of indeterminate game characters.

There has been a lot of research on using Metaball when creating game
enemies. Metaball belongs to the implicit surface model. The modelling
elements formed as point elements have been called differently according to
the field function representing the distribution of density values in the space
for determining the surface. Blinn is called Blobs, Nishimura is Metaball,
and Wyvill is a soft object [1]. With the above techniques, modelling using
arbitrary skeletal elements such as curves and polygons has been widely
applied both academically and commercially [2].

Metaball can represent objects well with a small amount of data. When
expressing a model of a soft object, there is no need to create a separate
animation through real-time calculation, and it is possible to show various
dynamic shapes according to the situation [3].

Some computer graphics modelling programs use Metaball to model
characters. Auto Desk’s 3Ds Max also uses a technique called metaball mod-
elling, which is suitable for simulation of liquid and thick viscous substances
such as mud, soft food, and dissolved metal. Figures 1 and 2 are a part of
the process of making a simple bug, a metaball model, using the blob mesh
composite object of 3ds Max. This is how the sphere is placed in Figure 1
and the result is created as shown in Figure 2. In the past, there have been
attempts to use it as a modelling technique.

Despite these advantages, there are problems that must be overcome in
order to apply the Metaball technique to a negative 3D game character. First,
the real-time rendering of 3D game characters using the Metaball technique
requires a large amount of computation, so high hardware performance or
optimized algorithms are needed [4]. However, in recent years, computer
graphics hardware performance has improved dramatically, and it has become
possible to solve to some extent due to improved algorithms.

The second problem is that it can produce unwanted results. Due to the
principle of Metaball, it cannot prevent the nature of sticking to each other
between adjacent elements. So, if you limit the area to be attached, you may

Design and Performance Evaluation of Soft 3D Models 1797

Figure 1 Sphere arrangement for BlobWorm.

Figure 2 Metaball model of BlobWorm.

get an awkward model or you may have trouble getting a smooth surface.
The second drawback is that there is no problem with the model of a soft
object such as slime, which is not a complex modelling, and the first drawback
is that the burden of real-time rendering has been greatly reduced due to the
advancement of technology such as algorithms and hardware.

This paper, using a custom node in the Unreal Engine 4 material, imple-
ments Metaball using ray marching as a shader to create an indeterminate
model such as slime. In 3D games, this paper will measure whether the
performance enough to be used in real games is achieved by maintaining FPS

1798 Y. Kim

while performing calculations that move like regular fixed game character
models and receive the laws of physics.

2 Metaball Algorithm

Since the concept of Metaball (blobs or soft objects) was introduced in the
early 80s, many related studies have been conducted because of its excellent
expressive ability [3]. However, since real-time rendering was difficult due to
a high amount of computation, various algorithms have been developed and
improved. A new field function and fast ray tracing algorithm [4], which are
good for representing objects that require very natural connections such as
fluid shape expressions by proposing a field function of the 6th order poly-
nomial, traces rays through inertial interpolation to the existing ray tracing
technique. A number of methods have been studied, such as IRCF (Improved
Ray Casting Function) [5], which is a technique to perform, and acceleration
of volume ray projection using a modified marching cube table [6].

There are two methods of expressing complex-shaped surfaces: paramet-
ric surface expression and implicit surface model. Implicit surface models are
commonly referred to as isosurface models. The field value at a point in space
is determined by the ratio of the distance from the center of the metaball to the
radius of the metaball, and a distribution body having a field function whose
field value at the surface of the sphere becomes 0 is called a metaball [4].

The isosurface means a surface with a constant electron density. The
recently used density function uses a more simplified form of Wyvill’s
calculation formula [9]. Since a curved surface made of metaballs exhibits
algebraic characteristics, it is relatively simple to implement in a system that
supports raytracing, but a system that expresses all objects as a combination
of polygons such as 3DS MAX uses an algorithm called Marching Cubes.

The Marching Cubes algorithm is a method of dividing the space affected
by ellipsoids into small voxels, and then calculating the density function at
the vertices of each hexahedron to find the plane that exists inside the cube.
Since there are 8 vertices of the hexahedron and two cases are possible inside
and outside the isosurface, a total of 256 can occur. Among them, 14 cases
remain, except for geometrically identical ones that can be rotated.

Metaball can be created by storing the numbers in 14 cases in advance
in an array of code and generating the right shape for each voxel according
to the density value. It can also be implemented in Unreal Engine, but as the
size increases, the computational amount increases and the number of voxels
is increased to create a smooth surface.

