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Abstract

Multi state systems can be seen as semi-Markov processes by considering an
arbitrary distribution function for sojourn times. Especially, in this work, the
Modified Weibull distribution is employed to be the distribution of sojourn
times with a shape parameter λ such that is member of a distributions family
that is closed under minima. Parameters estimators are provided and the
proposed methodology is evaluated using a detailed simulation procedure.

Keywords: Multi-state system, semi-Markov processes, H-class of distribu-
tions, Modified Weibull distribution, parameter estimation.

1 Introduction

There is a great interest in developing generalized families of distributions
using a function G corresponding to a classical distribution, as the base-
line (parent) distribution for the generalization. Such generalizations are
quite popular primarily because some phenomena cannot be satisfactorily
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described by classical distributions, a defect that can be resolved if addi-
tional complexity is introduced into the parent distribution. Indeed, it is not
uncommon that the tail and skewed behavior cannot be easily captured which
affects the accuracy in terms of both description and prediction. It is the
class of such G families of distributions that improves the goodness-of-fit
and consequently the overall modelling process.

One of the first such families introduced by [2] is the Gompertz-Verhulst
family which itself belongs to the so called exponentiated family and is used
among others, for the analysis of the growth curve mortality. Following this
first family, several other families were proposed like the skewed family [1],
the Marshall-Olkin extended (MOE) family [13], the Beta G family [9], the
Gamma generated (GG) family [16] and the exponentiated exponential –
Poisson family [15] just to mention a few. In this work we focus on the 4-
parameter Modified Weibull Poisson (MWP) distribution [8] for developing
a new general H-class of distributions with MWP as the baseline parent
distribution.

Consider the Modified Weibull distribution introduced in [10] defined by

g(z) = azγ−1(γ + βz) exp
(
βz − azγeβz

)
, a, γ > 0, β ≥ 0 (1)

and

G(z) = 1− e−azγeβz , a, γ > 0, β ≥ 0. (2)

If N is a random variable with zero-truncated Poisson mass distribution
with parameter λ then the conditional distribution of the minimum ordered
statistic X = Z(1) of a random sample from (1) given N , is given by

fX|N (x|n) = ane−anx
γeβxxγ−1(γ + βx)eβx. (3)

Summing over all values of N we obtain the marginal distribution given
below

fX(x) = aλxγ−1(1− e−λ)−1(γ + βx)eβx−ax
γeβx−λ(1−e−axγeβx ). (4)

The above distribution is known as the Modified Weibull Poisson (MWP)
distribution with cumulative distribution function

F (x) =
eλ

eλ − 1
(1− e−λ(1−e−ax

γeβx )), x > 0. (5)
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Under the assumption that the parameter λ is such that the term eλ

eλ−1 ≈ 1
a general class of distributions with MWP as a baseline distribution can
be considered by using a parent continuous distribution function, say H(·).
Hence, based on an arbitrary parent distribution we introduce a family of
distributions with Modified Weibull Poisson as the baseline distribution,
defined by

F (x;λ) = 1− e−λ(H(x)), x > 0. (6)

where λ > 0 is the shape parameter of the proposed class. Note that
additional distributional parameters associated with the parent distribution
H(·) may also be involved in (6).

The present work concentrates on the family in (6) using a parent con-
tinuous distribution function and discuss some of its properties. Parameter
estimators for (6) are provided, under a multi state system (see [12]), that are
assumed to not be constant over time evolution. Asymptotic results regarding
the proposed parameter estimates are also provided. The performance of the
proposed methodology is investigated by simulated results.

The manuscript is structured in 6 sections. The second section estab-
lishes a family of distributions with the Modified Weibull distribution as the
baseline distribution. In the third section we discuss the semi-Markov setting
that is used in order to estimate, in Section 4, the parameters involved. The
semi-Markov transition matrix, in addition with some reliability indices are
established in Section 5. Finally, the accuracy of the proposed methodology
is evaluating in Section 6.

