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Abstract

This paper examines the impact of load on the operational time and mainte-
nance cost of mechanically repairable machines. Three different levels of load
with multiplicative impact on the hazard rate of the failure distribution were
applied to the working of a cassava grinding machine using a two-parameter
Weibull distribution with respective hazard and cumulative hazard functions.
Their effect on the preventive maintenance (PM) and replacement schedules
revealed that at above maximum load level, the length of the machine’s
operational time decreased drastically compared to the decrease at maximum
load level and relative decrease at the below maximum load level when
compared to the machine’s operational time at the minimum load level. The
application of load also results in frequent preventive maintenance actions
and an increase in machine downtime for a given cost ratio. This implies
that the influence of load on the PM and replacement maintenance schedule
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of mechanically repairable machines is essential to the design and operation
of such machines. The results also provide maintenance engineers with an
operational guide for PM and replacement maintenance actions in order
to prevent failure maintenance and increase the machine’s availability for
enhanced productivity.

Keywords: Load, mechanically repairable systems, preventive mainte-
nance, preventive replacement, Weibull distribution.

1 Introduction

Load in this context, is simply the additional weight on a machine. In other
words, it is a stress-induced factor. Each machine has a moderated load
capacity. When the machine’s load level exceeds its threshold limit, the
hazard rate increases. A machine’s load can have either a multiplicative or
additive effect. It is assumed that machines degrade continuously as a result
of either additive or cumulative load impact (Liu, 2016). This causes frequent
machine breakdowns, resulting in downtime, unavailability, and increased
machine maintenance costs. Consequent upon the above reasons, the effect of
load on the preventive maintenance (PM) and machine replacement schedule
is of interest in this work because of the implications for maintenance and
machine lifespan.

Preventive maintenance (PM) is a proactive approach to keeping
machines in good working order. It saves money over time by avoiding
repairs and minimizing other expenses such as lost production, higher costs
for spare parts and shipping, downtime, and customer goodwill; (see, Udoh
and Ekpenyong, 2019). One of the previous contributors to PM, Moghaddam
and Usher (2010) presented a mathematical formulation to find the best
PM and replacement schedule for a given system under three options: one
can either continue to use the system as it is; maintain the system; or replace
it. These decisions have cost effect, and how those costs are distributed can
affect how frequently a given system fails. Later, Basri, Razak, and Abs-
mart (2017) examined the effectiveness of the various maintenance policies
from the standpoint of four major topics. This includes the overall main-
tenance policy, preventive maintenance planning, preventive maintenance
planning concept, and preventive maintenance planning based on developing
an optimal plan for carrying out the PM actions.

The goal of this paper is therefore to improve the effectiveness of main-
tenance by generating PM and replacement schedules for repairable systems
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using imperfect PM and replacement models. Earlier studies on imperfect
PM replacement models are prominent in Nakagawa (1986) models for both
periodic and sequential PM; Nakagawa (1988) models on age and hazard;
Lin et al. (2000) hybridized generalized sequential maintenance model that
combined the age and hazard models of Nakagawa (1988); Udoh and Ekpeny-
ong (2019) sequential imperfect PM and replacement model for cassava
grinding machine; Udoh and Effanga (2023) geometric imperfect PM and
replacement model and Udoh and Uko (2023) PM and replacement models
for mechanically repairable systems with linearly increasing hazard rate.
Nonetheless, these authors did not account for the impact of load on the
amount of time it takes to operate the system and the cost of maintenance
in their models. This study seeks to investigate the consequences of taking
these factors into consideration.

Here unto, this paper considers a situation in which a machine is subjected
to levels of load as additional stress. Mohammad et al. (2013) had employed
Cox’s proportional hazard model, which incorporates load as a multiplicative
effect on the hazard rate. Load has a multiplicative effect that can be either
constant or cumulative, Sergey et al. (2014). They demonstrated that when
load imposed on a machine exceeds its specific carrying limit, the hazard rate
of the machine increases, resulting in an increase in the deterioration rate and
a reduction in the reliability of such machines; Whereas Gao et al. (2019)
demonstrated that for a non-linear PM model with an environmental factor
based on the Weibull distribution, the PM action affects the system’s hazard
rate, which can be restored to any of the following conditions following
PM: “as good as new” state: hk(t) = h(t), “as bad as old” state: hk(t) =
hk−1(tk−1+ t), “better than new” state: hk(t) < h(t) almost everywhere and
for “better than old” state: hk(t) < hk−1(t) almost everywhere. This means
that any stress action, such as load, will have an additive or multiplicative
effect on the system’s hazard rate, is affecting the PM schedule.

