Inference on Positive Exponential Family of Distributions (PEFD) through Transformation Method

Surinder Kumar, Prem Lata Gautam* and Vaidehi Singh

Department of Statistics, School for Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India

E-mail: surinderntls@gmail.com; premgautam61@gmail.com; singhvaidehi92@gmail.com

*Corresponding Author

Received 13 July 2020; Accepted 06 November 2020; Publication 05 January 2021

Abstract

The estimation of R(t) and R=Pr(Y>X) for the Positive Exponential Family of Distribution (PEFD) is considered. The UMVUES, MLES and Confidence Interval are derived. These estimators are derived through the method of Transformation. The α=Pr(X>γ), which is termed as probability of disaster is also derived when random stress X follows PEFD and finite strength follows Power function distribution.

Keywords: Positive exponential family of distribution, uniformly minimum variance unbiased estimator, maximum likelihood estimator, confidence interval, probability of disaster, stress-strength reliability.

1 Introduction

Reliability measure R=Pr(X>t), which defines the failure free operation of items / components until time ‘t’ and the measure R=Pr(Y>X) commonly represents the reliability of items / components, where the random variable X and Y are the random stress and random strength. Another measure of Reliability, α=Pr(X>γ) which represents the probability of disaster, where the random variable X represents the stress and γ is the maximum strength of the items / components.

In the literature of reliability, lot of work has been done since last few decades. For a brief review of literature, the most popular article on the related study are Pugh (1963) [12], Basu (1964) [3], Church and Harris (1970) [7], Enis and Geisser (1971) [9], Downton (1973) [8], Tong (1974) [19], Kelly et al. (1976) [10], Sinha and Kale (1980) [15], Sathe and Shah (1981) [14], Chao (1982) [4], Awad and Gharraf (1986) [2], Chaturvedi and Surinder (1999) [6], Kotz et al. (2003) [11], Rezaei and Mahmoodi (2010) [13], Chaturvedi and Pathak (2012) [5], Surinder and Mukesh (2015) [16] and Surinder and Mukesh (2016) [17]. In the present study, we have considered a positive exponential family of distribution, which covers various lifetime distributions as their specific cases.

2 Set Up of the Problem

Liang (2008)[18] proposed a positive exponential family of distributions, which covers gamma distribution as specific case. Let the random variable X has positive exponential family of distribution, then the pdf is given by

f(x;Θ)=ρxρν-1exp(-xρθ)Γνθν;x>0,θ,ν,ρ>0 (1)

where, Θ=(ρ,ν,θ) and θ is assumed to be unknown and ρ,ν are known constants. On assigning different values to ν and ρ, this family distribution covers following pdfs as

(1) For ρ=ν=1, we get one parameter exponential distribution.

(2) For ρ=1, we get gamma distribution.

(3) For ν=1, we get Weibull distribution.

(4) For ν>0, ρ=1, we get Erlang distribution.

(5) For ν>1/2, ρ=2, we get half – normal distribution.

(6) For ν>m/2, ρ=2, we get Chi-distribution.

(7) For ν=1, ρ=2, we get Rayleigh distribution.

(8) For ν=p+1, ρ=2, we get Generalized Rayleigh distribution.

Let the random variable Y considered as strength follows Power function distribution whose cdf and pdf is

G(y;μ,γ)=(yγ)μ (2)

and

g(y;μ,γ)=μγ(yγ)μ-1;0<y<γ,μ>0 (3)

3 MLE and UMVUE of R=Pr(Y>X) for PEFD

The MLE and UMVUE of R=Pr(Y>X) for PEFD by using the transformation method are evaluated in the following theorems.

Theorem 3.1: The MLE of R=Pr(Y>X) is given by

R~=(ν1η¯ν2ξ¯+ν1η¯)ν11B(ν1,ν2)F12(ν1,1-ν2;ν1;ν1η¯ν2ξ¯+ν1η¯) (4)

where, ξ¯=1n1i=1n1Xiρ1=T¯X and η¯=1n2j=1n2Yjρ2=T¯Y

Proof: In order to transform the given pdf (1), let us assume xρ1=ξ, we get

f(ξ;λ1,ν1)=ξν1-1e-(ξλ1)Γν1λ1ν1;ξ,λ1,ν1>0 (5)

Similarly, for η=yρ2

f(η;λ2,ν2)=ξν1-2e-(ηλ2)Γν2λ2ν2;η,λ2,ν2>0 (6)

where λ1=θ1 and λ2=θ2

Let ξ and η are two independent random variables with gamma pdfs given at (5) and (6). Thus,

