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Abstract

In this paper, the expected value of the first hitting time of a threshold of
the state of charge of a battery is investigated. The model considers a battery
storage system connected to a wind power plant under a ramp rate limitation
scheme. The level of charge in the battery is the result of operations that are
modelled by a Markov chain model with random rewards. The Markov chain
and reward characteristics do depend on the considered ramp rate limitation
scheme that the wind power producer has to respect in order to guarantee a
quasi-stable output power to the grid. In this paper, we derive a system of
integral equations for the hitting time of the state of charge of the battery and
the application to real data validates the analytical results.
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1 Introduction

One of the main problem of the increasing production of wind power is
the injection of electricity into the grid. Sharp variations may induce grid
instability. Renewable energy sources are uncontrollable and this fact force
the wind farm (WF) to forecast its production. The forecast is always affected
by an error and for this motivation the WF needs to find solutions which are
generally expensive [1].

One of the possible strategies is to limit the ramp-rate of the wind
power [2, 3, 4, 5].

This strategy consists of imposing a limitation to ramp-up and ramp-down
events. Precisely, when the wind turbine increases its power production from
a time unit to the successive one more than the fixed limitation, the wind
power producer (WPP) has to store the excess of production in a storage
system or in case of insufficient battery capacity to inject electricity in the
grid and suffer a penalty from the controllers of the grid. In the contrary
case, when the wind turbine decreases its power more than the limitation,
the WPP needs using the battery to supply additional energy to respect the
limitation. Also in this case, if the battery does not allow for this operation for
insufficient stored energy the WPP will suffer a penalty from the controllers
of the grid. The limitation is indicated by a percentage of the maximum
ramp rate which can be offered by the wind turbine. Usually, the unit of
measure of the ramp rate is MW per minute (MW/min). This method of
controlling the wind power output in strongly linked with the necessity to
adopt a power storage to produce energy as constant as possible. The main
goal is to compensate the variability of the wind power at a reasonable cost,
and a lot of control strategies have been studied to find the optimal use of
the battery taking into consideration different boundary conditions such as
the life of the battery and the state-of-charge (SOC) limits. In particular,
it has been shown that the SOC is fundamental not only to immediately
respond to energy requests but also because it directly influences the battery
functionality [6, 7, 8, 9]. In [10] the authors propose a battery storage scheme
composed by two batteries which have the SOC monitored with the aim to
obtain the minimum number of the battery switch-overs. In [11] the battery
charge is modeled as a fluid into a reservoir where the charge is accumulated
or depleted progressively. In [12] a probabilistic approach is used to find the
transient solution of the amount of charge into the battery which depends on
several input and output processes which in turn depend on the level of charge
of the battery.
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The Markov reward processes are largely used to study and model the
time evolution of a phenomenon [13, 14] and their validity is demonstrated
by applying the models to real cases. A general model based on Markov
reward chains has been recently proposed by [15]. In that research article
the authors were able to compute moments of aggregate discounted penalties
over any considered time interval. Based on that recent contribution, here
we focus on the expected value of some hitting times of the SOC of the
battery. This aspect is crucial in understanding different aspects related to
the efficiency of the storage system. Among them we recall the assessment
of the battery life and management costs as well as the performance which
depends on the level of the SOC of the battery. Moreover, the information
provided by our investigation could also be used for the optimal sizing of the
storage system, the latter being a relevant recent research subject, see [16].
Our proposal is based on a three state Markov chain model for the battery
operations. The states represent the possible operations involving the battery
consisting in the charge, discharge of energy or the maintaining of the SOC
level. Any operation is represented by a random amount of energy that the
battery charge gets accumulated or depleted according to the availability of
the battery expressed by the difference between the instantaneous available
capacity and the SOC. It should also be remarked that the SOC process is
a non-linear function of the random charge/discharge. Our main result is the
determination of a system of integral equations expressing the expected value
of the hitting time of the fully-charged state and of the empty state of the
battery for any initial condition expressed by the battery operation state and
the initial value of the SOC process. The solution of the system of integral
equations is get numerically by means of a discretization of the SOC process
and the approximating linear system of equation is expressed in matrix form.
The theoretical results are supported by an empirical investigation on real
data. First, we consider 10 years of wind speed data on an hourly base.
We implement the model on different scenarios that consider ramp-rate
limitations of different percentages ranging from 1% to 5%. We compare
the results obtained on real data with those we get from the mathematical
model and we conclude that the model can be effectively applied to real cases.
The rest of the paper is organized as follows: Section 2 presents the physical
problem, the proposed mathematical model and the theoretical and numerical
results. Section 3 discusses the real data and the results of the model are
compared with the empirical one based on the real data. Section 4 presents
some concluding remarks.
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2 SOC Modeling

In this section we describe the model on which this study is based on,
and subsequently we calculate mathematically the expected value of the fist
hitting time of a threshold of the SOC. In the last subsection we show the
numerical procedure.

