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Abstract

This paper presents a spline-based Hammerstein model for adaptive filtering
based on a sign algorithm with the normalised orthogonal gradient algorithm.
Spline-based Hammerstein architecture consists of an interpolation spline-
based adaptive lookup table in the part of nonlinear filter and an adaptive
finite impulse response filter used in the part of linear filter. Hammerstein
spline adaptive filter (HSAF) is a nonlinear filter for the nonlinear systems
among the advantages in the low computational cost and high performance.
An adaptive lookup table and spline control points are determined and derived
with the orthogonal gradient-based mechanism. Performance analysis in
terms of convergence properties and mean square analysis based on the mean
square error (MSE) constraint are proven by using the Taylor series expansion
of the estimation error in the form of the excess MSE. Experimental results

Journal of Mobile Multimedia, Vol. 18 4, 1211–1230.
doi: 10.13052/jmm1550-4646.18412
© 2022 River Publishers



1212 S. Sitjongsataporn and S. Prongnuch

indicate the robust performance of the proposed algorithm can provide the
better performance than the other models based on the conventional least
mean square Hammerstein spline adaptive filtering algorithm.

Keywords: Hammerstein model, spline adaptive filtering, sign algorithm,
orthogonal gradient adaptive algorithm, nonlinear systems.

1 Introduction

Recently, the nonlinear system identification has been interestingly applied to
solve the system modelling problem. A class of spline-based adaptive filtering
(SAF) structure [1–4] has been presented. SAF is a type of nonlinear spline
adaptive filter detailed in [2], which has been presented the performance in
terms of adaptive learning for the nonlinear system modelling [3]. Normalised
version of least mean square for SAF has been proposed in [4, 5] for the
nonlinear system identification.

SAF architecture has been modified in several fields of engineering such
as the nonlinear system identification using the infinite impulse response
(IIR) [6, 7] against impulsive noise [8], system identification [9] and mul-
tilayer feedforward networks [10]. SAF based on IIR nonlinear filtering
is proposed in order to solve the Wiener nonlinear system identification
in [6]. The set-membership framework and least-M estimate approach has
been presented in the combination method [8] for achieving the effective
suppression and fast convergence on the impulsive noise. Normalised version
of orthogonal gradient-based adaptive applied for SAF [9] has been presented
in the system identification. An adaptive spline with activation function based
on the neural network [10] is presented due to solve in the data processing
real-time problems.

However, Hammerstein model based on SAF (HSAF) is a kind of non-
linear model applied in several nonlinear systems [11, 12] such as the Ham-
merstein on cubic SAF [11] and the digital cancellation in full duplex [12].
HSAF based on the stochastic gradient descent algorithm with the normalised
version of least mean square (NLMS) algorithm has been presented in [13].

Hammerstein spline-based adaptive filter (HSAF) architecture consists of
an interpolation spline-based adaptive lookup table in the part of nonlinear
filter and an adaptive finite impulse response (FIR) filter in the part of
linear filter. HSAF has been derived with a memory-less function based on a
uniform cubic spline function [11], which the results reveal that the proposed
filter can properly apply during the learning process using the gradient
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approach. For a self-interference canceller, a HSAF algorithm applied for
full-duplex devices has been proposed to reduce the complexity compared
to the common solution [12]. Performance results from in-band full-duplex
prototype demonstrated that it can obtain the same performance with low
computational complexity.

For the fast convergence, the orthogonal gradient-based adaptive algo-
rithm (OGA) has been verified in [14, 15]. Based on the orthogonal projec-
tion, the author in [15] has been derived with the greedy approach for the
convergence analysis. As a remark on the advantage of Hammerstein spline-
based filtering and fast convergence of OGA-based, it is inspired that the
adaptation process of coefficients can be applied during learning with low
computational complexity.

This paper is organised as follows. System model and a proposed Ham-
merstein spline-based adaptive filtering based on the sign algorithm and
normalised orthogonal gradient-based adaptive algorithm are described in
Section 2. Convergence properties in terms of stability and mean square
analysis are derived in Section 3. Numerical results are shown in Section 4.
Conclusion is summarised in Section 5. In this paper, vectors are defined by
the boldface lowercase letters. Matrix is obtained with boldface capital letter.
In addition, the floor operator, absolute value and transpose operator stand for
b·c, | · | and (·)T , respectively.

