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Abstract

This paper proposes a fingerprinting-based device Free Passive localization
system based on the use of the LTE signal and it is robust to environment
changes. The proposed methodology uses as fingerprints descriptors calcu-
lated on the CSI vectors rather than directly CSI vectors. The paper shows
the performance of the proposed methods also assuming that the monitored
environment might be different from the one characterized during the training
phase as some equipment may be moved. Moreover, the paper compares
the proposed method with signal fingerprinting approaches based on RSSI
or direct CSI vectors. Experimental results, which consider one single LTE
receiver in the monitored room, show the effectiveness of the proposed
solution.
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1 Introduction

The need for accurate indoor localization, pushed also by many emerging
applications such as shopper analytics and smart home, has called for the
development of localization techniques not based on the use of Global Nav-
igation Satellite Systems but rather on the analysis of radio signals that
can be transmitted by dedicated sensors or by opportunistic sources such as
WiFi Access Points (APs) or cellular Base Stations (BSs) [1]. One of the
possible approach is the so called signal fingerprinting localization, where the
location of a target is achieved by comparing the signal pattern received from
transmitters to a predefined database of signal patterns [2, 3]. Most of the
proposed techniques are device-based, i.e., the target must be equipped with
a communication device that can send out radio signals or is able to receive
the radio signals of interest. In this paper, the focus is on Device-free Passive
(DfP) localization, which allows to detect, track, and identify people that do
not carry any device, nor participate actively in the localization process. Since
the pioneering work of Youssef [4], DfP localization has attracted extensive
research interest. Some proposed DfP approaches are based on bistatic or
multistatic radars [5]. Other approaches are based on the use of signal of
opportunity, such as FM radio [6] or WiFi signals [7, 8], which are widely
available indoor without deploying an additional dedicated infrastructure.
Ambient radio signals transmitted by BSs of a cellular systems or by radio
broadcasters have been also considered, but mainly for outdoor applications,
using GSM [9] or UMTS [10]. Recently, also Long Term Evolution (LTE)
signals have been considered for signal fingerprinting localization techniques
[11–13]. The mentioned works use as fingerprints vectors of Channel State
Information (CSI) rather than the RSSI, more commonly in previously pro-
posed systems. A novel approach in the use of CSI and LTE signals for indoor
localization has been presented in [14]. In [14], the fingerprints are vector
containing a number N of features calculated on CSI vectors, rather than the
direct CSI vectors. However, the system proposed in [14] is device-based.
Moreover, it does not face one of the main problem related to fingerprinting
approaches based on the use of CSI, which is the fact that room environ-
ment might change with respect to the training phase performed to build
the database of fingerprints. Some very recent works have investigated the
accuracy degradation of RSSI-based DfP fingerprinting due to the changes
in the environment [15–18]. This paper proposes a DfP localization system
based on the use of LTE and CSI descriptors as in [14] and shows, through
experimental results, the robustness of the proposed approach when the
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environment changes (e.g., furniture is moved) with respect to an approach
based on direct CSI vectors or RSSI.

The paper is organized as follows: Section 2 shows how CSI is extracted
from the LTE receiver; the proposed signal fingerprinting DfP localization
method is presented in Section 3; Section 4 describes the experimental setup;
results are shown in Section 5 and conclusions are drawn in 6.

