
Accelerated Failure Time Models with
Applications to Endometrial Cancer

Survival Data

Manas Ranjan Tripathy1, Prafulla Kumar Swain2,∗,
Pravat Kumar Sarangi1 and S. S. Pattnaik3

1Department of Statistics, Ravenshaw University, Cuttack, Odisha, India
2Department of Statistics, Utkal University, Bhubaneswar, Odisha, India
3Department of Gynae Oncology, AHPGIC, Cuttack, Odisha, India
E-mail: prafulla86@gmail.com
∗Corresponding Author

Received 31 October 2021; Accepted 21 January 2022;
Publication 31 March 2023

Abstract

The objective of this study is to determine the significant predictors of
endometrial cancer using accelerated failure time models (AFTM). We have
demonstrated the applications of AFTM viz. Exponential, Weibull, Log-
normal, Log-logistic, Gompertz, Gamma and Generalized Gamma AFTM,
as an alternative of Cox proportional hazard model. Data for the analy-
sis was collected from Acharya Harihar Post Graduate Institute of Can-
cer (AHPGIC), Cuttack, Odisha during the period 2016–20. Based on
the lowest Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) value, the Weibull AFTM has been chosen as the best
fitted AFT model. The predictors such as age, comorbidity, tumor size,
isolated para-aortic and adnexa have been found as significant predictors
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(p-value < 0.05) to explain the survival of endometrial cancer patients.
Hence, by optimizing different treatments, based on such prognostic factors
plays an important role in managing endometrial cancer at an early stage.

Keywords: Parametric modeling, AFTM, Cox-PH, endometrial cancer,
AIC, BIC.

1 Introduction

Accelerated Failure Time (AFT) regression model has been considered a
suitable alternative model to Cox proportional hazard model for better under-
standing the risk factors and survival (Wei, 1992; Orbe et al., 2002). The
popularity of Cox PH model is perhaps due to the fact that the baseline
hazard is not specified in this model and the parameter can still be estimated.
The parametric models are more informative and do provide efficient and
consistent estimates. Thus, the AFT models are more appealing because of its
direct physical interpretation of regression coefficients and its fitting is justi-
fied when the predictors do not satisfy the proportional hazard assumptions
in the Cox model (Lee and Wang, 2003).

The AFT model is also called log-location scale model (Lawless, 1982).
The most commonly used parametric AFT Models are Exponential, Weibull,
Log-normal, Log-logistic, Gompertz, Gamma, Generalized Gamma etc.
Exponential and Weibull distributions have both proportional hazard and
accelerated failure time property. Whereas others have only accelerated
failure time property.

AFTM has wide applicability in the field of disease survival management.
Kay and Kinnersley (2002) have used an accelerated failure time model as
an alternative of Cox-PH model to study the time to resolution of influenza
symptoms. Swain and Grover (2016) applied different parametric AFTM for
the interval censored data on the HIV/AIDS infected patients to study the
effect of Antiretroviral therapy. Khanal et al. (2014) introduced an accelerated
failure time model to identify the independent predictors associated with
the survival of acute liver failure patients. The past decade has seen, these
AFTM models have been used in diverse areas of interest including reliability
analysis of different manufacturing process and industrial product, as an
alternative of Cox-PH model (Baik and Murthy, 2008; Saikia and Barman,
2017; Bokoro and Doorsamy, 2018).
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Many authors have also used AFTM in the study of survival analysis
of cancers patients. Chapman et al. (1992) used AFTM to determine the
important prognostic factors associated with recurrence of the breast cancer.
Ali et al. (2015) have estimated the effect of demographic, clinical and post-
surgical covariates on the survival of gastric cancer patients using Gompertz
AFTM. Juhan et al. (2016) have made a comparison among Cox model,
Stratified Weibull model and Weibull accelerated failure time model to study
the effects of different covariates on survival of Cervical cancer. Srividya
and Radhika (2019) applied different parametric AFT models to compare the
survival of uterus cancer patients, where Log-logistic AFTM found as best fit
model.

The Endometrial cancer is one of the most common cancers in women
worldwide and the death rate for this cancer has been increasing with an
average increase of 1.4% per year between the years 2005 and 2014 (Miller
et al., 2016). Older age, higher stage, grade, tumor size, lymph node status,
race, comorbidities, obesity and treatment methods are associated with lower
endometrial cancer survival (Dessai et al., 2016; Bregar et al., 2017; Nicholas
et al., 2014).