2 Proposed Spline-based Hammerstein Algorithm and
System Model

2.1 Spline Interpolation

General type of piece-wise polynomials in the spline interpolation under the
smooth and continuity constraints are applied to interpolate the input [1].
That means a nonlinear system can be modelled with low-order piece-wise
polynomials through a set of adaptive control points in the system.

Therefore, the spline curve is a combination of spline segments between
knots. The particular area between the ith and i+1th knot is called the
‘ith-span’ as

u(k) =
x(k)

4x
−
⌊
x(k)

4x

⌋
, (1)

i(k) =

⌊
x(k)

4x

⌋
+
Q− 1

2
, (2)
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Figure 1 Spline-based Hammerstein model, where P = 3.

where x(k) is the input signal, 4x is the uniform space between successive
knots and Q is the number of knots.

The spline interpolation output is given with the matrix notation as [2]

si(k) = u(k)TC q(k), (3)

where the output vector si(k) sorted from the span index i in the present
iteration k, 0 ≤ i ≤ Q − 1. A real-valued control points vector is as q(k) ∈
RQ+1 and u(k)TC defines the matrix multiplication between the spline basis
matrix C and vector u(k) ∈ R(p+1)×1 as

q(k) = [q0 q1 . . . qQ−1]
T , (4)

u(k) = [uP (k) uP−1(k) . . . u(k) 1]T , (5)

where P denotes a piece-wise degree of spline curve.

2.2 Spline-based Hammerstein Model

Splined-interpolated adaptive lookup table and FIR filter architecture is
depicted in Figure 1, where x(k) is the input signal and y(k) is the output
signal as

y(k) = w(k)T si(k), (6)
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where w(k) ∈ RM×1 is the FIR of the linear filter as

w(k) = [w0(k) w1(k) . . . wM−1(k)]T , (7)

where M is the number of tap of coefficient vector.
According to the estimating unknown parameters, the error signal e(k) is

considered the adaptive linear filter w(k) and the spline control points q(k) as

e(k) = d(k)− y(k) = d(k)− w(k − 1)T si(k), (8)

where d(k) denotes the desired signal.

2.3 Proposed Orthogonal Gradient Sign Algorithm for
Spline-based Hammerstein Adaptive Filtering

By estimating the weights of w(k) and q(k) in order to minimise the error
e(k) can be done by using the gradient descent-based algorithm, the cost
function is minimised the squared error as [3, 11]

J(w,q) =
1
2

min
w,q
{|e(k)|2}, (9)

where e(k) is given in (8).
Differentiating the cost function in (9) with respect to (w.r.t) w(k) and

q(k), we get

∇Jw =
∂J(w,q)

∂w(k)
= si(k) · e(k), (10)

∇Jq =
∂J(w,q)

∂q(k)
= −u(k)T · C · w(k) · e(k). (11)

Consequently, the proposed coefficient vector w(k) based on the sign
version of the normalised orthogonal gradient adaptive (SNOGA) algorithm
is verified by

w(k) = w(k − 1) + µw · dw(k), (12)

where dw(k) is the vector direction of linear filter w(k) as

dw(k) = dw(k − 1) + λw · gw(k), (13)

where λw is the forgetting factor for w(k).
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The negative gradient gw(k) of w(k) is expressed by taking the partial
derivative of the cost function in (10) w.r.t w(k) as given in (12) as

gw(k) = λw(k) · gw(k)− ∂J(w,q)

∂w(k)
, (14)

∴ gw(k) = λw(k) · gw(k)− si(k) · sgn{e(k)}, (15)

where sgn{·} is the sign operator.
Therefore, the proposed control points q(k) based on the sign version of

NOGA is similarly written by

q(k) = q(k − 1) + µq · dq(k), (16)

where dq(k) is the directional vector of control points q(k) as

dq(k) = dq(k − 1) + λq · gq(k), (17)

where λq is the forgetting factor for q(k).
The gradient vector gq(k) of q(k) can be obtained similarly as

gq(k) = λq(k) · gq(k)− ∂J(w,q)