Design and Performance Evaluation of Soft 3D Models 1799

Figure 3 Ray marching.

Figure 4 SDF sphere.

Figure 5 Source code of SDF sphere.

This paper will create a blob with a field function using Ray Marching
and implement it as a calculation that expresses a curved surface. Ray
Marching literally proceeds as the ray advances. Each fragment fires a ray,
advancing the ray by the minimum distance of the map calculated from the
field function. This paper will find the minimum distance using one of Ray
Marching’s algorithms, Sphere Tracing. As shown in Figure 3, find the largest
sphere that can be touched at the current ray position, and if it touches in the
ray direction, stop the process and move on to the next fragment. If not, move
forward by the minimum distance and repeat the same process again. Here,
if the ray is not blocked, it repeats infinitely, so you must set the maximum

1800 Y. Kim

Figure 6 SDF action in ray marching.

number of iterations, MaxSteps, to limit it. This number of iterations affects
the performance and the precision of the metaball output.

To use this ray marching, you need to find the minimum distance from
the current ray position. To do that, this paper will use the Signed Distance
Function (SDF) [9]. Simply, if the point is outside the object, it displays the
shortest distance to the object, if it is above the object boundary, it displays 0,
and if it is inside, it displays the shortest distance x or −1 to the boundary line.
As a simple example, to show the source code of Figure 5 for drawing a circle,
as shown in Figure 4, you can obtain the length of pos that will be the center
point of the sphere (c1, c2) and subtract it by the radius (r1, r2) of the ball size
to obtain the minimum distance (d1, d2). Then, for each fragment, the closest
distance that can be seen from the circle can be obtained, so that a sphere can
be drawn. Connect the spheres created in this way with a smoothing function,
find and return the minimum distance among all SDF values, and advance the
ray by the value.

As shown in Figure 4, the minimum distance (d1, d2) can be obtained
by subtracting the length of pos that will be the center point (c1, c2) of the
sphere and subtracting it by the radius (r1, r2) of the ball size. Then, for
each fragment, the closest distance that can be seen from the circle can be
obtained, so that a sphere can be drawn. Connect the spheres created in this
way with a smoothing function, find and return the minimum distance among
all SDF values, and advance the ray by the value. Figure 6 shows the state
of advancing with the above SDF value. As metaball technology advances,
functions are connected to smooth surfaces and perform efficient calculations.

The Blinn’s field function of Equation (1) proposed in 1982 [7] has a
disadvantage in that it is an exponential function that requires all metaballs

Design and Performance Evaluation of Soft 3D Models 1801

to be considered because even the field value at a very far distance from the
center point is not zero.

fi(r) = e−ar3 (1)

The Nishimura’s field function of Equation (2) proposed in 1983 [8] has a
relatively small computational time, but has a large error and a large number
of sections to be solved when several metaballs are overlapped.

fi(r) =

1− 3

(
r

Ri

)2

if

(
0 ≤ r <

R

3

)
3

2

(
1−

(
r

Ri

))2

if

(
R

3
≤ r ≤ Ri

) (2)

A display function that uses the field function of Equation (3) of a
polynomial that approximates the exponential function of Wyvill developed
in 1986 [9] was developed and called it a soft object.

fi(r) = −4

9

(
r

Ri

)6

+
17

9

(
r

Ri

)4

− 22

9

(
r

Ri

)2

+ 1 (3)

Metaball’s connection to the field function above was unnatural. So, for
smooth connection, Eun-seok Kim proposed a new field function in Equation
(4) [5]. This resulted in more efficient results in the average number of
sections examined to find roots for one ray than the previous functions [5].
Using the above methods, this paper can create metaballs, connect them, and
render them.

fi(r) =

(
1−

(
r

Ri

)2
)3

(4)

3 Design of Metaball in Unreal Engine 4

In Unreal Engine 4, custom shaders can be created using High Level Shading
Language (HLSL). Create a custom node after creating a material as shown in
Figure 7. After that, you can write shader code like hlsl in the code and apply
it according to node connection. Here, you can set the material more easily
by adjusting the values of Metallic, Specular, and Roughness. This paper will
apply the Metaball algorithm to this line of code.

To use the metaball algorithm, you need to be able to store and change
the location of blobs. This paper will save it using the vector parameter in

1802 Y. Kim

Figure 7 Custom shader in Unreal Engine 4.