The mortality of endometrial cancer patients is directly associated with
poor prognostic factors. Thus, identifying important prognostic factors in
endometrial cancer is crucial for improving risk assessment pre-operative and
post-operative and to guide treatment decision (Coll de la Rubia et al., 2020).
Moreover, the knowledge about significant predictors will be helpful in early
intervention and prevention of endometrial cancer.

In this study, we proposed to use the data on a rare form of endometrial
cancer i.e., the clear cell and uterine papillary serous cell carcinoma (UPSC).
The UPSC is a prototype of type-II endometrial cancer, which is associated
with poor prognosis and more likely to be diagnosed at an advanced stage.
Earlier, Solmaz et al. (2016) made an attempt to study the different char-
acteristics viz. clinical, pathological, survival and prognosis of women with
UPSC. However, the studies related to predictors of overall survival of UPSC
are scarce. Thus, aim of this paper is to determine the significant prognostic
factors associated with overall survival of UPSC patients using parametric
AFT Models.

The remainder of the paper is organized as follows; Section 2 introduces
the methodology and data sources, Section 3 deals with analysis and results.
And the final section is about discussion and conclusion.
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2 Materials and Methods

2.1 Data Source

Among the 96 suspected cases with abnormal uterine bleeding, 47 endome-
trial cancer patients were included for the analysis. The information on
different co-variates like age, obstetrics history, post-menopausal bleed-
ing, nulligravida, menopausal history, comorbidities, Endometrial thickness,
Grade, Myometrial invasion, Tumor size etc., were recorded. These patients
were diagnosed with clear cell and uterine papillary serous cell carcinoma,
have undergone with a complete surgical staging and followed by adju-
vant chemotherapy and radiation therapy at Acharya Harihar Post Graduate
Institute of Cancer (AHPGIC), Cuttack, Odisha during the period 2016 to
2020. The patients diagnosed with malignant mixed muellrian tumor, sar-
comas and cervical cancers have been excluded from the study. AHPGIC
is a nodal cancer hospital in Odisha and it caters large number of patients
coming from eastern India. The follow-up information has been recorded on
clinical, pathological and other characteristics of these patients on a regular
basis.

2.2 Methodology

Suppose there are n number of endometrial cancer patients with post imag-
ing followed by diagnostic hysteroscopic biopsy. Let Ti be a non-negative
random variable denotes the survival time (in months) of the ith endometrial
cancer patient having different covariates viz. x = (x1, x2, . . . , xp) under
study. Then the Accelerated failure time model (AFTM) be the logarithm of
the survival time Ti can be defined as (Collett 2015):

log(Ti) = µ+ β1x1 + · · ·+ βpxp + σεi = µ+ β′x+ σεi (1)

Where; log(Ti) be the log transferred survival time, µ is an intercept
parameter, β′ = ( β1, β2, . . . , βp) is the set of p coefficient parameters of
the model, σ is a real constant known as scale parameter and εi is a residual
term which assumes a specific distribution i.e., Extreme value distribution
with σ = 1, Extreme value distribution with σ = c (constant), Normal
distribution and Logistic distribution. These transformation in ε will leads
to the Exponential, Weibull, Log-normal and Log-logistic AFTM for the
survival time (Ti).

As ε used to model the survival time T, we can get the survival function
S(t;x), hazard function h(t;x) and cumulative hazard function H(t;x) for
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general AFTM in terms of base line model and ε is random component of the
model.

Let us consider survival function for the patients with survival time T as
follows;

S(t) = P (T ≥ t)

= P (log T ≥ log t)

= P (µ+ β′x+ σε ≥ log t)

= P{exp(µ+ β′x+ σε) ≥ t}

= P{exp(µ+ σε) ≥ t/exp(β′x)} (2)

When there will be no covariate in the considered model (i.e., x̃ = 0)
then the survival function becomes;

S0(t) = P{exp(µ+ σε) ≥ t} (3)

Now, the survival function for the patients in an AFTM become;

S(t;x) = S0{t/exp(β′x)} (4)

From the relationship between hazard function and cumulative hazard
function we will get;

h(t;x) = exp(−β′x)h0{t/exp(β′x)} (5)

Where, S0(·) and h0(·) are the base line survival and base line hazard
function respectively and exp(−β′x) is the acceleration factor.