2.1 Probabilistic Model

In this subsection we report the modeling we use to study the phenomenon
from the paper [15].

Limiting the ramp rate means making the power produced from a WF
more stable and decreasing the variability which intrinsically characterizes
it. We indicate with e(t) the power produced from the wind turbine in each
time t, with ce(t) the power subject to the imposed limitation in each time t,
and with lim the limitation. ce(t) presents softer fluctuations and less steep
slopes compared to e(t). The larger the difference between the two profiles,
the stricter is the limitation. To obtain the power ce(t) we use the following
formula:

ce(t) =

ce(t− 1) + lim if e(t) > e(t− 1) + lim
ce(t− 1)− lim if e(t) < e(t− 1)− lim

e(t) otherwise
(1)

The maximum ramp rate that we can have in this system depends on the
considered wind turbines and their rated power. In the applied section it is set
to 2 MW and limiting it means imposing an allowed percentage of 2 MW/h.
The percentage indicates the maximum variation that we can have from an
hour to the next one in both cases the power increases and decreases. In
particular, the former is called up-ramping limitation and we have a ramp-
up event if e(t) > e(t−1)+ lim, the latter is called down-ramping limitation
and we have a ramp-down event if e(t) < e(t− 1)− lim. By computing the
difference between e(t) and ce(t) we know when the battery will charge,
discharge and its level of charge will not change (unchanged status), and
the corresponding amounts of energy which characterize these situations.
At this point we consider the stochastic process {B(t)}t∈N with values
B(t) ∈ E = {+1, 0,−1}. The quantity +1 indicates the situation in which
the power is increasing from two consecutive time-steps and the variation is
greater that the imposed ramp-rate limitation. This cause a difference between
the power profiles e(t) and ce(t) and the excess energy has to be charged into
the battery. Vice versa, the quantity −1 indicates the situation in which the
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power is decreasing from two consecutive time-steps and it is not respecting
the limitation. In this case the battery has to provide the defect energy to make
the system respects the limitation. The quantity 0 indicates that the variation
of the power production is within the allowed range and no operation of
charging/discharging the battery is required.

The next step of the model consists of hypothesizing that the vector of
states {B(t)}t∈N is a realization of a discrete time homogeneous Markov
chain which has the following transition probability:

P{B(t+ 1) = j|B(t) = it, B(t− 1) = it−1, . . . , B(0) = i0}
= P{B(t+ 1) = j|B(t) = it} = pit,j .

(2)

As already described, each value of the process B(t) involves a variation
to the battery SOC. We indicate with R(t) the process which describes the
theoretical variation of the power into the battery. If B(t) = +1, we couple
this state with an R(t) = R+1 which is a random charge power. Vice versa,
if B(t) = −1, we couple this state with an R(t) = R−1 which is a random
discharge power. At this point we hypothesize that the random variable R(t)
has a conditional distribution which depends only on the state B(t) in each
time step t ∈ N . The following equations indicate this characteristic:

F+1(·) = P(R(t) ≤ ·|B(t) = +1) = P(R+1 ≤ ·),
F−1(·) = P(R(t) ≤ ·|B(t) = −1) = P(R−1 ≤ ·),

(3)

where F+1 and F−1 are assumed to be absolutely continuous. For this reason
R+1 and R−1 are random variables having the same cumulative distribution
function ofR(t) conditional onB(t) = +1 andB(t) = −1, respectively. We
can indicate this in the following way:

D(R+1) := D(R(t)|B(t) = +1),

D(R−1) := D(R(t)|B(t) = −1).
(4)

We get the charge/discharge powers by means of the two distributions
D(R+1) and D(R−1), respectively. These two distributions depend on the
state of the underlying Markov chain B(t). They collect possible charge or
discharge values depending on the probability distributions of equations (4).
We introduce the SOC process (S(t), t ∈ N) which indicates the level of
charge into the battery at each time t. Obviously, the SOC of the battery has
an upper limit c and a lower limit c which are technical constrains. These
limits are considered as a percentage of the capacity of the battery.
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Considered S(t− 1) = l we have the following relation

S(t) =

(R+1 + l) ∧ c if B(t) = +1
(l −R−1) ∨ c if B(t) = −1

l if B(t) = 0.
(5)

Thus, when the battery is in the state +1, the random power R+1 should
be stored in the battery. Nevertheless, only the quantity (R+1 + l) ∧ c can
be effectively stored depending on the previous level of the SOC l and on
the maximum capacity c. Contrarily, when the battery is in the state −1, the
random power R−1 should be supplied by the battery. Nevertheless, only the
quantity (l−R−1)∨ c can be effectively supplied depending on the previous
level of the SOC l and on the minimum capacity c. Finally, when B(t) = 0,
no charging/discharging operation is required and the SOC remain unchanged
to the level l.