R =Pr(η>ξ)
=Pr(ηξ>1)
=Pr(η/λ2ξ/λ1>λ1λ2)
=Pr(η/λ2ξ/λ1+1>λ1λ2+1)
R =Pr(ξ/λ1ξ/λ1+η/λ2>λ2λ2+λ1)

Since, we know that, if ξ and η be two independent random variables which follow gamma distribution with parameters (λ1,ν1) and (λ2,ν2) then z=ξ/λ1ξ/λ1+η/λ2 is a beta (ν1,ν2) random variable with the pdf

f(z,ν1,ν2)=[B(ν1,ν2)]-1zν1-1(1-z)ν2-1

or,

R=I(λ2λ2+λ1)(ν1,ν2) (7)

which is the incomplete beta function. Using the relation between the incomplete beta function and the hypergeometric series, we rewrite (7) as

R=(λ2λ2+λ1)ν11B(ν1,ν2)F12(ν1,1-ν2;ν1;λ2λ2+λ1) (8)

The reliability R=Pr(Y>X)

R=(θ2θ2+θ1)ν11B(ν1,ν2)F12(ν1,1-ν2;ν1;θ2θ2+θ1)

Substituting the MLE’s i.e. λ1~=ξ¯ν1and λ2~=η¯ν2 in place of λ1 and λ2 in (8). The MLE of R=Pr(η>ξ) is

R~=(ν1η¯ν2ξ¯+ν1η¯)ν11B(ν1,ν2)F12(ν1,1-ν2;ν1;ν1η¯ν2ξ¯+ν1η¯)

where, ξ¯=1n1i=1n1Xiρ1=T¯X and η¯=1n2j=1n2Yjρ2=T¯Y

Hence, the theorem follows.

Corollary 1. 1. MLE of R=Pr(Y>X) for one parameter exponential distribution (ρ=ν=1)

R~=T¯YT¯X+T¯Y

where, T¯Y=1n2j=1n2Yj and T¯X=1n1i=1n1Xi

2. MLE of R=Pr(Y>X) for gamma Distribution (ρ=1)

R~=(ν1Y¯ν2X¯+ν1Y¯)ν11B(ν1,ν2)F12(ν1,1-ν2;ν1;ν1Y¯ν2X¯+ν1Y¯)

where, T¯Y=1n2j=1n2Yjρ2 and T¯X=1n1i=1n1Xiρ1

3. MLE of R=Pr(Y>X) for Weibull Distribution (ν=1)

R~=T¯YT¯X+T¯Y

where, T¯Y=1n2j=1n2Yjρ2 and T¯X=1n1i=1n1Xiρ1

4. MLE of R=Pr(Y>X) for Erlang distribution (ν>0,ρ=1)

R~=(ν1Y¯ν2X¯+ν1Y¯)ν11B(ν1,ν2)F12(ν1,1-ν2;ν1;ν1Y¯ν2X¯+ν1Y¯)

where, T¯Y=1n2j=1n2Yj and T¯X=1n1i=1n1Xi

5. MLE of R=Pr(Y>X) for half – normal distribution (ν=1/2,ρ=2)

R~=(T¯YT¯X+T¯Y)1/21π2F12(12,12;12;T¯YT¯X+T¯Y)

where, T¯Y=1n2j=1n2Yj2 and T¯X=1n1i=1n1Xi2

6. MLE of R=Pr(Y>X) for Chi-distribution (ν>m/2,ρ=2)

R~=(T¯YT¯X+T¯Y)m/21B(m2,m2)F12(m2,1-m2;m2;T¯YT¯X+T¯Y)

where, T¯Y=1n2j=1n2Yj2 and T¯X=1n1i=1n1Xi2

7. MLE of R=Pr(Y>X) for Rayleigh distribution (ν=1,ρ=2)

R~=T¯YT¯X+T¯Y

where, T¯Y=1n2j=1n2Yj2 and T¯X=1n1i=1n1Xi2

8. MLE of R=Pr(Y>X) for Generalized Rayleigh distribution (ν=p+1,ρ=2)

R~=(T¯YT¯X+T¯Y)p+11B(p+1,p+1)F12(p+1,-p;p+1;T¯YT¯X+T¯Y)

where, T¯Y=1n2j=1n2Yj2 and T¯X=1n1i=1n1Xi2

Theorem 3.2: The UMVUE of R=Pr(Y>X) is given by

R^={ρ1ρ2B[(n2-1)ν2+i+1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1ν2]i=0(-1)i(n2-1)ν2+i(ν2-1i)j=0(-1)j((n1-1)ν1-1j)(TYTX)ν1+j;TY<TX0iν1-1<&0j(n1-1)ν1-1<ρ1ρ2B[(n1-1)ν1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1ν2]i=0(-1)i(n2-1)ν2+i(ν2-1i)j=0(-1)j((n2-1)ν1+ij)(TXTY)j;TY>TX0iν2-1<&0j(n2-1)ν2+i< (9)