Figure 8 Slime of ShieldMan game project in Unreal Engine 4.

the material and change the position of the blob with the SetVectorParame-
terValueOnMaterials function in C++. Describes the process of creating a
Metaball model in Unreal Engine 4. On top of the metaball, the settings from
Unreal Materials are added to create a texture. Figure 8 shows ShieldMan’s
Slime, a 3D game project created using Unreal Engine version 4.23. The
material created above is covered with a StaticMesh that is large enough
for the metaball to be drawn. Then, the Custom Shader is rendered only
as much as the size of the StaticMesh. Now this paper need to move and
physically move this slime and make the blobs move accordingly. This part
was implemented using Unreal’s physics system and c++.

Create a new c++ class by inheriting the Actor class. Create a StaticMesh
variable with the Metaball material above, and blobs in the Metaball shader

Design and Performance Evaluation of Soft 3D Models 1803

Figure 9 Slime ghost of ShieldMan game project.

cannot be applied to physics with Unreal Engine, so you have to put them in
code. In ShieldMan project, Spring Mass System was used to make natural
movement. Because the principle is simple and can be easily implemented,
it is very easy to link with other physical models. Since it shows a spring-
like motion with an additional mass, it can also express the dynamic motion
of complex natural phenomena linked to deformation, destruction, fire, water,
and explosion [10]. Each sphere’s Position and Velocity are stored and used in
an array using Unreal’s FVector. As the position is updated one by one while
rotating the for statement, performance decreases as the number of spheres
increases.

Slime’s movement was adjusted using AddForceVelocity to give it a
bouncing feel, and a NavigationSystem was used to show the roaming appear-
ance, allowing him to continue to move to a random position within the Navi
mesh bound volume installed on the editor. Metaball is also a good option
for ghosts of uncertain shape. The slime in Figure 8 was modified to create
the ghost in Figure 9. This paper changed the alpha value and made the eye
part rather wide and changed the color. You can create multiple models using
Metaball using these various application methods.

4 Performance Evaluation

For performance evaluation, this paper will check whether there is any
problem in the application of the actual game by measuring the GPU usage

1804 Y. Kim

Figure 10 Screen shot of ShieldMan game project in unreal engine 4.

or FPS of the ShieldMan project that is playing the game by putting Metaball
models. Figure 10 is a screen shot of the ShieldMan game project.

4.1 Performance Evaluation Environment

Performance evaluation was measured on a CPU: Intel(R) Core(TM)
i7-7700HQ CPU @ 2.8GHz, memory: 8.0GB, GPU: NVIDIA GeForce GTX
1050Ti computer. The Unreal Project environment will use the levels shown
in Figure 11. Character BP using a total of 73 StaticMesh, 10 Particle System,
11 Point Light, and 1 Physics Asset is composed.

Slime will use Metaball with 6 spheres, and as the material setting, use
Translucent as the Blend Mode, set the Screen Space Reflections to true, and
set the Lighting Mode to Surface ForwardShading, so the influence of each
light is calculated per pixel, so the most expensive translucent lighting method
is used. Ray Marching’s MaxSteps is 200, and the size of the StaticMesh to
which the shader is rendered is 233 × 219 × 233 in Unreal Engine 4, and
has 128 Triangles and 384 Vertices. The size of StaticMesh and Slime are
roughly the same.

4.2 Performance Evaluation According to the Number of Slimes

This paper will compare the number of Slime by measuring the FPS at 0, 5,
10, 20, 40. The location was measured from the corner where all maps can
be seen. However, when slime moves and occupies a large part of the screen,

Design and Performance Evaluation of Soft 3D Models 1805

Figure 11 StaticMesh information.

Figure 12 Performance profiling of 0 slime.

there is a difference in FPS dropping. As shown in Figure 12, it was measured
using the commands stat GPU and stat FPS in Unreal Engine 4. The stat FPS
command displays the number of frames currently being rendered per second
and the time it took to render the frame in milliseconds (ms), and the stat
GPU’s GPU time measures the time it takes the video card to render the
scene. The GPU time is synchronized to the frame, so it is likely to be similar
to the frame time. The number was increased from when there was no slime
to 40 and recorded in the table. Initially, as shown in Figure 12, it takes a lot
of calculation cost for lights calculation in GPU, and the more the number of
slimes increases, the most calculation cost of translucency becomes. When
it is 0, 60 fps is maintained and it can be confirmed that the play is possible
without any problems.