2.2 The Hitting Times of the SOC of the Battery

In this work we study the expected value of the hitting time of the fully-
charged condition and of the empty condition of the battery starting from a
given initial SOC.

After defining the state-of-charge process we define the quantity τ(c) as
follows:

τ(c) = inf{t ∈ N : S(t) = c}, (6)

which is the fist time of the total charge of the battery. Denote by

Ri,l(c,m) = P(τ(c) > m | B(0) = i,

S(0) = l) = P(i,l)(τ(c) > m), (7)

the corresponding survival function.
We are interested in characterizing the following quantity:

ai,l(c) = E[τ(c) | B(0) = 1, S(0) = l] = E(i,l)[τ(c)]. (8)

Being τ(c) a discrete random variable, we have that

ai,l(c) = E(i,l)[τ(c)] =
∑
g≥0

P(i,l)[τ(c) > g]. (9)
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It is possible to notice that

P(i,l)(τ(c) > m) =
∑
j∈E

P(i,l)(τ(c) > m,B(1) = j)

=
∑
j∈E

E(i,l)[P(i,l)(τ(c) > m,

B(1) = j, S(1) < c | S(1))]

=
∑
j∈E

E(i,l)[1{S(1)<c,B(1)=j}

P(j,S(1))(τ(c) > m− 1)]

(10)

At this point we use the definition of the SOC in equation (10) and we
obtain the following equations:

E(i,l)[1{B(1)=1,(R+1+l)∧c<c}P(+1,R+1+l)∧c)(τ(c) > m− 1)]

+ E(i,l)[1{B(1)=0,l<c}P(0,l)(τ(c) > m− 1)]

+ E(i,l)[1{B(1)=−1,(l−R−1)∨c<c}P(−1,l−R−1)∨c)(τ(c) > m− 1)]

(11)

= E(i,l)[1{B(1)=+1,R+1+l<c}P(+1,R+1+l)(τ(c) > m− 1)] (12)

+ E(i,l)[1{B(1)=0,l<c}P(0,l)(τ(c) > m− 1)] (13)

+ E(i,l)[1{B(1)=−1,l−R−1<c}P(−1,l−R−1)(τ(c) > m− 1)]. (14)

We indicate with A(1), A(2) and A(3) the members (12), (13) and (14),
respectively. We find that

A(1) = pi,+1

∫ c−l

0
db f+1(b)R+1,l+b(c;m− 1), (15)

A(2) = pi,0R(0,l)(c;m− 1), (16)

A(3) = pi,−1

[ ∫ l−c

0
db f−1(b)R−1,l−b(c;m− 1)

+ F−1(l − c)R−1,c(c;m− 1)

]
. (17)
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Since that E(i,l)[τ(c)] =
∑

m≥0 P(i,l)[τ(c) > m], we can compute the∑
m≥0(A(1) +A(2) +A(3)) and we obtain the following equation:

ai,l(c) =
∑
m≥0

pi,+1

∫ c−l

0
db f+1(b)R+1,l+b(c;m− 1)

+
∑
m≥0

pi,0R(0,l)(c;m− 1)

+
∑
m≥0

pi,−1

[ ∫ l−c

0
db f−1(b)R−1,l−b(c;m− 1) + F−1(l − c)

R−1,c(c;m− 1)

]
.

(18)

We set h = m− 1 and we observe that∑
m≥0

R·,·(c;m− 1) =
∑
h+1≥0

R·,·(c;h)

=
∑
h≥−1

R·,·(c;h) = 1 +
∑
h≥0

R·,·(c;h) = 1 + a·,·(c).

(19)
Therefore, we obtain that

ai,l(c) = pi,+1

∫ c−l

0
db f+1(b)(1 + a+1,l+b(c) + pi,0[1 + a0,l(c)]

+ pi,−1

[ ∫ l−c

0
db f−1(b)[1 + a−1,l−b(c)]

+ F−1(l − c)[1 + a−1,c(c)]

]
. (20)

From the equation (20) we have the following equation

ai,l(c) = pi,+1F+1(c− l)

+ pi,+1

∫ c−l

0
db f+1(b) · a+1,l+b(c) + pi,0(1 + a0,l(c))
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+ pi,−1

(
F−1(l − c)

+

∫ l−c

0
db f−1(b) · a−1,l−b(c) + F−1(l − c)

+ F−1(l − c) · a−1,c(c)
)
. (21)

By observing that F−1(l− c) + F−1(l− c) = 1 we get the equation (22)

ai,l(c) = pi,+1 · F+1(c− l)

+ pi,+1 ·
∫ c−l

0
db f+1(b) · a+1,l+b(c) + pi,0 + pi,0 · a0,l(c)

+ pi,−1

(
1 +

∫ l−c

0
db f−1(b) · a−1,l−b(c) + F−1(l − c) · a−1,c(c)

)
.