2 The H-Class of Distributions

Let us define the general family of distribution functions with shape parame-
ter λ given by

F (t;λ) := 1− (1− F (t; 1))λ (7)

which meets the conditions according to the Lebesgue measure, with pdf
f(·;λ). Typical members of the family are classical distributions like the
exponential and Weibull. The main feature of the family (7) is that the cdf
of the minimum ordered statistic of a random sample X1, X2, . . . , Xn from
(7) falls into the same family (see [3]; [4]).

Observe that clearly the MWP distribution given in (5) is a member of
the class (7). In what follows we introduce a generalized cfamily using an
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arbitrary function H(·), with the MWP distribution as the parent (baseline)
distribution function, defined in (6).

Observe that the proposed generalized H-class of distributions consists
of distributions (each having a different H function) falling within the class
(7) and each of which is based on the parent MWP distribution which is
also a member of (7).Thus, focusing on a single member of (7) we create
a generalized family of distributions by adding extra complexity into the
baseline MWP distirbution and at the same time staying within the class (7).

Remark 1 It is remarkable that the exponential distribution is obtained when
the function H(·) is the identity.

Observe that the H-class in (6) generates a family of distributions which
extends greatly the applicability of the Modified Weibull Poisson distribution
covering among others, classical problems in engineering, reliability and
safety as well as in any other field where the time-to-event is of primary
interest.

2.1 Basic Statistical and Reliability Functions

Assume that H(·) has pdf denoted by h(·). It is easy to see that the density
function of a typical member of the H-class (6) is

f(t) = λh(t)e−λH(t), (8)

where h(t) = dH(t)
dt the pdf associated with H(·).

Recall that the baseline distribution of the (6) is the MWP distribution
given in (5) with parameters a, λ and β, γ ≥ 0 which is denoted by
MWP(a, β, γ, λ) and it is obtained if in (6) we take H(t) = 1− e−atγeβt .

Taking the Weibull distribution H(t) = 1− e−atγ as a parent distribution
(i.e. setting β = 0 in the baseline distribution), we have the Weibull Poisson
distribution

F (t) = 1− e−λ(1−e−at
γ
), (9)

and

f(t) = aλe−λ(1−e
−atγ )e−at

γ
(γtγ−1). (10)

Observe that the Exponential Poisson distribution is obtained if H(t) =
1− eat i.e. if we take β = 0 and γ = 1 in the baseline distribution.
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As expected, irrespectively of the parent distribution, the resulting distri-
bution is a member of the H-class of distributions given in (6). The result is
summarized below:

Proposition 1 For any specific parent continuous distribution H(·) the
resulting F (·) creates a new class of distributions like (6).

Proposition 2 Assume that the cdf of the r.v. T falls into the class (6). Then,
the reliability function R(·;λ) is equal to

R(t;λ) := [e−H(t)]λ (11)

and the instantaneous failure rate hT defined as

hT (t;λ) = λh(t). (12)

The result is immediate from the definitions of the reliability and hazard
functions and the expressions (6) and (8).

2.2 H-class: A Class Closed Under Minima

In this section we establish that the H-class in (6) is closed under minima
which is a significant property which plays a key role in the statistical
inference of the multi-state setting of the next section. More precisely, the
above property is important for establishing the expressions for the quantities
of interest of the SMM (see Proposition 3). Although it is not a necessary
condition, it provides the ability to obtain a closed form for the expressions
of the main characteristics of the proposed model.

Theorem 1 If X1, . . . , Xn are i.i.d. r.v’s from (6), then the cdf Fmin of X(1)

satisfies the property (7).