∂q(k)
, (18)

∴ gq(k) = λq(k) · gq(k)− u(k)T · C · w(k) · e(k), (19)

As shown in [14, 15], the forgetting factor λw(k) of w(k) and λq(k) of
q(k) lie on the orthogonal projection of the present gradient vectors gw(k),
gq(k) and the previous directional vectors dw(k − 1), dq(k − 1) as

λw(k) =
dw(k − 1)T gw(k − 1)

dw(k)Tdw(k − 1)
, (20)

λq(k) =
dq(k − 1)T gq(k − 1)

dq(k)Tdq(k − 1)
. (21)

According to the estimation of memory model [1], it is seen that the spline
control points are independent on the linear filter w(k), so the memory is used
after the nonlinearity.

During the adaptation process, the adaptive linear filter w(k) and the
spline control points q(k) are updated recursively in parallel as summarised
in Table 1.
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Table 1 Proposed sign normalised orthogonal gradient adaptive algorithm for Hammerstein
spline-based adaptive filtering (SNOGA-HSAF)

Initialise: (0) = δw · [1 0 . . . 0]T , q(0) = [1 0 . . . 0]T

dw(0) = dq(0) = gq(0)[1 0 . . . 0]T ,4x = 0.2

1: For k = 1, 2, . . .

2: u(k) =
x(k)

4x −
⌊
x(k)

4x

⌋
3: i(k) =

⌊
x(k)

4x

⌋
+
Q− 1

2

4: u(k) = [uP (k) uP−1(k) . . . u(k) 1]
T

5: si(k) = u(k)TCq(k)
6: y(k) = w(k)T si(k)
7: e(k) = d(k)− w(k − 1)T si(k)
8: gw(k) = λw(k) · gw(k)− si(k) · sgn{e(k)}
9: dw(k) = λw · dw(k)− gw(k − 1)
10: w(k) = w(k − 1) + µw · dw(k)
11: gq(k) = λq(k) · gq(k)− u(k)T · C · w(k) · e(k)
12: dq(k) = λq · dq(k)− gq(k − 1)
13: q(k) = q(k − 1) + µq · dq(k)

14: λw(k) =
dw(k − 1)T gw(k − 1)

dw(k)
Tdw(k − 1)

15: λq(k) =
dq(k − 1)T gq(k − 1)

dq(k)
Tdq(k − 1)

16: end

3 Convergence Properties

In order to obtain the optimal performance, the minimisation on the error of
filters can be maintained an adaptive learning rate of algorithm.

3.1 Stability

Let us introduce the approximation form of iterative learning orthogonal
gradient-based sign algorithm for adaptive FIR spline-based Hammerstein
filtering w(k) as

w(k) = w(k − 1) + µw · si(k) · sgn{e(k)}, (22)

where sgn{e(k)} denotes the sign of error parameter.
The convergence property of adaptive FIR filtering w(k) in (22) can

be calculated by the Taylor series expansion of the estimation error signal
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e(k + 1) as

e(k + 1) ≈ e(k) +
∂e(k)

∂w(k)
· 4w(k), (23)

where ∂e(k)
∂w(k) · 4w(k) is the first order of Taylor series expansion and4w(k)

is the difference of w(k) as

4w(k) = w(k)− w(k − 1) ≈ µw · si(k) · sgn{e(k)}, (24)

and the estimation a priori error e(k) is defined as

e(k) = d(k)− w(k − 1)T si(k). (25)

Differentiating e(k) in (25) with respect to w(k), we arrive at

∂e(k)

∂w(k)
= −si(k), (26)

and substitution (24) and (26) in (23), we get

e(k + 1) ≈ e(k)− µw · si(k)T si(k) · sgn{e(k)}. (27)

By taking the norm at both sides of (27), we carry out with the simple
manipulations as

e(k + 1) ≈ e(k){1− µw · si(k)T si(k)}. (28)

Let assume that |e(k + 1)| < |e(k)| in order to achieve the convergence,
we arrive at

1 = 1− µw · si(k)T si(k), (29)

that indicates the bound on the learning rate of step-size µw of w(k) as

0 < µw <
1

si(k)T si(k)
. (30)