Now the density function of a General AFTM in terms of ε is given by;

f(t, x) =
1

σt
fε

(
log t− µ− β′x

σ

)
(6)

Let us consider again the survival function for the patients with survival
time T as;

S(t;x) = P (µ+ β′x+ σε ≥ log t)

= P

{
ε ≥ log t− µ− β′x

σ

}
(7)
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Now, the survival function in terms of ε of a General AFTM become;

S(t;x) = Sε

(
log t− µ− β′x

σ

)
(8)

The hazard function in terms of ε of a General AFTM become;

h(t;x) =
1

σt
h
ε

(
log t− µ− β′x

σ

)
(9)

Where, Sε(·) and hε(·) are the survival and hazard function of the
distribution of ε.

2.3 Exponential AFTM

As ε follows extreme value or double exponential distribution with σ = 1 and
having density function & survival function as:

fε(ε) = exp{ε− exp(ε)} (10)

Sε(ε) = exp{−exp(ε)}; −∞ < ε <∞ (11)

Then the time variable T follows Exponential AFTM with density
function:

f(t;x) = [exp{−(µ+ β′x)}exp{−exp(−(µ+ β′x)t)}]; t > 0 (12)

Survival function for Exponential AFTM is:

S(t;x) = exp[−exp{−(µ+ β′x)t}] (13)

Hazard function for Exponential AFTM is:

h(t;x) = exp{−(µ+ β′x)} (14)

2.4 Weibull AFTM

As ε follows extreme value distribution with σ = c (constant) and having
density function:

fε(ε) = exp(ε− exp(ε)) (15)

Sε(ε) = exp{−exp(ε)}; −∞ < ε <∞ (16)
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Then the time variable T follows Weibull distribution with density
function:

f(t) =
1

σ

[
exp

{
−
(
µ+ β′x

)}
/σ
]
t
1
σ
−1

× exp
[
−
{
exp

{
−
(
µ+ β′x

)}
/σ
}
t
1
σ

]
; t > 0 (17)

Survival function for Weibull AFTM is:

S(t;x) = Sε{(log t− µ− β′x)/σ}

= exp[−exp{(log t− µ− β′x)/σ}] (18)

Hazard function for Weibull AFTM is:

h(t;x) =
1

σt
hε[(log t− µ− β′x)/σ]

=
1

σt
exp[(log t− µ− β′x)/σ] (19)

2.5 Log-logistic AFTM

As ε follows Logistic distribution having density function & survival func-
tion as:

fε(ε) =
exp(ε)

[1 + exp(ε)]2
(20)

Sε(ε) =
1

1 + exp(ε)
; −∞ < ε <∞ (21)

The time variable T follows Log-logistic AFTM with density function:

f(t;x) =
exp(θ)k tk−1

(1 + exp(θ)tk)
2 (22)

Where, θ = −µ
σ and k = 1

σ .
Survival function of Log-logistic AFTM becomes;

S(t;x) = Sε{(log t− µ− β′x)/σ}
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=

[
1 + exp

(
log t− µ− β′x

σ

)]−1
=

[
1 + exp

(
log t

σ

)
exp

(
−µ− β′x

σ

)]−1
=

[
1 + (t)

1
σ exp

(
−µ
σ
− β′x

σ

)]−1
= [1 + tkexp{θ − k(β′x)}]−1 (23)

Here {θ − k(β′x), k} are two parameters with the values θ = −µ
σ and

k = 1
σ .