1806 Y. Kim

Table 1 Performance according to the number of slimes

Number GPU Rendering Rendering Speed Rendering
of Slimes Time (ms) (FPS: Frames Per Second) Time (ms)

0 16.23 60 16.67

5 16.14 59.98 16.67

10 20.75 45.43 22.01

20 22.69 41.99 23.81

40 30.52 31.91 31.34

From the results of Table 1, it can be seen that the 5 animals have little
effect on the game play. In the planning of the ShieldMan project, the goal
was to catch about 5 Slimes, so there is no problem in creating and using
models with Metaball technology. In contrast, 10 cases showed a big drop.
It may be a difference depending on the movement or position of the slime,
but even considering such points, it is a number that allows the player to
recognize that the frame is falling. Nevertheless, up to 20 or 40 frames
may appear broken, but play is possible. If you run the optimization to the
maximum, you will be able to sufficiently defend the frame.

However, considering the Metaball technology and Unreal Engine 4’s
material system, the more StaticMesh using the Metaball material is visible
on the screen, the more fragments the Ray Marching proceeds. And the
more the empty parts are, the more the number of advances increases, so
the percentage of the viewport is important. Therefore, the percentage of the
viewport should be considered as a measure of performance.

4.3 Performance Evaluation According to Viewport Occupancy
Ratio

The environment for this performance evaluation will use a large metaball
model with 27 spheres, arranged in 3 × 3 × 3 like a cube, and a pattern
that rotates like when one side fits a cube. As the material setting, using
Translucent as the Blend Mode, the Screen Space Reflections as true, and
the Surface TranslucencyVolume as the Lighting Mode, the lighting for the
surface is calculated, the cost per pixel is very low, and only diffuse lighting is
supported. The size of the StaticMesh is 700 × 700 × 700 in Unreal notation
and has 12 Triangles, 24 Vertices.

The Unreal Project environment will use the levels shown in Figure 13.
Character BP using a total of 89 StaticMesh, 12 light emitting lava material,
2 Particle System, 14 Point Light, 2 SpotLight, and 1 Physics Asset are

Design and Performance Evaluation of Soft 3D Models 1807

Figure 13 Screen shot of ShiedMan game project in cube level.

Figure 14 Performance profiling of 400 × 400 size, 11% of the screen.

Table 2 Performance according to the occupied screen size
Occupied Screen GPU Rendering Rendering Speed Rendering
Ratio (%) Time (ms) (FPS: Frames Per Second) Time (ms)
0% 10.85 60.01 16.66
11% 15.19 60.01 16.66
30% 18.96 51.68 19.35
66% 31.55 30.57 32.71
100% 41.41 23.55 42.46

composed. The performance evaluation was measured according to the area
of the metaball shown on the screen, and then changed the MaxSteps when
the metaball was full on the screen. Compared to StaticMesh, the area
occupied by the metaball is approximately 40%, and for 60% of the blank

1808 Y. Kim

space, the for statement runs until MaxSteps, so the difference in performance
varies greatly depending on MaxSteps. When making area measurements,
this paper sets MaxSteps to 100 and move the character’s position to change
the percentage of the screen. In order to assume the play situation, the
Metaball model applies the Spring Mass System as it is, and proceeds with
the pattern of matching cubes while turning one side. At the screen resolution
of 1600 × 900, the approximate area of the part occupied by the StaticMesh
was calculated and expressed as a rounded percentage.

As shown in the results of Table 2, the percentage occupying about 10%
on the screen did not affect the FPS. However, even if it is only 30%, it can
be seen that it affects a large proportion, and if it exceeds 60%, it is about 30
frames, which makes it difficult to play. Figure 14 shows the performance
profiling of 400 × 400 size when Occupied Screen Ratio is 11%. When
MaxSteps is 100, if the space of Metaball Shader occupies a large part of the
screen, it can be seen that gameplay is disrupted. So, when using Metaball, it
will be important to ensure that it occupies only the necessary part. This time,
while keeping the percentage of the screen at 100%, this paper measured
while changing MaxSteps.

5 Conclusion

Metaball technology is advantageous for expressing fluid motion. Since vari-
ous forms can be expressed with a small amount of data, if character modeling
is performed using these points, it is possible to show various appearances
without creating animations individually. This paper implemented Metaball
using Ray Marching in Unreal to measure its performance. After creating a
model by implementing Metaball using Ray Marching in a custom node of
the Unreal Material System, this paper confirmed that it is enough to use AI
to play the actual game by creating an actor in c++.