It is seen that all quantities following in (30) are positive.
Correspondingly, the approximation form of adaptive control points q(k)

on the sign orthogonal gradient algorithm is updated by

q(k) = q(k − 1) + µq · u(k)T · C · w(k) · sgn{e(k)}. (31)

So, we can determine a bound on the choice of µq by the first order
of Taylor series expansion of error e(k) related with the adaptive control
points q(k) as

e(k + 1) ≈ e(k) +
∂e(k)

∂q(k)
· 4q(k), (32)
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where ∂e(k)
∂q(k) · 4q(k) is the first order of Taylor series expansion and 4q(k)

is the difference of previous and present of q(k) in (31) as

4q(k) = q(k)− q(k − 1) ≈ µq · u(k)T · C · w(k) · sgn{e(k)}. (33)

Substituting si(k) in (3) into (25), we have

e(k) = d(k)− w(k − 1)T {u(k) · C · q(k)}. (34)

Taking the derivative on e(k) in (34) with respect to q(k), that is

∂e(k)

∂q(k)
= −w(k − 1)T {u(k) · C}. (35)

After the simple manipulations, the estimation error e(k) can be
obtained as

e(k + 1) ≈ e(k)− µq ·Ψ(k)T ·Ψ(k) · sgn{e(k)}, (36)

Ψ(k) = w(k − 1)T · C · u(k). (37)

By determining the convergence of error in (36) following in (8), we have

1 = 1− µq ·Ψ(k)TΨ(k), (38)

that imposes a bound on the learning rate µq as

0 < µw <
1

Ψ(k)TΨ(k)
. (39)

3.2 Mean Square Analysis

The purpose of this section is to derive the mean square error performance of
orthogonal gradient-based sign algorithm on the spline-based Hammerstein
filtering at the steady-state. The mean square analysis is separated to the first
case of adaptive FIR linear filter w(k) and then the spline control points q(k).

The excess mean square error (EMSE) is considered by following these
parameters. A posterior error ep(k) imposed on the error of system. A
priori error epw(k) is determined when the adaptive FIR linear filter w(k)
is updated, while fixing the spline control points q(k). Similarly, a posteriori
error epq(k) is imposed on the adaptive control points q(k), while fixing the
linear filter w(k).
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According to the mathematical derivation, these assumptions are intro-
duced.

Assumption 1: The estimated error vector ζw(k) involved with the adaptive
linear filter w(k) is under the circumstance of independent and identically
distributed (i.i.d) condition with the finite variance and zero mean.

The estimated error vector ζw(k) is determined with the adaptive linear
filter w(k) as

ζw(k + 1) = ζw(k)−∆w(k), (40)

And ∆w(k) is given as

4w(k) ≈ µw · si(k) · sgn{epw(k)}, (41)

where epw(k) denotes a posteriori error related with w(k).

Assumption 2: We assume that

E{‖ζw(k + 1)‖2} ≈ E{‖ζw(k)‖2}, k →∞.

Following Assumption 2, we can consider the energies of error in (40) by
taking the expectation of square at both sides of (40) as

‖ζw(k + 1)‖2 = ‖ζw(k)‖2 − 2µw·ζw(k − 1) · si(k) · sgn{epw(k)}

+ µw
2‖si(k) · sgn{epw(k)}‖2, (42)

We obtain

2si(k)T ·ζw(k) · sgn{epw(k)} = µw·si(k)T · si(k) · |epw(k)|2, (43)

We assume that a posteriori error epw(k) associated with the estimated
error vector ζw(k) of the adaptive FIR linear filtering w(k) as

epw(k) = ξw(k) + ζw(k), (44)

where
ξw(k) = si(k)T · ζw(k). (45)

By taking the expectation operator on the left of (43) and following (44),
we have

E{ξw(k) · sgn{epw(k)}} = E{ξw(k)} · sgn{ξw(k) + ζw(k)}

≈ E{ξw2(k)}, (46)
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where ζw(k)� 1.
Note that the error at the steady-state is very small, that is

E{epw(k)2} = E{|ξw(k) + ζw(k)|2}

≈ E{|ξw2(k) + 2ξw(k)ζw(k) + ζw
2(k)|}. (47)

Substituting (45) and (46) into (43), we have

E{ξw2(k)} =
µw·si(k)T · si(k)

2− µw·si(k)T · si(k)
· E{|ζw2(k) + 2ξw(k)ζw(k)|}.