where, TX=i=1n1Xiρ1 and TY=i=1n2Yjρ2

Proof: Let ξ and η be two independent gamma distributions with pdfs (5) and (6). In order to obtain Pr(η>ξ), we have to obtain the UMVUE of f(ξ;ν,ρ,λ) i.e. f^(ξ;ν,ρ,λ) and f(η;ν,ρ,λ) i.e. f^(η;ν,ρ,λ) which is given by

f^(ξ;ν1,ρ1,λ1) =ρ1B[ν1,(n1-1)ν1]{ξν1-1(n1ξ¯)ν1}{1-ξn1ξ¯}(n1-1)ν1-1;
if0<ξ<n1ξ¯ (10)

and

f^(η;ν2,ρ2,λ2) =ρ2B[ν2,(n2-1)ν2]{ην2-1(n2η¯)ν2}{1-ηn2η¯}(n2-1)ν2-1;
if0<η<n2η¯ (11)

The Reliability is

R^ =Pr(η>ξ)=0ξf^(η;ν2,ρ2,λ2)f^(ξ;ν1,ρ1,λ1)dηdξ
=ρ1ρ2B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]
0n1ξ¯ξn2η¯ην2-1(n2η¯)ν2{1-ηn2η¯}(n2-1)ν2-1
{ξν1-1(n1ξ¯)ν1}{1-ξn1ξ¯}(n1-1)ν1-1dηdξ

Let 1-ηn2η¯=w

=ρ1ρ2B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]
0n1ξ¯01-ξn2η¯(1-w)ν2-1w(n2-1)ν2-1
{ξν1-1(n1ξ¯)ν1}{1-ξn1ξ¯}(n1-1)ν1-1dwdξ
=ρ1ρ2B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]i=0(-1)i(n2-1)ν2+i
(ν2-1i)0min(n1ξ¯,n2η¯){ξν1-1(n1ξ¯)ν1}
{1-ξn1ξ¯}(n1-1)ν1-1dwdξ
=ρ1ρ2B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]i=0(-1)i(n2-1)ν2+i
(ν2-1i)0min(n1ξ¯,n2η¯){ξν1-1(n1ξ¯)ν1}
{1-ξn1ξ¯}(n1-1)ν1-1{1-ξn2η¯}(n2-1)ν2+idξ

Now, we consider the case when n1ξ¯>n2η¯ and let 1-ξn2η¯=w

=ρ1ρ2B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]i=0(-1)i(n2-1)ν2+i
(ν2-1i)01z(n2-1)ν2+i
  {1-n2ν2¯n1ξ¯(1-z)}(n1-1)ν1-1(n2η¯n1ξ¯)ν1(1-z)ν1-1dz

Using the Binomial expansion. we get,

=ρ1ρ2B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]i=0(-1)i(n2-1)ν2+i
(ν2-1i)01j=0(-1)j((n1-1)ν1-1j)
(n2η¯n1ξ¯)ν1+j(1-z)ν1+j-1z(n2-1)ν2+idz
=ρ1ρ2B[(n2-1)ν2+i+1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1ν2]i=0(-1)i(n2-1)ν2+i
(ν2-1i)j=0(-1)j((n1-1)ν1-1j)
(n2η¯n1ξ¯)ν1+j;ifn2η¯<n1ξ¯

Similarly, we can take the case n2η¯>n1ξ¯, we get

=ρ1ρ2B[(n1-1)ν1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1ν2]i=0(-1)i(n2-1)ν2+i(ν2-1i)
  j=0(-1)j((n2-1)ν+ij)(n2ξ¯n1η¯)j

For obtaining the value of UMVUE substituting n1ξ¯=i=1n1Xiρ1=TX and n2η¯=j=1n2Yjρ2=TY. Hence, the theorem follows.

Corollary 2.

1. UMVUE of R for one parameter exponential distribution is

R^={B[(n2+i,1+j]B[1,(n1-1)]B[1,(n2-1)]j=0(-1)j(n1-2j)(TYTX)1+j;TY<TXB[(n1-1,1+j]B[1,(n1-1)]B[1,(n2-1)]j=0(-1)j(n2-1+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj and TX=i=1n1Xi

2. UMVUE of R for gamma distribution is

R^={B[(n2-1)ν2+i+1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]i=0(-1)i(n2-1)ν2+i(ν2-1i)j=0(-1)j((n1-1)ν1+ij)(TYTX)ν1+j;TY<TXB[(n1-1)ν1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν1]i=0(-1)i(n2-1)ν2+i(ν2-1i)j=0(-1)j((n2-1)ν2+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj and TX=i=1n1Xi