For the required cdf we can easily see that

Fmin(t) = 1− [1− P (Xi ≤ t)]n = 1− [e−λH(t)]n

= 1− e−nλH(t)

which belongs to H-class in (6) with shape parameter nλ.
For the Weibull distribution which ibelongs to the above family, the cdf

of the minimum becomes

F (t) = 1− e−nλ(1−e−at
γ
). (13)
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Remark 2 The results of this section can be generalized by dropping
the assumption of identically distributed random variables. Indeed, if one
considers the case of independent random variables which though are not
necessarily identically distributed (inid) and assumes a random sample
X1, . . . , Xn with the cdf of Xi, i = 1, . . . , n being given by

F (t;λi) := 1− e−λiH(t) (14)

then, Theorem 1 still holds with Fmin belonging to the H-class (6) with
parameter

∑n
i=1 λi, that is

F (t) = 1− e−
∑n
i=1 λiH(t). (15)

In the following section we focus on the inid case for multi-state systems
withN (finite) number of states and sojourn times Tij (the time spend on state
i before moving to state j) having a cdf Fij(·;λij) belonging to the family
(6) with shape parameter λij , i, j ∈ {1, 2, . . . , N}.

3 The Semi-Markov Model – The General Setting

Let the semi-Markov process (SMP) Z = (Zt)t∈R+ where

• E = {1, . . . , N}, N <∞, (cf. [11]) is the state space,
• S = (Sn)n∈N represent the jump times,
• J = (Jn)n∈N are the visited states
• X = (Xn)n∈N are the successive sojourn times with X0 = S0 := 0 and
• N(t) := max{n ∈ N | Sn ≤ t}, t ∈ R+, (16)

is the process that counts the jumps in (0, t].

Observe that Zt := JN(t) is equivalent to Jn = ZSn .
It is easily showed that (Jn)n∈N is a Markov chain (MC).
Under the assumption that SMP is ergodic (interested readers are referred

to [11]), the main features of the model are the initial law

µ = (µ1, . . . , µN ) where µj := P(J0 = j), j ∈ E,

and the semi-Markov kernel

Qij(t) := P(Jn = j,Xn ≤ t|Jn−1 = i).

Define also by

pij := P(Jn = j|Jn−1 = i) = lim
t→∞

Qij(t)
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the associated the transition probabilities while the conditional sojourn time
distribution functions are given below:

Wij(t) := P(Sn − Sn−1 ≤ t|Jn−1 = i, Jn = j).

Let us consider some random variables Tij with c.d.f. Fij(t;λij). A
specific system is considered in this work which has the property that the
state of the system visited directly after state i is the state for which Tij is
minimized. Several remarks need to be done here.

Remark 3 (a) The motivation of the framework that we have just described
comes from the fact that one could see these Tijs as potential sojourn
times in i before jumping to j; for various reasons (minimum cost,
minimum waiting time, first come first served, etc.), there is an interest
in choosing the minimum of them.

(b) Note that this framework has been considered also in [4], but for
different family of distributions.

(c) This could be an interesting and rich framework for modelling time
varying parameters with a similar approach like in [6].

Under this setting, we can write

pij = P(Tij ≤ Til,∀l|Jn−1 = i)

and

Wij(t) = P(min
l
Til ≤ t|Jn−1 = i) =: Wi(t),

which is independent of the state j and represents the unconditional cdf of the
sojourn time in state i irrespectively of the state to be visited next. We finally
assume that the associated pdf is denoted by fi(t).

The following Proposition from [5] holds true for the class of distribu-
tions (6).

Proposition 3

Qij(t) =
λij∑

k∈E
λik

[
1− e

−
∑
k∈E

λikH(t)
]
, (17)
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pij =
λij∑

k∈E
λik

, (18)

Wi(t) = 1− e
−

N∑
j=1

λijH(t)

(19)

and

fi(t) =
N∑
j=1

λijh(t)

1− e
−

N∑
j=1

λijH(t)

 (20)

4 The Semi-Markov Model – Estimation with and Without
Censoring

We proceed now to statistical inference by focusing on L sample paths, L =
1, 2, . . ., under two different settings: the uncensored case where all sojourn
times are observed and the censored case with the sojourn time in the last
visited state being right censored with censoring time denoted by M .