Hazard function for Log-logistic AFTM is:

h(t;x) =
1

σt
hε
[(
log t− µ− β′x

)
/σ
]

=
1

σt

[
1 + exp

{
−
(
log t− µ− β′x

σ

)}]−1
(24)

2.6 Log-normal AFTM

As ε follows Standard normal distribution having density function and
survival function:

fε(ε) =
1√
2π
exp

(
−ε

2

2

)
(25)

Sε(ε) = 1− Φ(ε); −∞ < ε <∞ (26)

Where, Φ(·) is the standard normal distribution function.
The time variable T follows Log-normal AFTM with density function:

f(t;x) =
exp

{
−(log t− µ− β′x)2/2σ2

}
σt
√

2π
(27)

Survival function of Log-normal AFTM becomes;

S(t;x) = Sε
{(
log t− µ− β′x

)
/σ
}

= 1− Φ

(
log t− µ− β′x

σ

)
(28)
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Hazard function for Log-normal AFTM is:

h(t;x) =
1

σt
hε
[(
log t− µ− β′x

)
/σ
]

=
1

σt

[
fε {(log t− µ− β′x)/σ}
Sε {(log t− µ− β′x)/σ}

]

=
1

σt

 1√
2π
exp

{
− (log t−µ−β′x)2

2σ2

}
1− Φ

(
log t−µ−β′x

σ

)
 (29)

2.7 Gompertz AFTM

The probability density function of Gompertz distribution for a random
variable T is given by;

f (t) = λ exp (γt) exp

[
λ

γ
{1− exp (γt)}

]
(30)

If ε will follow a log-Gompertz or inverse Weibull distribution, then the
time variable T follows Gompertz AFTM with density function as follows:

f(t;x) = λ exp (γt) exp

[
λ

γ
{1− exp (γt)}

]
(31)

Where; λ→ λ
γ and γ → 1

γ .
Thus, density function can be expressed as follows:

f(t;x) =
λ

γ
exp

(
t

γ

)
exp

[
λ

{
1− exp

(
t

γ

)}]
(32)

The survival and hazard function of Gompertz AFTM can be obtained by
usual manner.

2.8 Gamma AFTM

The probability density function of Gamma distribution for a random variable
T is given by;

f(t) =
λα

Γ (α)
tα−1exp (−λt) (33)

Where, t > 0, α(shape parameter) > 0, λ(rate parameter) > 0
and Γ(α) is a gamma function of the above distribution. Gamma distribution
approaches to Exponential distribution as t→∞.
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Now, if ε will follow a negatively skewed distribution (with skewness
decreasing with increasing α) having density function:

fε(ε) =
exp {αε− exp(ε)}

Γ(α)
; −∞ < ε <∞ (34)

Then, the time variable T follows Gamma AFTM with density, survival
and hazard function as follows:

f(t;x) =
λα

Γ (α)
tα−1exp (−λt) (35)

Where; λ = 1/exp(β0 + β′x). The survival and hazard function of
Gamma AFTM can be obtained by usual manner.

2.9 Generalized Gamma AFTM

The Generalized Gamma distribution is a generalization of Gamma distribu-
tion with an additional parameter γ > 0. The probability density Generalized
Gamma distribution for a random variable T is given by;

f(t) =
γλγα

Γ(α)
tγα−1exp[−(λt)γ ] (36)

Where; t > 0, α > 0, λ > 0, γ > 0.
The Exponential, Weibull and Log-normal models are the special cases

of Generalized Gamma model. The Generalized Gamma distribution will
change to the Exponential distribution if α = γ = 1, the Weibull distribution
if α = 1, the Log-normal distribution if α→∞ and the Gamma distribution
if γ = 1.

Now, if ε will follow a gamma distribution, then the time variable T
follows Generalized Gamma AFTM with density as follows:

f(t;x) =
γλγα

Γ(α)
tγα−1exp[−(λt)γ ] (37)

Where; λ = 1/exp(β0 + β′x) and γ = 1/σ. The survival and hazard
function of Generalized Gamma AFTM can be obtained by usual manner.

2.10 Maximum Likelihood Estimation of the parameters of AFTM

The Accelerated failure time models can be fitted by using the MLE method.
Suppose that Y = log(T ) then the density and survival functions are
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f(t;x) and S(t;x). Now the likelihood of ‘n’ observed survival times can
be expressed as;

L(β, µ, σ) =
n∏
i=1

[f(t;x)]δ[S(t;x)]1−δ

=

n∏
i=1

[
1

σt
fε

(
logT − µ− β′x

σ

)]δ[
Sε

(
logT − µ− β′x

σ

)]1−δ
(38)

Now taking loglikelihood function;

log{L(β, µ, σ)} =

n∑
i=1

[
−δlog(σt) + δlog f ε

(
logT − µ− β′x

σ

)

+ (1− δ) log Sε
(
logT − µ− β′x

σ

)]
(39)

The MLE of p + 2 parameters i.e., β1, β2, . . . , βp, µ and σ can be
obtained by using Newton Raphson method. A complete estimation proce-
dure described in Klein and Moeschberger (1997) and Collett (2015).