3. UMVUE of R for Weibull distribution is

R^={B[(n2+i,1+j]B[1,(n1-1)]B[1,(n2-1)]j=0(-1)j(n1-2j)(TYTX)1+j;TY<TXB[(n1-1,1+j]B[1,(n1-1)]B[1,(n2-1)]j=0(-1)j(n2-1+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj and TX=i=1n1Xi

4. UMVUE of R for Erlang distribution is

R^={B[(n2-1)ν2+i+1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν2]i=0(-1)i(n2-1)ν2+i(ν2-1i)j=0(-1)j((n1-1)ν1+ij)(TYTX)ν1+j;TY<TXB[(n1-1)ν1,ν1+j]B[ν1,(n1-1)ν1]B[ν2,(n2-1)ν1]i=0(-1)i(n2-1)ν2+i(ν2-1i)j=0(-1)j((n2-1)ν2+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj and TX=i=1n1Xi

5. UMVUE of R for half-normal distribution is

R^={4B[(n2-1)12+i+1,12+j]B[12,(n1-1)12]B[12,(n2-1)12]i=0(-1)i(n2-1)12+i(12-1i)j=0(-1)j((n1-1)12-1j)(TYTX)12+j;TY<TX4B[(n1-1)12,12+j]B[12,(n1-1)12]B[12,(n2-1)12]i=0(-1)i(n2-1)12+i(12-1i)j=0(-1)j((n2-1)12+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj2 and TX=i=1n1Xi2

6. UMVUE of R for Chi-distribution is

R^={4B[(n2-1)m2+i+1,m2+j]B[m2,(n1-1)m2]B[m2,(n2-1)m2]i=0(-1)i(n2-1)m2+i(m2-1i)j=0(-1)j((n1-1)m2-1j)(TYTX)m2+j;TY<TX4B[(n1-1)m2,m2+j]B[m2,(n1-1)m2]B[m2,(n2-1)m2]i=0(-1)i(n2-1)m2+i(m2-1i)j=0(-1)j((n2-1)m2+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj2 and TX=i=1n1Xi2

7. UMVUE of R for Rayleigh distribution is

R^={B[(n2+i,1+j]B[1,(n1-1)]B[1,(n2-1)]j=0(-1)j(n1-2j)(TYTX)1+j;TY<TXB[(n1-1,1+j]B[1,(n1-1)]B[1,(n2-1)]j=0(-1)j(n2-1+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj2 and TX=i=1n1Xi2

8. UMVUE of R for Generalized Rayleigh distribution is

R^={B[(n2-1)(p+1)+i+1,(p+1)+j]B[(p+1),(n1-1)(p+1)]B[(p+1),(n2-1)(p+1)]i=0(-1)i(n2-1)(p+1)+i((p+1)-1i)j=0(-1)j((n1-1)(p+1)+ij)(TYTX)(p+1)+j;TY<TXB[(n1-1)(p+1),(p+1)+j]B[(p+1),(n1-1)(p+1)]B[(p+1),(n2-1)(p+1)]i=0(-1)i(n2-1)(p+1)+i((p+1)-1i)j=0(-1)j((n2-1)(p+1)+ij)(TXTY)j;TY>TX

where, TY=j=1n2Yj2 and TX=i=1n1Xi2

4 Confidence Interval of R=Pr(Y>X)

Theorem 4.1: The confidence interval for R=Pr(Y>X) is

Pr(I((ν1T¯Y/ν2T¯X)F1-σ2(ν1T¯Y/ν2T¯X)F1-σ2+1)(ν1,ν2)<R<I((ν1T¯Y/ν2T¯X)Fσ1(ν1T¯Y/ν2T¯X)Fσ1+1)(ν1,ν2))
  =1-σ (12)

where, T¯X=1n1i=1n1Xiρ1 and T¯Y=1n2j=1n2Yjρ2

Proof: It follows from the above theorems that ξ and η be two independent random variables with Gamma (ν1,λ1) and Gamma (ν2,λ2) respectively, then

λ=λ2λ1;λ~=ν1η¯ν2ξ¯

where, λ1=ξ¯ν1 and λ2=η¯ν2. As we know that,

2n1ξ¯λ1Gamma(n1ν1,2)χ2n1ν12

Similarly,

2n2η¯λ1Gamma(n2ν2,2)χ2n2ν22

where, χα2 is the pdf of chi-squared distribution with α degree of freedom. Hence,

λ~λ=2n2η¯/n2ν2λ22n1ξ¯/n1ν1λ1=χ2n2ν22/2n2ν2χ2n1ν12/2n1ν1F(2n1ν1,2n2ν2) (13)

where, F(ε1,ε2) denotes Snedecor’s F-distribution with ε1 and ε2 degree of freedom.