A Novel strategy for modelling the reliability of systems under shared
load could be seen in Liu (2016). The paper made a significant contribution
to our understanding of load and its consequences for machines by mod-
elling the reliability of load-sharing systems with ageing parts and proposing
maintenance strategies to keep them running smoothly. Xiao et al. (2016)
also reported on optional element loading for a linear sliding window system.
While Wang (2018) divides load rate into three states to assess its impact on
distribution network reliability: light load, heavy load, and overload. These
data were used to derive the failure rate-load relationship. Also, Strunk et al.
2021 investigated the influence of external loads on surfaces and sub surfaces,
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while the effect of loads on materials were studied by Dixon and Kajtaz
(2021), Xue et al. (2021) and Sun et al. (2023).

2 Methodology

2.1 Definition of Load

A load may be constant or cumulative. In this paper, we examine the cumula-
tive load application with multiplicative effect on the PM model. According
to Liu (2016), the definition of load can be expressed mathematically as:

Zk =


N∑
k=1

Lk; if N > 0

0; if N = 0

∴ Zk =
N∑
k=1

Lk, for N = 1, 2, 3, . . . (1)

N is the number of loads arriving the machine
Lk is the respective load at Nth point
Zk is the cumulative load which is the sum of respective Lk.

2.2 Choice of Weibull Failure Distribution

Several parametric models have been successfully used as population model
for failure times distribution of both repairable and nonrepairable systems
associated with a wide range of products. These distributions are exhibited
by systems according to their mode of failure and the failure mechanism.
Therefore, choosing appropriate model for failure times distribution can
either be based on probabilistic views of the physics of the failure mode or
the success in fitting empirical data. Hence, the choice of Weibull distribution
in this work is based on the concept of increasing hazard rate of mechanically
repairable systems and its empirical success.

2.3 Goodness-of-Fit Test for Weibull Distribution

This paper uses a cassava grinding machine as its case study. The chi-
squared goodness-of-fit test was used to investigate whether the empirical
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Table 1 Observed and expected frequencies
Interval of Time, t Oi Ei

t < 1600 11 10.95
1600 < t < 4800 9 9.1
4800 < t < 8000 10 10.0
Total 30 30

data of failure times of the cassava grinding machine follows the expected two
parameters Weibull distribution. The expected frequencies of failure times of
the machine at a given interval of time is given by;

Eij = N

∫ t

0

(
β

α

)(
t

α

)β−1

e−(
t
α)

β

dt

Table 1 shows the observed, Oi and pooled expected, Ei frequencies
(i = 1, 2,3) of failure times intervals of the machine.

The test, χ2 < χ2
(0.05),2 shows that the distribution of failure times of the

machine follows a Weibull distribution. This result was validated by the use
of Easyfit (5.6) software with best-fit rank of 1. This software was also used in
the estimation of the shape and scale parameters of the Weibull distribution;
α = 1.3 and β = 1386 respectively. The respective hazard and cumulative
hazard functions of the distribution are;

h(yk) = αβαyα−1
k and H(yk) = βαyαk

where α and β are the shape and scale parameters of the Weibull distribution
and yk is the effective age of the system after kth PM.

By incorporating the cumulative load factor, Zk into the hazard and
cumulative hazard functions with multiplicative impact, we obtain (2);

h(ykZk) = αβα(ykZk)
α−1 and H(ykZk) = βα(ykZk)

α (2)

2.4 Imperfect Preventive and Replacement Maintenance Model
for Repairable Systems

A hybrid model of Lin et al. (2000) which is a combination of the hazard
rate adjustment model and the age reduction model of Nakagawa (1988) is
given by (3);

g(t1 + x) = ahg(bt1 + x) (3)
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where a ≥ 1; 0 ≤ b ≤ 1;x ∈ (0, t2 − t1) and h(t) is the failure rate function
for t ∈ (0, t1).

The PM activity at time, t1 produces a new failure rate function g(t) for
t ∈ (t2, t1) with ah(x) as the failure rate function in the next PM interval
which depends only on h(x) and the corresponding PM activity. In other
word, g(t) depends on both h(t); t ∈ (0, t1) and b, the extent of the PM
activity in time, t1.