Having available a semi-Markov process with L censored sample paths,{
j
(l)
0 , x

(l)
1 , j

(l)
1 , x

(l)
2 , . . . , j

(l)

N l(M)
, u

(l)
M

}
, l = 1, . . . , L and for the family of

distribution in (6), the general expression of the likelihood function is given
by

L =

(∏
i∈E

λ
N

(L)
i,0

i

) L∏
l=1

∏
i,j∈E

λ
N

(l)
ij (M)

ij

×
×
∏
l,i,k

(1− F
(
x
(l,k)
i

))∑
j∈E

λij

 f
(
x
(l,k)
i

)
1− F

(
x
(l,k)
i

)
×

×

∏
i∈E

Ni,M (L)∏
k=1

(
1− F

(
u
(k)
i

))∑
j∈E

λij

 . (21)

where

• N (L)
i,0 : number of trajectories beginning from state i,

• N (l)
i (M): number of visits to state i of the lth trajectory up to observa-

tion time M ,
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• N (l)
ij (M): number of transitions from state i to j of the lth trajectory up

to observation time M ,

• Nij(L,M) :=
L∑
l=1

N
(l)
ij (M),

• x(l,k)i : sojourn time in state i during the kth visit, k = 1, . . . , N
(l)
i (M)

of the lth trajectory,
• u(l)M := M − SN l(M) is the lth trajectory’s observed censored time,

• Ni,M (L) =
L∑
l=1

1{J(l)

Nl(M)
=i} is the number of visits in state i, as the last

visit, during the L trajectories; it holds that
∑
i∈E

Ni,M (L) = L;

• u(k)i : observed censored sojourn time in state i during the kth visit, k =
1, . . . , Ni,M (L).

The maximization of the likelihood provides the estimator of λij which
is equal to

λ̂ij(L,M) = − Nij(L,M)

L∑
l=1

B
(l)
i (M) +

Ni,M (L)∑
k=1

log
(

1− F
(
U

(k)
i

)) (22)

while the estimator of the initial law by

µ̂i(L,M) =
N

(L)
i,0

L
. (23)

In case of no censoring the sample paths are {j(l)0 , x
(l)
1 , j(l)1 , x(l)2 , . . .,

j
(l)

N l(M)
}, l = 1, . . . , L, and the associated uncensored likelihood function

can be considered as a particular case of the censored likelihoood defined
earlier in (21). As a result the expression of the estimator of λij in this case,
is a simplified version of the one given above for the censored case. Indeed,
the resulting estimator is

λ̂ij(L,M) = − Nij(L,M)
L∑
l=1

B
(l)
i (M)

, (24)

where

B
(l)
i (M) =

N
(l)
i (M)∑
k=1

log(1− F (X
(l,k)
i )).
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The initial probabilities can be estimated using the following expression

µ̂i(L,M) =
N

(L)
i,0

L
. (25)

Using the proper expression among the previous ones, for the parameter
estimates, the following estimators can be easily obtained:

p̂ij(M) =
λ̂ij(L,M)∑

l∈E
λ̂il(L,M)

=
Nij(M)

Ni(M)
, (26)

Ŵi(t,M) =

[
1− e

−H(t)
∑
j∈E

λ̂ij(L,M)
]

(27)

and

Q̂ij(t,M) =
λ̂ij(L,M)∑

k∈E
λ̂ik(L,M)

[
1− e

−H(t)
∑
k∈E

λ̂ik(L,M)
]
. (28)

4.1 The Case of Modified Weibull Poisson Distribution

It is straithforward that for the uncesored setting, the estimator of the
parameter λij for MWP, is simplified to

λ̂ij(L,M) =
Nij(L,M)

L∑
l=1

N
(l)
i (M)∑
k=1

1− e−a
(
x
(l,k)
i

)γ
e
β

(
x
(l,k)
i

) . (29)

In the censored case the estimator of λij becomes

λ̂ij(L,M) =
Nij(L,M)

L∑
l=1

N
(l)
i (M)∑
k=1

1− e−a
(
x
(l,k)
i

)γ
e
β

(
x
(l,k)
i

)
+
Ni,M (L)∑
k=1

1− e−a
(
u
(k)
i

)γ
e
β

(
u
(k)
i

)

. (30)
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4.2 The Case of the General H-class

Under the censoring setting and for the general case of H-class of distribu-
tions, the estimator of the parameter λij is

λ̂ij(L,M) =
Nij(L,M)

L∑
l=1

N
(l)
i (M)∑
k=1

H(X
(l,k)
i ) +

Ni,M (L)∑
k=1

H(U
(k)
i )

. (31)

where for H(·), one can consider any distribution function.