(48)

Therefore, the EMSE εexw on the adaptive FIR linear filter w(k) is
described by

εexw = E{ξw2(k)} =
1

2
µw·si(k)T · si(k) · E{νw}, (49)

where E{νw} = E{|ζw2(k) + 2ξw(k)ζw(k)|} and µw � 1.

Assumption 3: The estimated error vector ζq(k) associated with the spline
control points q(k) is under the i.i.d condition with the finite variance and
zero mean.

In a similar manner, the estimated error vector ζq(k) considered with the
spline control points q(k) is determined by

ζq(k + 1) = ζq(k)−∆q(k), (50)

And ∆q(k) is given as

4w(k) ≈ µw · φ(k) · sgn{epq(k)}, (51)

where epq(k) denotes a posteriori error related with q(k) and

φ(k) = u(k)T · C · w(k). (52)

Assumption 4: We consider that

E{‖ζq(k + 1)‖2} ≈ E{‖ζq(k)‖2}, k →∞.
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Following Assumption 4, the expectation of energies of error in (50) is
expressed as

‖ζq(k + 1)‖2 = ‖ζq(k)‖2 − 2µq·ζq(k − 1) · φ(k) · sgn{epq(k)}

+ µq
2‖φ(k)‖2 · |epq(k)2|, (53)

We obtain

2ζq(k)T · φ(k) · sgn{epq(k)} = µq · φ(k)T · φ(k)·|epq(k)|2, (54)

where a posteriori error epq(k) related with the estimated error vector ζq(k)
of the spline control points q(k) as

epq(k) = ξq(k) + ζq(k), (55)

where
ξq(k) = ζq(k)T · φ(k). (56)

In order to approximate the error, we take the expectation on the left-side
of (54) using (55) as

E{ξq(k)T · φ(k) · sgn{epq(k)}} = E{ξq(k)} · sgn{ξq(k) + ζq(k)}

≈ E{ξq2(k)}, (57)

where ζq(k)� 1.
We assume that the error is very small at the steady-state, we obtain

E{epq(k)2} = E{|ξq(k) + ζq(k)|2}

≈ E{|ξq2(k) + 2ξq(k)ζq(k) + ζq
2(k)|}. (58)

Substituting (56) and (57) into (54), we obtain

E{ξq2(k)} =
µq·φ(k)Tφ(k)

2− µq·φ(k)T · φ(k)
· E{|ζq2(k) + 2ξq(k)ζq(k)|}. (59)

Therefore, the EMSE εexq on the spline control points filter q(k) can be
obtained as

εexq = E{ξq2(k)} =
1

2
µq·φ(k)T · φ(k) · E{νq}, (60)

where E{νq} = E{|ζq2(k) + 2ξq(k)ζq(k)|} and µq � 1.
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4 Experiment and Simulation Results

For the simulation, the input colour signal is generated with the white
Gaussian noise as [11]

x(k) = α · x(k − 1) +
√

1− α2 · ε, (61)

where α is a correlation level parameter between the adjacent samples as
0 < α < 1 and ε is a white Gaussian noise with the unitary variance. These
experiments are used for α = 0.10, 0.65 and signal to noise ratio at 35 dB.
The spline basis matrix; CB called ‘B-spline matrix’ are used as follows [2]

CB =
1

6


−1 3 −3 1
−3 −6 3 0
−1 0 3 0

1 4 1 0

 . (62)

For the experiments, the short range electrocardiogram (ECG) input
signals were recorded from a 25 years male for the motion artifact effect on
ECG signals [16, 17]. ECG signals from the motion artifact contaminated
ECG databased [18] consist of two types of ECG recorded from a male
performing the different physical activities when standing and walking. The
ECG recoding information is as follows. The sampling rate is of 500 Hz with
16 bits resolution. Motion artifact is a kind of noise happened from motion of
the electrode placing on the skin that can produce the large amplitude signals
when doing the ECG test.