2 Theoretical Background

The CSI represents a fine-grained channel measurement which is performed
by the modern Orthogonal Frequency-Division Multiplexing (OFDM)
receivers. In detail, the CSI is employed for channel equalization since it
represents the vector of complex channel gains for all subcarrier. In this
Section it is explained how these channel gains have been extracted by an
LTE receiver. First of all, only the LTE Frequency Division Duplexing (FDD)
mode, where the uplink and downlink channels are separated in frequency,
has been analyzed. In the LTE standard, the information data is transmitted
over a time-frequency grid. The radio frame represents the largest time unit
in this grid with a duration of 10 ms. It can be subdivided into 10 subframes
of 1 ms, each of which can be further split into 2 slots of 0.5 ms. According
to the length of the cyclic prefix, each slot can contain 6 or 7 OFDM symbols.
In the frequency domain, instead, the subcarriers are reciprocally spaced by
15 kHz. The smallest resource unit is the Resource Element (RE), which
corresponds in the frequency domain to an OFDM subcarrier and in the time
domain to an OFDM symbol. The Resource Block (RB) consists of a group
of 12 contiguous subcarriers (180 kHz) over a time interval of a slot and is
the minimum resource unit which is allocable to a User Equipment (UE).
In the LTE standard, it has also been introduced the concept of antenna port.
Downlink symbols transmitted via the same antenna port are subject to the
same channel conditions therefore an eNodeB c can map its logical antenna
ports to Tc physical transmitting antennas in order to take advantage of spatial
diversity.

If we consider an eNodeB transmitting a vector of complex symbols xc
over N subcarriers from one among all the antennas, the received complex
vector yc after the N-point FFT at the receiver can be expressed as:

yc = Xchc + w (1)

where Xc is the transmitted diagonal complex matrix, hc is the vector con-
taining the channel complex gains per subcarrier and w is a complex white
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Figure 1 Layout of the Cell Specific Reference Signals for 4 antenna ports within 1 Resource
Block over 2 consecutive slots.

Gaussian random process modeling the noise and the inter-cell interference.
The subcarrier channel gains are estimated by the receiver using the Cell
Specific Reference Signals (CRS), which are inserted in specific OFDM
symbols and subcarriers within every slot. In one slot there are 4 CRSs per
antenna, as shown in Figure 1, where different antenna ports are represented
by different colors. In this work, it is possible to assume that the channel
is rather stationary over a slot (0.5 ms), i.e., the coherence time is equal or
greater than its duration. Following this assumption, for each antenna we
can align at the same instant the CRSs in different positions in the same
slot, doubling the size of the CRS resulting vector. Since we are analyzing
10 MHz-bandwidth LTE signals, 50 RBs are available, resulting in a vector
of N = 50 ∗ 2 ∗ 2 = 200 (50 RBs × 2 CRSs × 2 positions) complex channel
gains for 200 different OFDM subcarriers. This complex vector represents the
result of the channel estimation process and it is what we call CSI vector in
the following. An LTE receiver can extract a CSI vector ĥc,t for each eNodeB
that is received in a specific position and for all its transmitting antenna ports:

ĥc,t = [ĥc,t(0), . . . , ĥc,t(n), . . . , ĥc,t(N − 1)], ∀ c, ∀ t ∈ Tc (2)

In this paper, it has also been performed a comparison with other LTE
signal measurements applied to fingerprinting, such as RSSI and Reference
Signal Received Power (RSRP). The RSRP is defined as the average power of
the CSI over the entire bandwidth, so it can be calculated for each transmitting
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antenna port on the vectors ĥc,t as follows:

RSRPc,t =
1

N

N−1∑
n=0

|ĥc,t(n)|2, ∀ c,∀ t ∈ Tc (3)

The RSSI, instead, represents the measurement of the average RE
received power relative to the whole OFDM symbols containing CRSs for
antenna port 0 (symbols 0 and 4 in a slot). For this reason, the RSSI includes
the power from co-channel serving and non-serving cells, adjacent channel
interference and the thermal noise:

RSSIc =
1

L

L−1∑
l=0

|Xc(l, l)|2 (4)

where L is the overall number of available subcarriers, that in case of 10 MHz
signal bandwidth (50 RBs) is equal to L = 50 ∗ 12 = 600.