The time ratio (TR) can be measured by taking an exponential form of β’s
i.e., TR = exp(β) as usually considered in Cox model in the form of hazard
ratio. Hence, TR more than unity indicates accelerates in survival time and
less than unity indicates decrease in survival time.

2.11 Model Selection Criteria

To choose a best fit model among several available models, here we have used
two penalty function statistics i.e., Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC). The AIC adds a penalty proportional
to the total numbers of the parameter in a model, which protect against over
fitting. The value of AIC can be computed as follows;

AIC = −2× LL+ 2× (p+ k) (40)

Where, LL is the Loglikelihood function, p is the number of covariates in
the model and k is the number of parameters with different values according
to different distributions. For Exponential model the value of k = 1, for
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Weibull, Log-normal, Log-logistic, Gompertz and Gamma model the value
of k = 2 and for Generalized Gamma model the value of k = 3.

The BIC adds a strong penalty as compared to AIC (Schwarz, 1978). The
value of BIC can be computed as follows;

BIC = −2× LL+ p× log(n) (41)

Where, LL is the Loglikelihood function, p is the number of covariates in
the model and n is the number of data point. Hence the model having lowest
AIC and BIC value is chosen as best fit model.

2.12 Model Checking Criteria

The Cox-Snell residual value/plot can be used to check the goodness of fit
of the data in different applied models (Cox and Snell, 1968). The Cox-Snell
residual for the ith patient having the observed time t is given by;

ri = Ŝi(t) = Sεi

(
logt− µ− β1x1 − · · · − βpxp

σ

)
(42)

Two different Statistical software, R (version 3.6.2) and Stata (version
12.0) have been used to analyze the data and construct the figures. All the
predictors with p-value < 0.05 are considered as statistically significant.

3 Analysis and Results

Here the Table 1 shows the descriptive statistics of endometrial cancer
patients under study. Out of 47 Endometrial cancer patients under consid-
eration, only 13 (27.66%) were experienced the event i.e., death, and the
remaining 34 (72.34%) patients are right censored. The mean age of patients
under consideration is 59.68 years with standard deviation 9.22. Similarly,
the mean tumor size of patients under consideration is 3.46 c.m. with standard
deviation 2.23.

A majority patients are of higher age groups (≥60 years) with 27
(57.45%) and relatively less patients are from lower age group (<60 years)
with 20 (42.55%). As far as the grade is concerned maximum number of
patients i.e., 28 (59.57%) are with grade-3, whereas 14 (29.79%) are with
grade-2 and 05 (10.64%) are with grade-1. The endometrial cancer patients
suffer with different co-morbidities as hypertension, diabetes and others.
More than half of the patients (51.06%) suffer with different comorbidities.
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Table 1 Descriptive Statistics of Endometrial cancer patients with their co-variates
Patient Characteristics Value (%) Patient Characteristics Value (%)
Total number of cases (N) 47 Histology
Total number of events (%) 13 (27.66%) Clear cell 26 (55.32%)
Total number of censored cases (%) 34 (72.34%) Papillary cerous 21 (44.68%)
Mean age ± SD (in years) 59.68 ± 9.22 Myometrial invasion
Mean tumor size ± SD (in c.m.) 03.46 ± 2.23 Less than 50% 21 (44.68%)
Age Group More than 50% 26 (55.32%)
< 60 years 20 (42.55%) Tumor size group
≥ 60 years 27 (57.45%) Less than 2 c.m. 17 (37.17%)

Grade More than 2 c.m. 30 (63.83%)
Grade-1 05 (10.64%) LVSI*
Grade-2 14 (29.79%) Negative 20 (42.55%)
Grade-3 28 (59.57%) Positive 27 (57.45%)

Comorbidities Omentum
Absent 23 (48.94%) Negative 38 (80.85%)
Present 24 (51.06%) Positive 09 (19.15%)

Obstetrics history Isolated para-aortic
Nullipara 11 (23.40%) Negative 43 (91.49%)
Multipara 36 (76.60%) Positive 04 (08.51%)

PMWD* Peritoneal cytology
No 39 (83.00%) Negative 32 (68.09%)
Yes 08 (17.00%) Positive 15 (31.91%)

Surgical procedure done Adnexa
No 05 (10.64%) Normal 34 (72.34%)
Yes 42 (89.36%) Affected 13 (27.66%)

*PMPWD: Post-menopausal watery discharge, LVSI: Lymph vascular invasion.