λ~λF(2n1ν1,2n2ν2)

For any δ denoted by Fδ=Fδ(2n1ν1,2n2ν2), then the relation to Fδ and 1-δ quantile of Fδ(2n1ν1,2n2ν2) distribution is

Fδ(2n1ν1,2n2ν2)=[F1-δ(2n1ν1,2n2ν2)]-1

Let σ1 and σ2 be non-negative numbers such that σ1+σ2=σ. Then

Pr(λ~F1-σ2<λ<λ~Fσ1)=1-σ (14)

Since R=I(λλ+1)(ν1,ν2) and IZ(a,b) is an increasing function of z for any a, b. So, I(λλ+1)(ν1,ν2) as the function of λ . Hence (14) become

Pr(I(λ~F1-σ2λ~F1-σ2+1)(ν1,ν2)<R<I(λ~Fσ1λ~Fσ1+1)(ν1,ν2))=1-σ (15)

After the substituting i.e. λ~=ν1η¯ν2ξ¯ and λ1=θ1, λ2=θ2

Then R=I(λ2λ1+λ2)(ν1,ν2)=I(θ2θ1+θ2)(ν1,ν2). The confidence interval for R is

Pr(I((ν1η¯/ν2ξ¯)F1-σ2(ν1η¯/ν2ξ¯)F1-σ2+1)(ν1,ν2)<R<I((ν1η¯/ν2ξ¯)Fσ1(ν1η¯/ν2ξ¯)Fσ1+1)(ν1,ν2))=1-σ

where, T¯X=1n1i=1n1Xiρ1=ξ¯ and T¯Y=1n2j=1n2Yjρ2=η¯

Hence, the theorem follows.

Corollary 3.

1. Confidence interval for one parameter exponential distribution (ρ=ν=1)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)<R<I(λ¯Fσ1λ¯Fσ1+1))=1-σ

where λ¯=Y¯X¯ and R=I(θ2θ1+θ2)(1,1)

2. Confidence interval for gamma Distribution (ρ=1)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)(ν1,ν2)<R<I(λ¯Fσ1λ¯Fσ1+1)(ν1,ν2))=1-σ

where λ¯=Y¯X¯ and R=Iθ2θ1+θ2(ν1,ν2)

3. Confidence interval for Weibull Distribution (ν=1)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)(1,1)<R<I(λ¯Fσ1λ¯Fσ1+1)(1,1))=1-σ

where λ¯=Y¯X¯ and R=Iθ2θ1+θ2(1,1)

4. Confidence interval for Erlang Distribution (ν>0,ρ=1)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)(ν1,ν2)<R<I(λ¯Fσ1λ¯Fσ1+1)(ν1,ν2))=1-σ

where λ¯=ν1η¯ν2ξ¯ and R=Iθ2θ1+θ2(ν1,ν2)

5. Confidence interval for half-normal Distribution (ν>1/2,ρ=2)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)(12,12)<R<I(λ¯Fσ1λ¯Fσ1+1)(12,12))=1-σ

where λ¯=Y¯X¯ and R=Iθ2θ1+θ2(12,12)

6. Confidence interval for Chi-distribution (ν>m/2,ρ=2)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)(m2,m2)<R<I(λ¯Fσ1λ¯Fσ1+1)(m2,m2))=1-σ

where λ¯=Y¯X¯ and R=Iθ2θ1+θ2(m2,m2)

7. Confidence interval for Rayleigh distribution (ν=1,ρ=2)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)(1,1)<R<I(λ¯Fσ1λ¯Fσ1+1)(1,1))=1-σ

where λ¯=Y¯X¯ and R=Iθ2θ1+θ2(1,1)

8. Confidence interval for Generalized Rayleigh distribution (ν=p+1,ρ=2)

Pr(I(λ¯F1-σ2λ¯F1-σ2+1)(p+1,p+1)<R<I(λ¯Fσ1λ¯Fσ1+1)(p+1,p+1))=1-σ

where λ¯=Y¯X¯ and R=Iθ2θ1+θ2(p+1,p+1)

5 Probability of Disaster Pr(Y>γ)

Theorem 5.1: If the stress and finite strength are denoted by the random variables X and Y which follows PEFD and Power function distribution, that are shown in (1) and (2), respectively. Then probability of disaster α=Pr(Y>γ) is given by

α=Pr(Y>γ)=1Γνkuν-1e-udu (16)

where, k=γρθ

Proof: From (1),

α=Pr(Y>γ)=γρxρν-1e-xρθΓνθνdx=ρΓνθνγxρν-1e-xρθdx

Let xρθ=u

α=1Γνγρθuν-1e-udu=Γ(ν,k)

which is the upper incomplete gamma function, where, k=γρθ.