2.5 The Mean Cost Per Unit Time of Operating the System

The associated cost model to any maintenance and replacement function is
often used to evaluate the performance of the system that is repairable and
also to determine the expected amount of time needed for maintenance that is
both safe and appropriate. As a result, the associated expected cost rate model
for (3) is given in (4) as follows:

C = C(y1, y2, . . . yN )

=
Cr + (N − 1)Cp + Cm

∑N
k=1 Pk[H(yk)−H(rk−1yk−1)]∑N−1

k=1 (1− rk)yk + yN
(4)

where Cr, Cp and Cm are respectively the costs of replacement maintenance,
preventive maintenance and minimal repair of the machine, Pk =

∏k−1
i=1 ρi,

0 = r0 < r1 < r2 < · · · < 1, where Pk and H(yk) are the product of the
hazard rate adjustment factor and the cumulative hazard function occurring
within the interval (tk−1, tk), which is between the time of (k − 1)th PM and
the kth PM respectively and rk−1yk−1 is the effective age of the system right
after (k − 1)th PM.

2.6 Optimization of the Expected Cost Per Unit Time of
Operation

To generate optimal PM and replacement schedule for the cassava grinding
machine, we shall determine optimal PM intervals by finding the optimal
values of yk; k = 1, 2, . . . N − 1 and at replacement point, N as decision
variables to minimize the expected cost rate in (4), Nakagawa (1986), (1988),
Lin et al. (2000) and Udoh and Ekpenyong (2019). Let C(y1, y2, . . . yN ) =
C, so that taking the partial derivative of (4) with respect to yk and equating
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the obtained derivative to zero, we have;

∂C

∂yk
=

[
yN +

∑N−1
k=1 (1− rk)yk

]
Cm[Pkh(yk)− rkPk+1h(rkyk)]

−
[
Cr + (N − 1)Cp + Cm

∑N
k=1

Pk[H(yk)−H(rk−1yk−1)]
]
(1− rk)

[yN +
∑N−1

k=1 (1− rk)yk]
2 = 0

=

Cm[Pkh(yk)− rkPk+1h(rkyk)]

− [Cr+(N−1)Cp+Cm
∑N

k=1 Pk[H(yk)−H(rk−1yk−1)]](1−rk)

[yN+
∑N−1

k=1 (1−rk)yk]

[yN +
∑N−1

k=1 (1− rk)yk]
= 0

(5)

And substituting (4) into (5) we obtain (6);

∂C

∂yk
=

Cm[Pkh(yk)− rkPk+1h(rkyk)]− C(1− rk)[
yN +

∑N−1
k=1 (1− rk)yk

] = 0

⇒ Cm[Pkh(yk)− rkPk+1h(rkyk)] = C[(1− rk)];

k = 1, 2, 3, . . . , N − 1 (6)

where h(rkyk) is the adjusted hazard function of the machine after kth PM;
k = 1, 2, 3, . . . , N − 1.

Similarly, at replacement point, N;

∂C

∂yN
=

[
yN +

∑N−1
k=1 (1− rk)yk

]
Cm[PNh(yN )− rNPk+1h(rNyN )]

−
[
Cr + (N − 1)Cp + Cm

∑N
k=1

Pk[H(yk)−H(rk−1yk−1)]
]

[
yN +

∑N−1
k=1 (1− rk)yk

]2 = 0

=

Cm[PNh(yN )− rNPk+1h(rNyN )]

− [Cr+(N−1)Cp+Cm
∑N

k=1 Pk[H(yk)−H(rk−1yk−1)]]
[yN+

∑N−1
k=1 (1−rk)yk][

yN +
∑N−1

k=1 (1− rk)yk

] = 0 (7)
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Substituting (4) into (7), we obtain (8) as follows;

∂C

∂yN
=

Cm[PNh(yN )− rNPk+1h(rNyN )]− C[
yN +

∑N−1
k=1 (1− rk)yk

] = 0

⇒ Cm[PNh(yN )− rNPk+1h(rNyN )] = C; k = 1, 2, 3, . . . , N − 1

Noting that the kth PM is the replacement point, therefore Pk+1 = 0, and

C = Cm[PNh(yN )] (8)

Now substituting (8) into (6) we have (9) as follows;