5 Reliability Measures of SMP

The purpose of this section is to remind definitions and results on Markov
renewal function, semi-Markov transition probabilities and some reliability
measures and to point out how we can estimate these measures. As it will be
clear in the sequel, the estimators obtained in the previous section for vari-
ous cases will furnish corresponding estimators of the reliability measures,
Markov renewal function and semi-Markov transition probabilities,.

The Markov renewal function, Ψij(t), t ≥ 0, with i and j belonging to
the state space E, is given by ([7]; [11])

Ψij(t) =
∞∑
n=1

Q
(n)
ij (t), (32)

where Q(n)
ij (t) is the nth convolution of Q.

Since the aforementioned is defined as a function of infinite terms, in

practice we use the sum
K∑
n=1

Q
(n)
ij (t) where K is a large enough integer such

that
∣∣∣Q(K)

ij (t)−Q(K−1)
ij (t)

∣∣∣ < ε, for a sufficient small ε.

For two states i and j, the semi-Markov transition matrix is ([11])

Pij(t) := P(Zt = j|Z0 = i) =

∫ t

0
Ψij(ds)

(
1−

∑
k∈E

Qjk

)
(t− s).

(33)

Consider now two disjoint subsets of the state space, say U and D
corresponding to the up- and down-states the union of which is the entire
state space. To simplify matters, let U = {1, 2, . . . , n − 1, n} and D =
{n+ 1, n+ 2, . . . , N}.
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The reliability functionR(·) of the system, evaluated at t is equal to ([14])

R(t) = µUPUU (t)1n,

where: PUU (t) is the value of P (t) obtained using QUU (t), the restriction
of the kernel Q(t) to the up-states U ; µU is the restriction of the initial
distribution µ to the up-states U ; 1n is a vector of 1s.

After obtaining the reliability function, the failure rate can be easily
obtained:

r(t) = −R
′(t)

R(t)
, for t > 0.

Similarly, under the present setting, the availability and maintainability
are given by ([14], [11])

A(t) = µP (t)1N ;n, (34)

M(t) = 1− µDPDD(t)1N−n,

where: 1N ;n = (1, · · · , 1︸ ︷︷ ︸
n

, 0, · · · , 0︸ ︷︷ ︸
N−n

)>, 1N−n is a vector of 1s; PDD is

the value of P (t) obtained using QDD(t), the restriction of the kernel Q(t)
to the down-states D; µD is the restriction of the initial distribution µ to the
down-states D.

The mean time to failure (MTTF) is given by:

MTTF = µU (In − pUU )−1mU , (35)

where: mU is the restriction to U of the mean sojourn time in state i, mi;
pUU (t) is the restriction to U of the Markov transition matrix p. A similar
expression holds also true for the mean time to repair (MTTR).

Note that, for all i, j ∈ E, t ≥ 0, taken into account the parameter
estimates obtained in the previous section for various cases, we can obtain
the corresponding plug-in estimators of Ψij(·), Pij(·), R(·), r(·), A(·) and
M(·). Finally, mi for any state i, is estimated by

m̂
(1)
i (M) :=

∫ ∞
0

(1− Ŵi(t,M))dt =

∫ ∞
0

(1− e
−H(t)

N∑
j=1

λ̂ij(M)

)dt

or

m̂
(2)
i (M) :=

Ni(M)∑
k=1

X
(k)
i

Ni(M)

and we can also obtain the plug-in estimator of the MTTF.
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6 Simulation Studies