The Obstetrics history has two sub category nulliparae with 11 (23.40%) and
multipara with 36 (76.60%) number of patients respectively. A very low pro-
portion of the patients i.e., 17% are suffering with post-menopausal watery
discharge. Almost 90% of the patients under consideration gone through a
surgical procedure viz. type 1 hysterectomy, omentectomy, bilateral salpingo-
oophorectomy, appendicectomy and peritoneal washings. Based on histology
characteristics, 26 (55.32%) patients having clear cell and 21 (44.68%)
patients having papillary cerous. A slide higher percentage (55.32%) of
patients having Myometrial invasion >50%. A large number of patients i.e.,
30 (63.83%) are having tumor size more than 2 c.m. A lower percentage
of patients having the positive status of lymph vascular invasion, omentum,
Isolated para-aortic and Peritoneal cytology with 27 (57.45%), 09 (19.15%),
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Table 2 Different AFT models with their Log-Likelihood, AIC and BIC values
AFTM Log-Likelihood AIC BIC
Exponential −65.211 160.423 184.325
Weibull −47.315 126.629 148.531
Log-logistic −48.730 129.460 151.362
Log-normal −48.432 128.865 150.767
Gompertz −47.399 126.799 148..708
Gamma −48.406 128.813 150.715
Generalized Gamma −48.122 130.244 150.146

Table 3 Results of Weibull AFTM
WEIBULL AFTM

β Std. Error Z p-value TR 95%LCI 95%UCI

(Intercept) 4.320 0.426 10.140 0.000 75.189 32.624 173.289
Age −0.420 0.213 −1.970 0.044 0.657 0.433 0.997
Isolated para-aortic −0.625 0.300 −2.080 0.037 0.535 0.297 0.964
Histology 0.100 0.165 0.610 0.544 1.105 0.800 1.527
Peritoneal Cytology 0.028 0.156 0.180 0.855 1.029 0.758 1.397
Obstetrics History 0.002 0.144 0.013 0.999 1.002 0.754 1.326
PMPWD −0.182 0.007 −2.640 0.002 0.833 0.821 0.855
Comorbidities −0.343 0.164 −2.090 0.037 0.710 0.515 0.979
Grade-2 0.224 0.320 0.700 0.484 1.251 0.668 2.342
Grade-3 0.010 0.135 0.080 0.939 1.010 0.776 1.317
Myometrial Invasion 0.237 0.187 1.270 0.205 1.267 0.879 1.829
Cervical Extension 0.103 0.210 0.490 0.623 1.108 0.734 1.673
Tumor Size −0.012 0.006 −2.000 0.022 0.988 0.976 0.999
LVSI −0.064 0.176 −0.360 0.718 0.938 0.665 1.325
Adnexa −0.698 0.268 −2.600 0.009 0.498 0.294 0.841

*PMPWD: Post-menopausal watery discharge, LVSI: Lymph vascular invasion.

04 (08.51%) and 15 (31.91%) respectively. More than one fourth i.e., 27.66%
of the patients under study are with affected adnexa.