Cm[Pkh(yk)− rkPk+1h(rk−1yk−1)] = Cm[PNh(yN )][(1− rk)]

[Pkh(yk)− rkPk+1h(rk−1yk−1)]

= [PNh(yN )][(1− rk)]∀k = 1, 2, 3, . . . , N − 1 (9)

In order to test for convexity of the function, we obtain the second partial
derivative as follows;

∂2C

∂y2k
=

[
yN +

∑N−1
k=1 (1− rk)yk

]2
{Cm[Pkh

′(yk)− rkPk+1h
′(rkyk)]

−rkPk+1h(rkyk)(1− rk)}
−2(1− rk)

[
yN +

∑N−1
k=1 (1− rk)yk

]
Cm[Pkh(yk)−Pk+1rkh(rkyk)]−

[
Cr +(N − 1)Cp+Cm

∑N
k=1

Pk[H(yk)−H(rk−1yk−1)]
]
(1− rk)[

yN +
∑N−1

k=1 (1− rk)yk

]3
=

[
yN +

N−1∑
k=1

(1− rk)yk

]2
{Cm[Pkh

′(yk)− rkPk+1h
′(rkyk)]

− rkPk+1h(rkyk)(1− rk)} − 2(1− rk)

[
yN +

N−1∑
k=1

(1− rk)yk

]
Cm[Pkh(yk)− Pk+1rkh(rkyk)]

−

[
Cr + (N − 1)Cp + Cm

N∑
k=1

Pk[H(yk)−H(rk−1yk−1)]

]
(1− rk) > 0 (10)
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It follows from (10) that (6) is convex with a global minimum solution
and has a unique solution for yk since 1− ρkrk > 0, k = 1, 2, 3, . . . , N − 1,
h(yN ) is continuous and differentiable and 0 < yN < ∞ is fixed. ρk = 6k+1

2k+1

is the hazard rate adjustment factor and rk = k
2k+1 is the age improvement

factor.
Also, from (4);

C

[
N−1∑
k=1

(1− rk)yk + yN

]

= Cr + (N − 1)Cp + Cm

N∑
k=1

Pk[H(yk)−H(rk−1yk−1)]

C

[
N−1∑
k=1

(1− rk)yk + yN

]
− Cm

N∑
k=1

Pk[H(yk)−H(rk−1yk−1)]

= Cr + (N − 1)Cp (11)

Substituting (8) into (11) we obtain (12) as follows;

Cm[PNh(yN )]

[
N−1∑
k=1

(1− rk)yk + yN

]

− Cm

N∑
k=1

Pk[H(yk)−H(rk−1yk−1)] = Cr + (N − 1)Cp (12)

Dividing through (12) by Cm we have;

[PNh(yN )]

[
N−1∑
k=1

(1− rk)yk + yN

]
−

N∑
k=1

Pk[H(yk)−H(rk−1yk−1)]

=
Cr + (N − 1)Cp

Cm
(13)

The effect of load with multiplicative impact on the hazard and cumula-
tive hazard functions from (2) into (13) yields (14);

[PNh(yNZN )]

[
N−1∑
k=1

(1− rk)ykZk + yNZN

]
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−
N∑
k=1

Pk[H(ykZk)−H(rk−1yk−1Zk−1)]

=
Cr + (N − 1)Cp

Cm
(14)

2.7 Algorithm for Generating Sequential PM and Replacement
Schedule with Load Effect

The following computational algorithm is used in accordance with the
analytical results:

Step 1: Solve for ykZk as a function of yNZN in (9) to obtain (15)

Step 2: Substitute ykZk into (15) to obtain yNZN

Step 3: Choose N to minimize PNh(yNZN ) in order to obtain optimal
number, N∗ of PM

Step 4: Obtain yk from the expression in step 1 following from step2

Step 5: Obtain the optimal length of operating time; xk = yk − rk−1yk−1,
k = 1, 2, 3, . . . , N

The input parameters are the costs; Cr, Cp and Cm with ratios Cr
Cp

and Cm
Cp

,

the Weibull parameters are α and β and the adjustment factors are ρk and rk

3 Implementation of the Optimal PM and Replacement
Algorithm to Obtain Sequential PM and Replacement
Schedule for 8hp-PML Gold Engine Cassava Grinding
Machine with Load Effect

According to Udoh and Ekpenyong (2019), a sequential imperfect PM and
replacement schedule for an 8hp-PML gold cassava grinding machine was
obtained, the failure distribution of the device was shown to follow a conven-
tional two-parameter Weibull distribution with hazard and cumulative hazard
functions given as: h(t) = αβα(t)α−1, α > 1, β > 0 and H(t) = βαtα with
estimated parameters; α = 1.3 and β = 1386.