3 Device Free LTE Signal Fingerprinting

Device free signal fingerprint-based localization techniques are based on the
concept that persons/objects in a given position modify the radio signal,
which is received by one or more receiver, differently with respect to other
positions. Therefore, it is possible to associate to each position a specific
signal pattern, which is built by the signal received by one or more receivers
not carried by the person. As any fingerprint-based localization technique, it
consists of the following phases:

• Fingerprint Database Building – The purpose of this phase is to build
up the offline fingerprint database, which stores for each Reference Point
(RP) a fingerprint. The fingerprint is obtained by properly processing
some measurements of the received signals. Signals might be transmit-
ted by an AP or a BS of a cellular system. Let us denote with RFr the
reference fingerprint in the RP r.
• Fingerprint Acquisition – For each Test Point (TP), whose position is

unknown, the fingerprint is calculated using the same measurements on
the received signal. Let us denote with TF the fingerprint in a TP.
• Fingerprint Matching – This phase consists of associating to the

fingerprint measured in the TP the fingerprint stored in the built
database which is closest to the measured one according to a predefined
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Table 1 The offline fingerprint database storing fingerprints relative to RPs
RP Coordinates Cell 1 . . . Cell c . . . Cell C
1 (x1, y1) R1,1 . . . R1,c . . . R1,C

2 (x2, y2) R2,1 . . . R2,c . . . R2,C

...
...

...
...

...
r (xr, yr) Rr,1 . . . Rr,c . . . Rr,C
...

...
...

...
...

R (xR, yR) RR,1 . . . RR,c . . . RR,C

matching rule. The user location is then calculated as the location of the
RP corresponding to the found fingerprint.

The RP r, that is associated to the TP whose fingerprint is TF, in case of
Nearest Neighbor (NN) matching, is the RP that minimizes a deterministic
function called Fingerprint Distance (FD):

r̄: FD(RFr̄,TF) ≤ FD(RFr,TF), ∀ r 6= r̄ (5)

then the location (x, y) of the TP is calculated through the following
association:

(x, y)⇒ (xr̄, yr̄) (6)

The basic signal measurements extracted from the LTE receiver are the
vectors hc of N = 200 elements as described in Section 2. From these
vectors, computed by the same receiver on the LTE signals transmitted by
different antennas relative to multiple eNodeBs, a database as the one shown
in Table 1 can be built. In Table 1, for each RP r, and for each eNodeB c
(denoted as Cell), whose signal is received in the RP, a reference fingerprint
Rr,c is calculated.

In the traditional deterministic RSSI-based fingerprinting localization the
reference fingerprint Rr is simply given by the average RSSI values measured
from all the available eNodeBs, where RSSIc(s) represents the measured
value in a single time slot:

Rr,c = RSSIc =
1

Nslot

Nslot−1∑
s=0

RSSIc(s) (7)

RFr = [Rr,1, . . . , Rr,c, . . . , Rr,C ] = [RSSI1, . . . ,RSSIc, . . . ,RSSIC ] (8)
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The fingerprint distance metric FD in case of RSSI comparison is chosen
equal to:

FD(RFr,TF) =
1

C

C∑
c=1

[d(Rr,c,TFc)] =
1

C

C∑
c=1

|Rr,c − TFc| (9)

where d is the magnitude of the difference between the reference and the test
RSSI.

On the other hand, traditional approaches based on CSI use as fingerprints
CSI vectors incoherently averaged over a time interval of Nslot to remove
noise and undesired channel fluctuations:

hc,t =
1

Nslot

Nslot−1∑
s=0

[|ĥc,t(s, 0)|, . . . , |ĥc,t(s, n)|, . . . , |ĥc,t(s,N − 1)|]

= [h0, . . . , hn, . . . , hN−1] (10)

Rr,c is a vector directly containing all vectors hc,t, which are the CSIs
estimated on the signal received from the cell c and the antenna port t.
Therefore, considering again the c-th eNodeB with Tc = 4 antennas, Rr,c

is given by:
Rr,c = [Rr,c,1,Rr,c,2,Rr,c,3,Rr,c,4] (11)

where:
Rr,c,t = hc,t = [h0, . . . , hn, . . . , hN−1] (12)

Obviously, the same procedure is followed for every test fingerprint TF and
the fingerprint distance metric in case of direct CSI comparison has been
chosen equal to:

FD(RFr,TF) =
1

C

C∑
c=1

[
1

Tc

Tc∑
t=1

d(RFr,c,t,TFc,t)

]
(13)

where d is again the Euclidean distance between two vectors, that is now
computed between vectors relative to the same antenna port of the same
eNodeB and then averaged.