The values of Log-Likelihood, AIC and BIC values for different AFTMs
presented in Table 2. It can be observed that the values of these statistical
measures are more or less similar for all the considered models except Expo-
nential AFTM. Among these seven considered regression models, Weibull
AFTM has the lowest AIC (126.629) and BIC (148.531) value. Hence
Weibull AFTM can be considered as best fitted model for Endometrial cancer
survival data. Thus, Weibull AFTM results have been reported here.
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Here, Table 3 shows regression results of Weibull AFT model in the
form of coefficients (β), standard error, value of the test statistics (z), signifi-
cance value (p-value), time ratio (TR) and its corresponding 95% confidence
interval for some selected covariates. According to the results six covariates
i.e., age of patients, isolated para-aortic status, PWPWD, comorbidities of
patients, tumor size and adnexa status are significantly (p-value < 0.05)
affecting the survival of Endometrial cancer patients with UPSC. Here we can
see the younger patients (age <60 years) had better survival in comparison
to older patients (age ≥60 years) as TR = 0.657 with 95% CI (0.433, 0.997).
The patients with Isolated para-aortic negative status had better chance of
survival than their counterparts as TR = 0.535 with 95% CI (0.297, 0.964).
The patients those who had any co-morbidity viz. hypertension, diabetes or
both have a lesser chance of survival than those do not have any comorbidity.
Those women having post-menopausal watery discharge problems had a poor
survival. An increased tumor size had a significant impact on lesser survival
time TR = 0.988 with 95% CI (0.976, 0.999). Similarly, the patients whose
adnexa status is normal have a greater chance of survival than those with
affected adnexa. We have plotted the Cox-Snell residual plots for all fitted
models to validate the best fit model. It supports the fitting of Weibull AFT
model in our data (shown in Figure 1).
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4 Discussion

In this study we have determined the significant predictors and their effects
on the survival of endometrial cancer patients using AFTM. We have com-
pared various frequently used AFTM viz. Exponential, Weibull, Log-logistic,
Log-normal, Gompertz, Gamma and Generalized Gamma in our analysis.
Besides, Exponential AFTM, all other model shows the similar value of Log-
Likelihood, AIC and BIC value. Which means all the considered AFT models
fits well and shows analogous result except Exponential AFTM. This result
justifies our AFT model selection. Among these models based on the highest
Log-Likelihood, lowest AIC and BIC value the Weibull AFTM was found
to be the best fitted model for explaining the survival of Endometrial cancer
patients with UPSC. Earlier Weibull AFTM was found to be best fitted AFTM
for lymphoblastic leukemia patients (Sayehmiri et al., 2008). The Cox-Snell
residual plot (Figure 1) revealed that the selected Weibull AFTM fits well for
the endometrial cancer survival data.

In this study, we have observed that six covariates viz., age, isolated
para-aortic status, PWPWD, comorbidities, tumor size and adnexa status
are significantly associated with the survival of endometrial cancer patients
(P < 0.05). Whereas the other predictors grade, histology, cervical extension,
myometrial invasion etc., are found as insignificant.

As expected, the relative survival is highly dependent on the age of
diagnosis of endometrial cancer patients. The relative survival decreases with
increasing age and this is also seen in other studies reported by Cook et al.
(2006) and Elit et al. (2012). This may in part be related to higher rate of
comorbidities in older women.

In this study, an increased tumor size is found to be significantly associ-
ated with poor survival of endometrial cancer patients. Which is consistent
with the findings reported by Blackburn et al. (2019), that the patients with
tumor size >2 cm is less likely to have survival than their counterpart. In
addition, patients with comorbidities and post-menopausal watery discharge
had poor survival.

To our knowledge, this is the first study of its kind in evaluating the
survival characteristics of endometrial cancer patients with UPSC using
different AFTM in the state of Odisha. Since UPSC is a rare category of
endometrial cancer, the patients with poor prognosis and have been diagnosed
at an advanced stage. Studies have explored the survival characteristics of
advanced stage endometrial cancer (Goodman et al., 2019, Chen et al., 2020).
Solmaz et al. (2016) found that LVSI was a significant covariate for the
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survival of endometrial cancer patients with UPSC but in our study we found
it is not statistically significant.

It is worth here to mention the limitation of this study, the small sample
size is the major limitation. Thus, the generalization of this study can be
validated by taking a larger sample size and more number of covariates.

5 Conclusion

The findings of this study shows that Weibull AFT model was found as best
fit model in explaining the determinants of survival of endometrial cancer
patients with UPSC. The covariates like age, isolated para-aortic status,
comorbidities, tumor size and adnexa status are significantly associated with
the survival of patients. Considering this information, more importance can
be given to the patients with such prognostic factors. Hence by optimizing
different treatment based on such prognostic factors plays an important role
in managing endometrial cancer at early stage.
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