On the application of load, (9) becomes;

[Pkh(ykZk)− rkPk+1h(rkykZk)] = [PNh(yNZN )][(1− rk)] (15)
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Step 1: Substitute the Weibull hazard function with load effect from (2) into
(15), we have (16) as follows;

[Pkαβ
α(ykZk)

α−1 − rkPk+1αβ
α(rkykZk)

α−1]

= [PNαβα(yNZN )α−1][(1− rk)]

(ykZk) =

[
PN (1− rk)

[Pk − Pk+1r
α−1+1
k ]

]1/α−1

(yNZN ) (16)

Step 2: By substituting (16) into (14) we obtain (17) as follows;

[PNh(yNZN )]

[
N−1∑
k=1

(1− rk)

[
PN (1− rk)

[Pk − Pk+1r
α
k ]

]1/α−1

(yNZN ) + yNZN

]

−
N∑
k=1

Pk[H(ykZk)−H(rk−1yk−1Zk−1)] =
Cr + (N − 1)Cp

Cm

Let πk =
[

(1−rk)
α

[Pk−Pk+1r
α
k ]

]1/α−1

[PNh(yNZN )]

[
N−1∑
k=1

πkP
1/α−1
N (yNZN ) + yNZN

]

−
N∑
k=1

Pk[H(ykZk)] =
Cr + (N − 1)Cp

Cm

Substituting the hazard and cumulative hazard functions of the two
parameter Weibull function, we have;

PNβα(yNZN )α
[
α

(
P

1/α−1
N

N−1∑
k=1

πk + 1

)
− P

1/α−1
N

N−1∑
k=1

πk − 1

]

=
Cr + (N − 1)Cp

Cm

∴ yNZN =
[Cr + Cp(N − 1)]

1
α[

Cm(α− 1)
(
PN + P

α/α−1
N

∑N−1
k=1 πk

)] 1
α
β

; α > 1 (17)
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Step 3: To obtain optimal N, we seek optimal number N∗ which minimizes
(17) by substituting yNzN into (8) as follows:

Let

B(N) = PNh(yNZN ) = PNαβα(yNZN )α−1

=
αβαPN [Cr + Cp(N − 1)]

1
α

[Cm(α− 1)]α−1
[
PN + P

α/α−1
N

∑N−1
k=1 πk

] 1
α
βα−1

∴ B(N) = θ
[Cr + Cp(N − 1)][

P
−1/α−1
N +

∑N−1
k=1 πk

] ; where θ =
(αβ)

α
α−1

[Cm(α− 1)]α

A necessary condition for the existence of a finite N∗ which minimizes
B(N) is that N∗ satisfies the inequalities; B(N + 1) ≥ B(N) and B(N) <
B(N − 1), (see Nakagawa,1988 and Lin et al., 2000). That is,

θ[Cr + (N)Cp][
P

−1/α−1
N+1 +

∑N
k=1 πk

] ≥ θ[Cr + (N − 1)Cp][
P

−1/α−1
N +

∑N−1
k=1 πk

]
∴ B(N) =

P
−1/α−1
N +

∑N−1
k=1 πk

[P
−1/α−1
N+1 − P

−1/α−1
N + πN ]

− (N − 1) ≥ Cr

Cp

(18)

where πk =
[

(1−rk)
α

[Pk−Pk+1r
α
k ]

]1/α−1
and Pk =

∏k−1
i=1 ρi, ∀k = 1, 2, 3, . . . , N

Similarly,

B(N − 1) <
Cr

Cp
(19)

From (17):

yN =

 [Cr + (N − 1)Cp]

Cm(α− 1)
{[

P
α/α−1
N

∑N−1
k=1 πk + PN

]}
1/α

1

ZNβ
(20)

Substituting (20) into (16), we have;

(ykZk) =

[
PN (1− rk)

[Pk − Pk+1r
α−1+1
k ]

]1/α−1
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 [Cr + (N − 1)Cp]

Cm(α− 1)
{[

P
α/α−1
N

∑N−1
k=1 πk + PN

]}
1/α

ZN

ZNβ


∴ yk =

[
PN (1− rk)

[Pk − Pk+1r
α−1+1
k ]

]1/α−1
AN

Zk
(21)

where

AN =

 [Cr + (N − 1)Cp]

Cm(α− 1)
{[

P
α/α−1
N

∑N−1
k=1 πk + PN

]}
1/α

1

β

The cost ratios Cr
Cp

are obtained with the corresponding values of N in (18)
as shown in Table 2.