6 Numerical Analysis

From (16) the probability of disaster Pr(Y>γ) can be measured. The numerical values are obtained for different values of ν which is presented in Table 1. It can be easily interpreted from Table 1 that the probability of disaster decreases with an increase in the value of k. In order to overcome the problem of disaster (i.e. to attain the smallest value of α=Pr(X>γ), the values of k=γρθ, where ρ and θ is the parameter of PEF-distribution and γ is the scale parameter of the power function distribution, should be considered in such a manner that the value of α tends to zero.

Table 1 Numerical Values for the Probability of disaster α=Pr(X>θ) and k for different values of ν

k ν=0.001 ν=0.01 ν=0.5 ν=1.05 ν=1.5 ν=2
0.8 0.000311 0.003132 0.205903 0.472619 0.659390 0.808792
1.0 0.000219 0.002216 0.157299 0.389400 0.572407 0.735759
1.2 0.000158 0.001603 0.121335 0.320603 0.493635 0.662627
1.5 0.000064 0.001013 0.083264 0.239233 0.391625 0.557825
1.8 0.000032 0.000065 0.057779 0.178339 0.308022 0.462837
2.3 0.000016 0.000331 0.031972 0.109131 0.203542 0.330854
2.8 0 0.000172 0.017961 0.066687 0.132778 0.231078
3.4 0 0.000081 0.009116 0.036880 0.078555 0.146842
4.1 0 0.000034 0.004189 0.018454 0.042054 0.084521
5.1 0 0.000012 0.001404 0.006851 0.016940 0.037190
6.2 0 0 0.000429 0.002300 0.006131 0.014612
7.6 0 0 0.000087 0.000572 0.000165 0.004304
9.3 0 0 0.000016 0.000105 0.000331 0.000942
11.4 0 0 0 0.000013 0.000044 0.000138
13.9 0 0 0 0 0 0.000014
17.0 0 0 0 0 0 0

Alternatively, we may also obtain the numerical values of k for fixed values ν from equation (16). These values are used to obtain the optimum cost for manufacturing of item at desired tolerance level.

Table 2 Values of m at different tolerance level α for ν=2

α 0.05 0.02 0.01 0.001 0.0001 0.00001
k 2.996020 3.912310 4.605460 6.908040 9.210630 11.513200

7 Stress – Strength Reliability

Theorem 7.1: The Stress – Strength model Pr(Y>X), where X follows PEFD and Y follows power function distribution, respectively is given as

Pr(Y>X)=1Γν0kuν-1e-udu-1Γνkμ/α0ku(μα+ν-1)e-udu (17)

where, xρθ=u

Table 3 The Strength reliability of an item for ν=2,ρ=2, and varying values of k and μ and varying values of k and μ

k μ=2 μ=5 μ=10 μ=15 μ=20 μ=30
0.8 0.072651 0.116730 0.145622 0.158460 0.165680 0.173507
1.0 0.103638 0.164995 0.204307 0.221481 0.231046 0.241332
1.2 0.136518 0.215358 0.264713 0.285899 0.297582 0.310045
1.5 0.187304 0.291463 0.354377 0.380661 0.394936 0.409972
1.8 0.237853 0.365149 0.439257 0.469359 0.485451 0.502181
2.3 0.317875 0.477318 0.564419 0.598102 0.615615 0.633416
2.8 0.389960 0.573140 0.666799 0.701180 0.718538 0.735769
3.4 0.464769 0.666495 0.761480 0.794106 0.809972 0.825255
4.1 0.536852 0.749440 0.840064 0.868720 0.882015 0.894349
5.1 0.616331 0.831032 0.910101 0.932106 0.941591 0.949892
6.2 0.680103 0.887158 0.951925 0.967406 0.973505 0.978478
7.6 0.737474 0.928900 0.977654 0.987122 0.990404 0.992822
9.3 0.785057 0.956229 0.990580 0.995696 0.997186 0.998139
11.4 0.824575 0.973529 0.996360 0.998797 0.999357 0.999650
13.9 0.856116 0.983855 0.998620 0.999695 0.999878 0.999951
17.0 0.882353 0.990239 0.999493 0.999930 0.999981 0.999995

Proof: From (1) and (3), we have

Pr(Y>X)=0γxγf(x,Θ)g(y,μ)dydx

where, Θ=(ρ,ν,θ)

Pr(Y>X)=0γρxρν-1e-xρθΓνθν[xγμγ(yγ)μ-1dy]dx=0γρxρν-1e-xρθΓνθν[1γμ{γμ-xμ}]dx=0γρxρν-1e-xρθΓνθνdx-0γρxρν+μ-1e-xρθΓνθνγμdx

Taking xρθ=u and solving the above integrals we finally get,

Pr(Y>X)=1Γν0kuν-1e-udu-1Γνkμ/α0ku(μα+ν-1)e-udu

where k=γρθ, Hence, the theorem follows.