Another signal metric related to the channel frequency response of the
channel and that can be used as fingerprint is the Reference Signal Received
Power (RSRP). In this case, the fingerprint Rr,c is linked to the vector
RSRPc,t, which represents the sequence of the values of the reference signal



148 G. Pecoraro et al.

received power from the cell c and the antenna port t. Therefore, considering
the c-th eNodeB with Tc = 4 antennas, Rr,c is given by:

Rr,c = [Rr,c,1,Rr,c,2,Rr,c,3,Rr,c,4] (14)

where:

Rr,c,t = RSRPc,t =
1

Nslot

Nslot−1∑
s=0

RSRPc,t(s) (15)

and then the whole reference fingerprint:

RFr = [Rr,1, . . . ,Rr,c, . . . ,Rr,C ] (16)

3.1 RSRP and CSI Descriptors (F-DESCRIPTORS)

This work presents a signal fingerprinting DfP localization method that
employs as fingerprints vectors of specific features calculated on the CSI or
RSRP.

In particular, Rr,c is a vector containing F features calculated on the
vectors RSRPc,t or hc,t and each feature is a number which is somehow
related to the statistics of the RSRP (Table 2) or to the “shape” or statistics of
the CSI (Table 3).

Descriptors are heterogeneous quantities and can assume values in widely
different intervals. In order to perform deterministic classification, it is nec-
essary to balance the contributions of all the involved descriptors during
distance calculation. For this reason, a min–max normalization approach is

Table 2 RSRP statistical descriptors
Descriptor Formula Description

Mean µ =
1

Nslot

Nslot−1∑
s=0

RSRP[s] The arithmetic mean of the
RSRP.

Standard
Deviation

σ =

√√√√ 1

Nslot − 1

Nslot−1∑
s=0

(RSRP[s] − µ)2 The standard deviation of the
RSRP.

Fano
Factor

FF =
σ2

µ
The ratio between the
variance of the RSRP and its
arithmetic mean.
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Table 3 CSI statistical and shape descriptors
Descriptor Formula Description

Mean µ =
1

N

N−1∑
n=0

hn The arithmetic mean of
the CSI.

Standard
Deviation

σ =

√√√√ 1

N − 1

N−1∑
n=0

(hn − µ)2 The standard deviation of
the CSI.

Fano
Factor

FF =
σ2

µ
The ratio between the
variance of the CSI and its
arithmetic mean.

Spectral
Centroid

fn = (3n− 6RB)15 kHz The “center of mass”
calculated as the weighted
mean of the frequency
values with CSI
normalized magnitudes as
weights.

SC =

∑N−1
n=0 hnfn∑N−1
i=0 hi

Spectral
Lambda

λ = − 1

N − 1

N−1∑
n=1

hn − hn−1

fn − fn−1
+

2

hn + hn−1
The mean of the derivative
function for the CSI.

Spectral
Entropy

SE =

N−1∑
n=0

hn∑N−1
j=0 hj

log2

hn∑N−1
i=0 hi

The amount of
information contained in
the CSI.

Spectral
Flatness

SF =

N

√∏N−1
n=0 hn

1
N

∑N−1
n=0 hn

A measure used in digital
signal processing to quan-
tify how noise-like the
CSI is.

Spectral
Slope

SSL =

∑N−1
n=0 (fn − f̄n)(hn − µ)∑N−1

n=0 (fn − f̄)2
A measure of the slope of
the spectral shape of CSI.