These experiments are proved to present the proposed sign normalised
orthogonal gradient algorithm (SNOGA) performance for the spline-based
Hammerstein adaptive filtering (HSAF) against the white Gaussian noise on
the motion artifact contaminated ECG input signals compared with the LMS
algorithm [6] and NLMS algorithm [19].

The initial parameters for HSAF model of adaptive linear FIR filter are as
δw = 1 × 10−3 and the length of coefficients M is equal to 7 taps. Other the
initial parameters of proposed SNOGA-HSAF algorithm are used as follows:
µw = 1.35× 10−3, µq = 1.25× 10−3, λw(0) = λq(0) = 1.25× 10−4.

For the first experiment, the ECG contaminated input signal performing
when standing is shown in Figure 2. MSE learning curves are presented
with the different values of α = 0.10, 0.65 and SNR = 35 dB. Figures 3
and 4 depict the MSE curves of SNOGA-HSAF, NLMS-HSAF and LMS-
HSAF at α = 0.10, 0.65. It is seen that the MSE trajectories of proposed
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Figure 2 Motion artifacts on ECG input signal from a healthy male standing [18].

Figure 3 MSE trajectories of SNOGA-HSAF compared with NLMS-HSF [19] and LMS-
HSAF [6] using ECG input shown in Figure 2 and xn = α · xn−1 +

√
1− α2ζn, where

α = 0.10, CB in (62) and SNR = 35 dB.
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Figure 4 MSE trajectories of SNOGA-HSAF, NLMS-HSF [19] and LMS-HSAF [6] using
ECG input shown in Figure 2 and xn = α ·xn−1 +

√
1− α2ζn, where α = 0.65, CB in (62)

and SNR = 35 dB.

Figure 5 Motion artifacts on ECG input signal from a healthy male walking [18].
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Figure 6 MSE trends of SNOGA-HSAF, NLMS-HSF [19] and LMS-HSAF [6] using ECG
input shown in Figure 5 and xn = α · xn−1 +

√
1− α2ζn, where α = 0.10, CB in (62) and

SNR = 35 dB.

Figure 7 MSE trends of SNOGA-HSAF, NLMS-HSF [19] and LMS-HSAF [6] using ECG
input shown in Figure 5 and xn = α · xn−1 +

√
1− α2ζn, where α = 0.65, CB in (62) and

SNR = 35 dB.
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SNOGA-HSAF and NLMS-HSAF algorithms are close quickly to the steady-
state, while the proposed SNOGA-HSAF algorithm can converge rapidly in
comparison with conventional LMS-HSAF algorithm.

For the second experiment, the ECG contaminated input signal perform-
ing when walking is shown in Figure 5. And Figures 6 and 7 depict the MSE
learning curves of proposed SNOGA-HSAF, NLMS-HSAF and LMS-HSAF
at α = 0.10, 0.65. It is confirmed that the MSE curves of proposed SNOGA-
HSAF and NLMS-HSAF algorithms are close quickly to the steady-state,
while the proposed SNOGA-HSAF algorithm can converge rapidly compared
with conventional LMS-HSAF algorithm.

5 Conclusion

A proposed spline-based Hammerstein adaptive filtering on the sign nor-
malised orthogonal gradient adaptive algorithm (SNOGA-HSAF) has been
proposed. The proposed SNOGA algorithm has been described how to
derive on the spline-based Hammerstein adaptive filtering. Minimum mean
square error is used as a measurement model. The proposed SNOGA-HSAF
algorithm has been investigated using the MMSE criterion. Performance
analysis of proposed SNOGA-HSAF algorithm has been proven in the form
of the excess mean square error. Simulation experiments are used the motion
artifact ECG input signal recorded when standing and walking. Experimental
results perform that the proposed SNOGA algorithm exceeds consistently the
standard LMS and NLMS algorithms based on HSAF approach.

Our research will enhance the conventional adaptive filters for the real-
time dynamic system. Hammerstein model is being interested in the adaptive
signal processing and data analysis. This study is also expected to be useful
in adaptive filtering for smart application.
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