8 The Stress-Strength Reliability R=Pr(Y>X) when both follows PEFD

Theorem 8.1: Let X and Y be two independent random variables from PEFD, where X and Y are the stress and the strength, respectively. Reliability R=Pr(Y>X) is

R=ρ1θ1ν1Γν1x=0xρ1ν1-1e(-xρ1/θ1)e(-xρ2/θ2)k=0ν2-11k!(xρ2θ2)kdx (18)

Proof: Random variable X follows the PEF-distribution with pdf

f(x,Θ)=ρ1xρ1ν1-1e(-xρ1/θ1)Γν1θ1ν1 (19)

where, Θ=(ρ1,ν1,θ1)

Random variable Y follows the PEF-distribution with pdf

f(y,Θ)=ρ2yρ2ν2-1e(-yρ2/θ2)Γν2θ2ν2 (20)

where, Θ=(ρ2,ν2,θ2)

The Reliability R=Pr(Y>X)is

R=x=0y=xf(x,Θ)f(y,Θ)dydx=x=0{ρ1xρ1ν1-1e(-xρ1/θ1)Γν1θ1ν1}[y=xρ2yρ2ν2-1e(-yρ2/θ2)Γν2θ2ν2dy]dx

Let yρ2θ2=t

R=0{ρ1xρ1ν1-1e(-xρ1/θ1)Γν1θ1ν1}[xρ2θ2tν2-1Γν2e-tdt]

which is the upper incomplete gamma after solving, we get

R=ρ1θ1ν1Γν1x=0xρ1ν1-1e(-xρ1/θ1)e(-xρ2/θ2)k=0ν2-11k!(xρ2θ2)kdx

where r>0 is any positive number. Hence, the theorem follows.

9 Discussion

When an item/device is manufactured and if the strength of an item follows Power function distribution, it is expected that the maximum feasible values of γ may have an upper limit say γ0 . For example, the maximum accelerating speed of a turbine must not be increased its permissible capacity. At a fixed tolerance level α, suppose γα is the desired value of γ. In case γα<γ0, we may obtain the required value of μ say μα, by using Table 3, so that the item is manufactured with the strength distribution having parameters (μα,γα) and consequently, the desired strength reliability can be achieved. However, if γα>γ0, we will have to either adjust α or look for an alternate item.

10 Study of the Cost with an Example

Let us assume that the maximum feasible value of k is 12. When α0.01 the value of m must be greater or equal to 5.1 i.e. m5.1. As the value of m cannot exceed 12 , then one needs to fix the item / device in a way such that 5.1k12 i.e. 2.7γ4.1 and thus, the corresponding values of μ leads to a maximum of Pr(Y>X). The cost factor of adjusting the parameters may be taken into consideration here as the cost of varying γ and μ may be different. Theoretically, the costs may be an increasing or decreasing function of γ and μ depending upon the nature of the parameters. Usually, Cost (Y) is an increasing function Y, if Y is the mean strength. In our study, E(Y)=μγ/(μ+1), which implies that the mean strength increases by increasing either of the two parameters. Hence, we may assume the two costs to be an increasing function of the respective parameters. Assuming the costs to be directly proportional to the required values of the parameters, the problem may be further evaluated as follows:

Let C1 and C2 be the costs of adjusting one unit of γ and μ, respectively. Minimize C=γC1+μC2 subject to 2.7γ4.1 and Pr(Y>X)0.99.

Analytically, the problem may be simplified as follows:

On using Table 3 for k = 5.1, 6.2, 7.6, 9.3 and 11.4 i.e. γ = 2.76, 3.04, 3.37, 3.73 and 4.1, respectively and obtain those values of μ for which Pr(Y>X)0.99, the cost function for each pair of (γ,μ) is evaluated:

Table 4 depicts that the minimum cost lies at 3.37C1+20C2 depending upon the numerical values of C1 and C2.

Table 4 Table for optimum cost of manufactured items

γ μ γC1+μC2
3.37 20 3.37C1+20C2
3.37 30 3.37C1+30C2
3.7 10 3.7C1+10C2
3.7 15 3.7C1+15C2
3.7 20 3.7C1+20C2
3.7 30 3.7C1+30C2
4.1 10 4.1C1+10C2
4.1 15 4.1C1+15C2
4.1 20 4.1C1+20C2
4.1 30 4.1C1+30C2

Acknowledgments

We are thankful to the reviewers for providing helpful comments, which led to the beneficial improvement in the paper.