Spectral
Moment

ηj =

∑N−1
n=0 hnf

j
n∑N−1

i=0 hi
The j-th order spectral
moment of the CSI.

Spectral
Central
Moment

ξj =

∑N−1
n=0 hn(fn − SC)j∑N−1

i=0 hi
The j-th order spectral
central moment of the
CSI.

(Continued)
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Table 3 Continued
Descriptor Formula Description

Spectral
Spread

SSP =

√∑N−1
n=0 hn(fn − SC)2∑N−1

i=0 hi
A measure of how the
spectrum is distributed
around its centroid.

Spectral
Kurtosis

SKU =

∑N−1
n=0 hn − T 4

n∑N−1
i=0 hi

, Tn = fn−SC√
ξ2

A measure of the
“tailedness” of the CSI.

Spectral
Skewness

SSK =

∑N−1
n=0 hn − T 3

n∑N−1
i=0 hi

A measure of the
asymmetry of the CSI
about its spectral centroid.

applied to both reference and test fingerprints:

R̂r,c,t =
Rr,c,t −minr,c[Rr,c,t]

maxr,c[Rr,c,t]−minr,c[Rr,c,t]
, ∀ t (17)

T̂c,t =
Tc,t −minr,c[Rr,c,t]

maxr,c[Rr,c,t]−minr,c[Rr,c,t]
, ∀ t (18)

and then the fingerprint distance is calculated as the vector distance between
the normalized fingerprints:

FD(R̂Fr, T̂F) = d(R̂Fr, T̂F) (19)

The descriptor approach has essentially two fundamental advantages with
respect to the direct CSI method, in fact it reduces the amount of data that
must be stored in the database and the computational complexity associated
to the matching phase. A similar approach has already been successfully em-
ployed in [12] and [14] to perform device-based localization and in [19] for
DfP crowd counting and occupancy estimation by using WiFi. In particular,
in [12] it has been shown that the proposed method achieves an accuracy in
meter of around 1m in a living room 5×7 wide. In the following, experimental
results show the robustness of the proposed method to the environment
changes.

4 Experimental Setup

The experimental phase was conducted in a medium-size room of 5 m× 4 m.
The experiments have been performed to prove the feasibility of the proposed
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Figure 2 The 5 different configurations of the experimental scenario: (a) base configuration
(Scenario A), (b) displacement of a chair (Scenario B), (c) displacement of another chair
(Scenario C), (d) displacement of a further chair (Scenario D) and (e) displacement of the
sofa (Scenario E).

device-free localization approach and assess its robustness to the changes
that might occur in the area of interest. Therefore, 5 different positions
inside the room have been considered, corresponding to the empty room case
(position 0) and to other 4 different positions, as shown in Figure 2 by the
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green crosses. Moreover, 5 different configurations for the room have been
considered, as shown again in Figure 2: standard configuration (Scenario
A), first displacement of a chair (Scenario B), second displacement of a
chair (Scenario C), third displacement of a chair (Scenario D) and then
displacement of the sofa (Scenario E).

During the training and test phases, each test position have been occupied
by a 1.70 m-tall standing man. The man was not forced to be still, in fact he
could freely gesticulate and move around the green cross to simulate a real-
life situation. The receiver employed for data acquisition is the Great Scott
Gadget HackRF, which is able to capture up to 20 MSamples/s with 8-bit
resolution, equipped by an ANT500 omni-directional antenna. The receiver
was placed on the table, approximately in the center of the room. The RF
amplifier and AGC were disabled, the IF gain was set to 40 dB and the
baseband gain to 30 dB in order to avoid distortions due to variable gains.
The sampling frequency and the receiving bandwidth were respectively set to
15.36 MS/s and to 10 MHz in order to directly extract 50 RBs.