Table 2 Computed values of Cr
Cp

and corresponding values of N∗

N∗ 1 3 5 7 9 11 13
Cr/Cp 8 80 800 1600 8000 112000 128000

3.1 Computation of Optimal PM and Replacement Schedule
Without Load

Udoh and Ekpenyong (2019) determined the optimal PM schedule for the
8pml gold engine cassava grinding machine without the application of load.
This was accomplished while maintaining the same cost ratios in Table 2
and Weibull parameters in Section 2.3. It is presented in this work as a
reproduction in Table 3 so that it can be compared to the results of this work.

3.2 Computation of Optimal PM and Replacement Schedule with
Load Effect

The optimal PM intervals would be computed in step 5 resulting from step
4 of the algorithm previously stated in Section 2.7 using: xk = yk −
rk−1yk−1, k = 1, 2, 3, . . . , N where rk−1 is analogous to the step length
in gradient search algorithm. The levels of load to be considered in this
work was calibrated as: below maximum = 30 kg, maximum = 50 kg and
above maximum = 70 kg. By using the cost ratios in Table 2 and taking
Cm/Cp = 4, yk was calculated using the expression in (21) which takes into
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Table 3 Optimal PM and replacement schedule without load
N∗ 1 3 5 7 9 11 13
Cr/Cp 8 80 800 1600 8000 112000 128000
x1 0.0031 0.0128 0.0743 0.1242 0.4274 2.5259 3.5991
x2 0.0037 0.0214 0.0358 0.1231 0.7266 1.0368
x3 0.0025 0.0162 0.0146 0.0468 0.2968 0.4229
x4 0.0007 0.0065 0.0241 0.1336 0.1904
x5 0.00354 0.0032 0.0111 0.0658 0.0937
x6 0.0017 0.0057 0.0337 0.048
x7 0.0015 0.0027 0.0158 0.0225
x8 0.0015 0.0086 0.0123
x9 0.0012 0.0044 0.0065
x10 0.0022 0.0032
x11 0.0024 0.0009
x12 0.0005
x13 0.1801

Table 4 Optimal PM and Replacement schedule with below maximum load level at 30 kg
N∗ 1 3 5 7 9 11 13
Cr/Cp 8 80 800 1600 8000 112000 128000
x1 0.0000937 0.000552 0.003247 0.005537 0.019117 0.145873 0.161727
x2 0.000297 0.001727 0.002941 0.010155 0.077454 0.08795
x3 0.000212 0.00121 0.002072 0.007149 0.054541 0.059592
x4 0.000786 0.001335 0.004598 0.035075 0.038878
x5 0.000507 0.000861 0.002966 0.022625 0.025074
x6 0.000502 0.00173 0.013186 0.014616
x7 0.000267 0.000918 0.007004 0.007763
x8 0.00181 0.003502 0.003882
x9 0.000448 0.001721 0.001906
x10 0.000854 0.000944
x11 0.00043 0.000478
x12 0.000247
x13 0.00013

consideration the multiplicative impact of the cumulative load. The resulting
PM intervals for the machine with load at below maximum, maximum and
above maximum levels are presented in Tables 4, 5 and 6.

4 Discussion

The result obtained for the PM schedule (in 00,000 hours, say) for the 8HP-
PML gold engine cassava grinding machine without load is shown in Table 3
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Table 5 Optimal PM and Replacement schedule with maximum load level at 50 kg
N∗ 1 3 5 7 9 11 13
Cr/Cp 8 80 800 1600 8000 112000 128000
x1 0.0000562 0.00031 0.001948 0.003322 0.01147 0.087524 0.097036
x2 0.000178 0.001036 0.001765 0.006093 0.046472 0.05277
x3 0.000127 0.000726 0.001243 0.00429 0.032724 0.035755
x4 0.000472 0.000801 0.002759 0.021045 0.023327
x5 0.000304 0.000517 0.00178 0.013575 0.015044
x6 0.000301 0.001038 0.007912 0.008769
x7 0.00016 0.000551 0.004203 0.004658
x8 0.000366 0.002101 0.002329
x9 0.000269 0.001033 0.001144
x10 0.000512 0.000566
x11 0.000258 0.000287
x12 0.000148
x13 0.000078