The five slimes didn’t affect the FPS, and even when using a huge and
complex model, you could keep the frame rate by adjusting the percentage
of the screen and MaxSteps. In the ShieldMan project, 3D game characters
Slime and Ghost that actually use Metaball models are created, and the Boss
model is added to play. As a result of the performance verification, it is
not unreasonable to use more complex models “without” more optimized
algorithms. In order to apply the Metaball model to the game, it will be able
to maintain FPS and use good graphics by adjusting the appropriate size and
MaxSteps with an optimized algorithm.

Design and Performance Evaluation of Soft 3D Models 1809

Acknowledgement

This work was supported by Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korea government (MSIP)
(No. 2016-0-00204, Development of mobile GPU hardware for photo-
realistic real time virtual reality).

This work was supported by the 2022 sabbatical year research grant of
the Tech University of Korea.

References

[1] Eun Seok Kim, Jay Jeong Kim, “MetaCube : A New Skeletal Element
for Modeling Informal Objects” , Journal of KIISE : Computer Systems
and Theory 27(4), 353–361 (9 pages), 2000.4.

[2] M.K. Park, E.T. Lee, “Modeling with Implicit Surface”, ETRI Electron-
ics and Telecommunications Trends, Vol. 13, No. 3, 53–60 (7 pages),
1998.6.

[3] Jay Jeong Kim, “A Study on an Automatic Description of Volumetric
Objects using Metaballs”, Korea Science and Engineering Foundation,
961-9010-057-1, 1997.2.

[4] En Suk Kim, Jay Jeong Kim, “A new field function for improvement
of modeling capability and a fast ray tracing algorithm in metaball
modeling”, The Korean Institute of Information Scientists and Engineers
collection of academic papers, 23(1A), 739–742 (4 pages), 1996.4.

[5] Jin-Youl Kim, Hyeong-Gyun Kim, “Volume Rendering by Improved
Ray Casting” , Korea Multimedia Society collection of academic papers,
464–467 (4 pages), 2003.5.

[6] Sukhyun Lim, Ju-Hwan Kim, Byeong-Seok Shin, “Volume Ray Casting
Acceleration Using Modified Marching Cubes Tables” , The Korean
Institute of Information Scientists and Engineers collection of academic
papers, 35(2A), 217–218 (2 pages), 2008.10.

[7] Blinn, J. F., “A Generalization of Algebraic Surface Drawing,” ACM
Transactions on Graphics, Vol. 1, No. 3, pp. 235–256 (21 pages), July
1982.

[8] Nishimura, H., Hirai, M., Kawai, T., Kawata, T., Shirakawa, I. and
Omura, K., “Object Modeling by Distribution Function and a Method of
Image Generation,” Trans. IEICE Japan, Vol. J68-D, No. 4, pp. 718–725
(7 pages), 1986.

1810 Y. Kim

[9] Wyvill, G., MacPheeters, G. and Wyvill, B., “Data Structure for Soft
Objects,” SIGGRAPH ’93 Course Notes, Vol. 25, pp. 227–234 (7 pages),
August 1993.

[10] Bong-Jun Kim, Jeong-Mo Hong , “Interaction fluid and deformation
model based mass-spring” , Korea Computer Graphics Society academic
conference, 65–66 (2 pages), 2014.7

[11] Unreal Engine 4 in http://www.unrealengine.com/

Biography

Youngsik Kim received the B.S., M.S., and Ph.D degree in Dept. Com-
puter Science from the Yonsei University, Korea, in 1993, 1995, and 1999
respectively. He had worked for System LSI, Samsung Electronics Co. Ltd
from Aug. 1999 to Feb. 2005 as a senior engineer. Since March 2005 he has
been working for Dept. of Game & Multimedia Engineering in Tech Uni-
versity of Korea. His research interests are in 3D Graphics and Multimedia
Architectures, Game Programming, and SOC designs.

http://www.unrealengine.com/

	Introduction
	Metaball Algorithm
	Design of Metaball in Unreal Engine 4
	Performance Evaluation
	Performance Evaluation Environment
	Performance Evaluation According to the Number of Slimes
	Performance Evaluation According to Viewport Occupancy Ratio

	Conclusion