The IQ raw samples of the LTE signal were collected while the user was
in each position for a duration of 20 seconds and stored as binary files. Signal
dataset acquisitions for each user position were repeated for each one among
the aforementioned scenarios (A, B, C, D and E). Binary files were then
processed through an LTE software receiver, which performed the channel
estimation process providing RSSI, RSRP and CSI vectors. The estimated
channel vectors are then used to calculate the descriptors as in Tables 2, 3.
The localization analysis was performed in MATLAB environment, where a
fraction of the collected data was employed to train the localization algorithm,
while the remaining part was used as test data. In particular, for each position
only 1 training fingerprint was included in the database, while 250 equally
spaced in time fingerprints were used for testing. In both cases, a time
interval of 1 s, corresponding to NSLOT = 2000 slots, was selected to
incoherently average the captured RSSI, RSRP and CSI. As a performance
metric we chose the Localization Accuracy, which represents the probability
of correctly matching between the actual location of the human in the test
phase and the location estimated by the fingerprinting system. If we define
with Ncorr the number of position correctly matched and with Ntot the
number of total considered test positions, the location accuracy is defined as:

accuracy =
Ncorr

Ntot
100% (20)
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5 Experimental Results

The purpose of the experimental results shown in this Section is to prove
the feasibility of the proposed method for DfP localization and assess its
robustness with respect to changes that might occur in the room. Therefore,
the training phase has been done in one scenario (i.e., room furniture con-
figuration) and tests have been performed in the same scenario as well as in
the other 4 considered scenarios. First of all, Table 5 reports the accuracy of
RSSI, RSRP, direct CSI and descriptors when both the training and the testing
phase are performed in the same room configuration. Figure 3 represents
a bar chart of the values shown in Table 5, where the x-axis reports all
the possible training scenarios and the y-axis the localization accuracy, and
graphically demonstrates that the approach based on RSSI performs very
poorly if compared to the others. RSRP exhibits a slightly better behavior, but
CSI and descriptors clearly outperform both of them. In detail, RSSI provides
an accuracy always below 50%, while CSI-methods, in particular direct CSI
and descriptors, are around 100%.

Table 4 shows the average accuracy of all the proposed deterministic
methods for all the combinations of training and testing scenarios. The
descriptors combination was chosen through an exhaustive search by fixing
the training scenario (A, B, C, D or E) and maximizing the average localiza-
tion accuracy for all testing scenarios (A, B, C, D and E). No more than 4
descriptors were considered in the fingerprint since a further increase in their
number has not provided any additional accuracy improvement.

From Table 4, it is evident that all methods show a performance degra-
dation with respect to the simple case of training and testing in the same
scenario. The maximum accuracy of the method using direct CSI (and not
descriptos) for scenario A is 100% and falls to 20% in case of testing in sce-
nario E. Similar performance degradation was observed in paper [17], where
due to the opening of doors or windows, the localization accuracy drops to
40% up to 18%.

Table 6 and Figure 4 report the average localization accuracies for differ-
ent training room configurations (the ones indicated in the x-axis), where the
average is calculated over all possible testing configurations. It is important
to outline that the Scenario A and E are rather different from each other
and hence, in these cases, all methods show worst performance. Generally,
the average performance of the direct CSI and descriptors are comparable
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Table 4 Localization accuracy of proposed deterministic approaches for all combinations of
training and testing scenarios

Training
Scenario

Fingerprint
Type

Test
Scen. A

Accuracy
[%]

Test
Scen. B

Accuracy
[%]

Test
Scen. C

Accuracy
[%]

Test
Scen. D

Accuracy
[%]

Test
Scen. E

Accuracy
[%]