The accuracy of the estimating procedure is examined using simulations in
R. A semi-Markov process, with 3 states, for several values of the number of
trajectories, L, in both cases of censoring or not, is considered. The sojourn
times are taken randomly from a Modified Weibull Poisson distribution with
fixed parameters a = 2, β = 1 and γ = 2 which are chosen arbitrarily:

Fij(t) = 1− e−λij(1−e−at
γeβt ). (36)

The total observation time is assumed to be M = 1000 and we record the
results of the estimated parameters of interest. As for the initial law, is sim-
ulated from the discrete Uniform distribution with parameters 1 and N . For
the cases where there exist censored paths, using the Uniform distribution, the
trajectories with censored sojourn time in the first visited state, are chosen.
Randomly we cut the interval that is computed as the first/last sojourn time in
two parts, where the second part is considered to be the censored sojourn time
in the first/last visited state. Note that modifications of the method described
above could be considered.

The two tables below provides the target values of the parameters λij and
the markov chain transition probabilities pij

λij 1 2 3
1 0 5.9 4.1
2 6.5 0 4.3
3 5.2 5.8 0

pij 1 2 3
1 0 0.590 0.410
2 0.602 0 0.398
3 0.473 0.527 0

6.1 Censoring at the Beginning and/or at the End

Figures 1 and 2 present the squared errors (S.E.) of the estimators λ̂ij and
p̂ij respectively, as the number of trajectories L increases from 1 to 100.
Observe that in almost all cases the estimators of both parameters are very
good with respect to the squared errors. However, the squared errors of the
markov chain transition probabilities, p̂ij , are smaller as compared to the ones
of the parameters λ̂ij . Figure 3 presents the estimate of the initial law function
which is closed to the true value of (µ1, µ2, µ3) =

(
1
3 ,

1
3 ,

1
3

)
According to Figure 4, the estimated values for the semi-Markov process

transition probabilities are very close to the real values with the squared errors
to be less than 0.4%
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Figure 1 Squared errors of λ̂ij for censored trajectories at the beginning and/or at the end,
for L ∈ [1, 2, . . . , 100].

Figure 2 Squared errors of p̂ij for censored trajectories at the beginning and/or at the end,
for L ∈ [1, 2, . . . , 100].
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Figure 3 Estimators for the initial law, µ̂i for censored trajectories at the beginning and/or
at the end, for L ∈ [1, 2, . . . , 100].

Figure 4 Squared errors of P̂ij(t) for censored trajectories at the beginning and/or at the
end, for t ∈ [1, 2, . . . , 100].
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6.2 All Samples are Observable Without Censoring

The estimators λ̂ij of the parameters for the baseline distribution, MWP, and
the markov chain transition probabilities, p̂ij , behave very well even in the
case of no censoring (see Figures 5 and 6).

Figure 5 Squared errors of λ̂ij for uncensored trajectories, for L ∈ [1, 2, . . . , 100].

Figure 6 Squared errors of p̂ij for uncensored trajectories, L ∈ [1, 2, . . . , 100].
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Figure 7 Estimators for the initial law, µ̂i for uncensored trajectories, L ∈ [1, 2, . . . , 100].

Figure 8 Squared errors of P̂ij(t) for uncensored trajectories, for t ∈ [1, 2, . . . , 100].

As for the estimator of the initial law (see Figures 3 and 7), in both cases
of censoring or not censoring, is close to the vector (13 ,

1
3 ,

1
3) which is the true

value, especially when the number of trajectories is large enough (greater
than 30). Figure 8 proves that estimators of the semi-Markov transition
probabilities are very accurate with a squared error to be almost zero.
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7 Conclusion

A new generalized class of distributions based on the Modified Weibull dis-
tribution is proposed in this work where for any specific parent distribution,
a new class of distributions is obtained. The aforementioned opens up the
way to make inference on a semi-Markov model by allowing a variety of
distributions for sojourn times. The main contribution of this work is the
fact that using the proposed generalized class we do not limit the problem to
a restricted family of distributions. The proposed methodology is examined
using simulations providing a comparison between real and estimated param-
eters with respect to the squared errors. The results are both encouraging and
reliable in all cases.
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