References

[1] Alam and Roohi. 2003. On facing an exponential stress with strength having power function distribution. Aligarh J. Of Stat., 23:57-63.

[2] Awad, A. M. and Gharraf, M. K. 1986. Estimation of Pr(Y<X) in the Burr case, A Comparative Study. Commun. Statist. – Simul., 15(2):389 – 403.

[3] Basu, D. 1964. Estimates of reliability for some distributions useful in life testing. Technometrics, 6:215-219.

[4] Chao, A. 1982. On comparing estimators of Pr(X>Y) in the exponential case. IEEE transactions on reliability, 31:389-392.

[5] Chaturvedi, A. and Pathak. A. 2012. Estimation of the reliability functions for exponentiated Weibull distribution. J. Stat. Appl., 7:1–8.

[6] Chaturvedi, A. and Surinder, K. 1999. Further remarks on estimating the reliability function of exponential distribution under Type-I and Type-II censorings. Brazilian Journal of Probability and Statistics, 13:29-39.

[7] Church, J. D. and Harries, B. 1970. The estimation of reliability from stress-strength relationships. Technometrics, 12:49-54.

[8] Downton, F. 1973. The estimation of P(Y<X) in the normal case. Technometrics, 15: 551-558.

[9] Enis, P. and Geisser. S. 1971. Estimation of the probability that (Y>X). J. Amer. Statist. Asso., 66:162-168.

[10] Kelly, G. D., Kelly., J. A. and Schucany. W. R. 1976. Efficient estimation of P(Y<X) in the exponential case. Technometrics, 18:359-360.

[11] Kotz, S., Lumelskii, Y. and Pensky, M. 2003. Stress-Strength Model and its Generalizations, World Scientic Publication Co. Pte. Ltd., Singapore.

[12] Pugh, E. L. 1963. The best estimate of reliability in the exponential case. Operations Research, 11:57-61

[13] Rezaei, S., Tahmasbi, R. and Mahmoodi, M. 2010. Estimation of P(Y<X) for generalized Pareto distribution. J. Stat. Plan Inference, 140:480-494.

[14] Sathe, Y. S. and Shah. S. P. 1981. On estimating P(X<Y) for the exponential distribution. Commun. Statist. Theor. Meth., A10:39-47.

[15] Sinha , S. K. And Kale, B.K. 1980: Life testing and Reliability Estimation. Wiley Eastern Ltd., New Delhi.

[16] Surinder, K. and Kumar. M. 2015. Study of the Stress-Strength Reliability among the Parameters of Generalized Inverse Weibull Distribution. Intern. Journal of Science, Technology and Management. 4: 751-757.

[17] Surinder, K. and Kumar. M. 2016. Point and Interval Estimation of R=P(Y>X) for Generalized Inverse Weibull Distribution by Transformation Method. J. Stat. Appl. Pro. Lett., 3:1-6.

[18] T, Liang. 2008. Empirical Bayes estimation of reliability in a positive exponential family. Communications in Statistics -– Theory and Methods, 37(13):2052–2065.

[19] Tong, H. 1974. A note on the estimation of P(Y<X) in the exponential case. Technometrics, 16:625.

Biographies

images

Surinder Kumar, Head, Department of Statistics, BBAU (A central University), Lucknow, India. He is having 26 years research experience in various research fields of Statistics such as Sequential Analysis, Reliability Theory, Business Statistics and Bayesian Inference. Prof. Kumar has published more than 60 research publications in various journals of national and international repute.

images

Prem Lata Gautam, Department of Statistics, BBAU (A Central University) Lucknow, India. She has research experiences of 6 years and has also published 6 research articles in various reputed journals in the field of Sequential analysis, Bayesian estimation and Reliability theory and wholesome knowledge of many softwares and language like R Software, Mathematica and Fortron.

images

Vaidehi Singh, Department of Statistics, BBAU (A Central University), Lucknow, India. She has research experience of 6 years, her research areas are Sequential Analysis, Reliability Theory and Bayesian Inference. She has published more than 8 research articles in various National and International journals. She is working as an Assistant Professor in Lucknow and teaching the graduate and postgraduate students since last two and a half years.

Abstract

1 Introduction

2 Set Up of the Problem

3 MLE and UMVUE of R=Pr(Y>X) for PEFD

4 Confidence Interval of R=Pr(Y>X)

5 Probability of Disaster Pr(Y>γ)

6 Numerical Analysis

7 Stress – Strength Reliability

8 The Stress-Strength Reliability R=Pr(Y>X) when both follows PEFD

9 Discussion

10 Study of the Cost with an Example

Acknowledgments

References

Biographies