A RSSI 38 39 38 39 32

RSRP 76 58 46 52 20

CSI 100 96 47 80 20

3-DES. 100 80 100 79 85

4-DES. 100 80 100 78 88

B RSSI 23 49 45 36 39

RSRP 63 93 52 43 37

CSI 98 100 100 100 35

3-DES. 100 93 95 80 67

4-DES. 100 100 80 98 80

C RSSI 30 34 46 39 27

RSRP 51 49 76 70 40

CSI 80 100 100 100 60

3-DES. 99 84 100 80 60

4-DES. 100 87 99 80 60

D RSSI 32 36 21 42 26

RSRP 57 45 41 84 40

CSI 91 100 96 100 40

3-DES. 80 100 69 100 95

4-DES. 80 100 73 100 100

E RSSI 22 40 21 21 36

RSRP 40 40 43 40 79

CSI 80 80 86 79 100

3-DES. 93 77 60 50 94

4-DES. 97 75 61 51 98

and clearly much better than both RSSI and RSRP. In general, CSI methods,
both direct CSI and descriptors are shown to be rather robust to environment
changes in most scenarios (A–D). This is related to the fact that CSI is
more tightly related to the size (not only the position) of the scatterers and,
at the chosen bandwidth, the person as a scatterer has more impact on the
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Table 5 Localization accuracy in case of training and testing in the same scenario

Fingerprint
Type

Training
Scen. A

Accuracy
[%]

Training
Scen. B

Accuracy
[%]

Training
Scen. C

Accuracy
[%]

Training
Scen. D

Accuracy
[%]

Training
Scen. E

Accuracy
[%]

RSSI 38 49 46 42 36

RSRP 76 93 76 84 79

CSI 100 100 100 100 100

3-DES. 100 93 100 100 94

4-DES. 100 100 99 100 98

Figure 3 Localization accuracy in case of training and testing in the same scenario.

CSI than a smaller scatterer such as a chair. When the static scatterer that
is moved is bigger, such as in case of scenario E, also direct CSI shows
much worst performance. In this case, CSI descriptors, which only catches
the main characteristics of the channel frequency response, likely impressed
by the bigger scatterer such as the person, has still a good behavior also in
scenario E. In particular, its performance ranges from 85% to 70% while
direct CSI localization accuracy drops down to 60% in case of training in
Scenario A.
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Table 6 Average localization accuracy in case of training in one scenario and testing in
scenarios A, B, C, D and E

Fingerprint
Type

Training
Scen. A

Accuracy
[%]

Training
Scen. B

Accuracy
[%]

Training
Scen. C

Accuracy
[%]

Training
Scen. D

Accuracy
[%]

Training
Scen. E

Accuracy
[%]

RSSI 37 38 35 31 28

RSRP 50 58 57 53 48

CSI 69 87 88 85 85

3-DES. 89 87 85 89 75

4-DES. 89 92 85 91 76

Figure 4 Average localization accuracy in case of training in one scenario and testing in all
the others.

6 Conclusion

This paper proposes a DfP localization system based on the use of LTE
signals and a fingerprinting, which is shown to be robust to changes in
the environment of interest, such as changes in the forniture. The exper-
imental set-up includes a single LTE receiver in the monitored room and
4 different test positions plus the empty room case. Through experimental
results the performance of the proposed approach are compared to LTE signal
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finger-printing approaches based on RSSI, RSRP or direct CSI vectors. From
the experimental results it is possible to conclude that:

1. RSSI-based method provides very poor DfP localization accuracy even
if training and testing are performed in the same scenario.

2. RSRP is more accurate with respect to RSSI in case of training and
testing in the same scenario, but the localization accuracy deeply reduces
if some furniture is moved.

3. Direct CSI and descriptors provide very good average accuracy in both
cases.

4. CSI descriptors reduce the memory occupancy and computational com-
plexity of the fingerprint database and also exhibit, on average, a more
stable behavior when the room configuration is changed (i.e., the perfor-
mance degradation is maximum 15% against a 25% of performance loss
in case of direct CSI).

The achieved results are promising and open the way to future works
where more receivers per room can be considered and or to the application of
the proposed methods also to the fine-grained DfP localization case.
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