Table 6 Optimal PM and Replacement schedule with above maximum load level at 70 kg
N∗ 1 3 5 7 9 11 13
Cr/Cp 8 80 800 1600 8000 112000 128000
x1 0.0000401 0.000236 0.001392 0.002373 0.008193 0.06252 0.06931
x2 0.000127 0.00074 0.001261 0.004352 0.03319 0.03769
x3 0.0000908 0.000518 0.000888 0.003064 0.02338 0.02554
x4 0.000337 0.000572 0.001971 0.01503 0.01667
x5 0.000217 0.000369 0.001271 0.009697 0.01075
x6 0.000215 0.000741 0.005651 0.006264
x7 0.000114 0.000393 0.003002 0.003327
x8 0.000776 0.001501 0.001664
x9 0.000192 0.000738 0.000817
x10 0.000366 0.000405
x11 0.000184 0.000205
x12 0.000106
x13 0.0000557

and at different levels of load effect in Tables 4, 5 and 6. The values of
N∗ in row 1 in Tables 2 are the optimal number of PM before replacement
at the N∗ time for the given cost ratios. Also, row 2 in Table 2 contains
specified cost ratios generated from (18). Thus, the values under N∗ with
the associated cost ratio in each column in Tables 3, 4, 5 and 6 represent the
expected length of operational time, x1, x2, . . . , xN−1 of the machine for PM
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actions and replacement at xN . For instance in Table 4, under N∗ = 3 and
cr/cp = 80: x1 = 0.000552, x2 = 0.000297 and x3 = 0.000212 implies
that PM should be performed a total of 2 times at x1 = 55.2 hours and
x2 = 29.7 hours and the 3rd time being replacement after x3 = 21.2 hours,
for t = 0 at the beginning of each maintenance cycle. It is observed that the
PM and replacement schedules for the respective cost ratios and respective
load effects in Tables 4, 5 and 6, decrease for all values of xk. This calls
for frequent PM in line with Zhang (2002) and Wang and Zhang (2009).
In addition, the decreasing trend of the operational time of the machine
at succeeding values of xi′s and N∗ is similar to the results obtained by
Nakagawa (1988), Lin et al. (2000), Udoh and Ekpenyong (2019) and Udoh
and Effanga (2023). Also observed is the compensatory relationship between
cost ratios and expected operational time of the machine. This shows that the
higher the cost ratio, the longer the expected length of operational time of the
machine, perhaps to compensate for the increase cost implication.

Furthermore, a comparison of the PM and replacement schedules of the
machine without load and with load at different levels explain the following:

(a) The PM and replacement schedule without load by Udoh and
Ekpenyong (2019) in Table 3 has longer length of operational time;
x1, x2, . . . , x13 compared to the schedules of the machine with load in
Tables 4, 5 and 6 for corresponding cost ratios.

(b) The PM and replacement schedule with below maximum load level
of 30 kg of cassava in Table 4 has longer length of operational time
compared to the schedule with maximum load level of 50 kg of Table 5
and 70 kg of Table 6.

(c) Similarly, the PM and replacement schedule with maximum load level
of 50 kg in Table 5 has longer length of operational times compared to
the schedules with above maximum load level of 70 kg in Tables 6 for
corresponding cost ratios.

5 Conclusion

The PM and replacement maintenance schedule for mechanically repairable
machines has been obtained for the cassava grinding machine in this paper.
This was done subject to varying levels of cumulative load, each of which
has a multiplicative effect on the hazard function of the machine. When
the expected length of the machine’s operational time before each PM was
compared to the impact of various levels of load, it was found that the
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application of load shortens the length of the machine’s operational time
before each PM, and that the higher the level of load, the shorter the operating
time of the machine due to an increase in stress that resulted in deterioration.
Hence, the need for more frequent PM and replacement maintenance actions,
which came at a higher cost to users. Practically, the implication of increasing
levels of load is the decrease in the length of operational time of the machine
before next PM in addition to frequent PM to avoid failure maintenance
with higher costs and to preserve the useful life of the machine for better
performance.
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