(22)
As the value of i ∈ {+1, 0,−1}, we obtain a system of three integral

equations with unknown functions a1,·(c), a0,·(c), a−1,·(c).
At this point we provide an explicit representation of the system of

equations.

a1,l(c) = p1,1 · F1(c− l) + p1,1

∫ c−l

0
dbf+1(b)a+1,l+b(c)

+ p1,0 + p1,0 · a0,l(c)

+ p1,−1

(
1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c)

+ F−1(l − c)a−1,c(c)
)
,

a0,l(c) = p0,1 · F1(c− l) + p0,1

∫ c−l

0
dbf+1(b) · a+1,l+b(c)

+ p0,0 + p0,0 · a0,l(c)

+ p0,−1

(
1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c)
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+ F−1(l − c)a−1,c(c)
)
,

a−1,l(c) = p−1,1 · F1(c− l) + p−1,1

∫ c−l

0
dbf+1(b) · a+1,l+b(c)

+ p−1,0 + p−1,0 · a0,l(c)

+ p−1,−1

(
1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c)

+ F−1(l − c)a−1,c(c)
)
. (23)

Before finding the system solutions, we note that the term a0,l(c) appears in
all the equations. Indeed, from the first equation we have

a0,l(c) =
1

p1,0

{
a1,l(c)− p1,1 · F1(c− l)

− p1,1
∫ c−l

0
dbf+1(b) · a+1,l+b(c)− p1,0

− p1,−1
(

1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c)

+ F−1(l − c) · a−1,c(c)
)}

.

(24)

The second equation gives

a0,l(c) =
1

1− p0,0

×
{
p0,1F1(c− l) + p0,1

∫ c−l

0
dbf+1(b) · a+1,l+b(c)

+ p0,0 + p0,−1

×
(

1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c) + F−1(l − c) · a−1,c(c)

)}
.

(25)
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The third equation gives

a0,l(c) =
1

p−1,0

{
a−1,l(c)− p−1,1F1(c− l)

− p−1,1
∫ c−l

0
dbf+1(b) · a+1,l+b(c)− p−1,0

− p−1,−1
(

1 +

∫ l−c

0
dbf−1(b)a−1,l−b(c)

+ F−1(l − c)a−1,c(c)
)}

.

(26)

If we equate the equation (24) with the equation (25) we obtain that

a1,l(c)− p1,1 · F1(c− l)− p1,1
∫ c−l

0
dbf+1(b) · a+1,l+b(c)− p1,0

− p1,−1
(

1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c) + F−1(l − c) · a−1,c(c)

)
− p1,0 · p0,1

1− p0,0
F1(c− l)−

p0,1 · p1,0
1− p0,0

∫ c−l

0
dbf+1(b) · a+1,l+b(c)

− p1,0 · p0,0
1− p0,0

− p1,0 · p0,−1
1− p0,0

(
1 +

∫ l−c

0
dbf−1(b)a−1,l−b(c)

+ F−1(l − c)a−1,c(c)
)

= 0,

(27)
that is

a1,l(c)−
[
p1,1 +

p1,0 · p0,1
1− p0,0

]
F1(c− l)

−
[
p1,1 +

p1,0 · p0,1
1− p0,0

] ∫ c−l

0
dbf+1(b)a+1,l+b(c)

−
[
p1,0 +

p1,0 · p0,0
1− p0,0

]
− [p1,−1 +

p1,0 · p0,−1
1− p0,0

]

·
(

1 +

∫ l−c

0
dbf−1(b)a−1,l−b(c) + F−1(l − c)a−1,c(c)

)
= 0.

(28)
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In this way we obtain the following equation:

a1,l(c) =
[
p1,1 +

p1,0 · p0,1
1− p0,0

]
(F1(c− l) +

∫ c−l

0
dbf+1(b) · a+1,l+b(c))

+
[
p1,0 +

p1,0 · p0,0
1− p0,0

]
+
[
p1,−1 +

p1,0 · p0,−1
1− p0,0

]
·
(

1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c) + F−1(l − c) · a−1,c(c)

)
.

(29)
By equaling the Equation (25) with the Equation (26) we obtain the

following equation:

a−1,l(c)− p−1,1
(
F1(c− l) +

∫ c−l

0
dbf+1(b) · a+1,l+b(c)

)
− p−1,0

− p−1,1
(

1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c) + F−1(l − c)a−1,c(c)

)
=

p−1,0
1− p0,0

{
p0,1 ·

[
F1(c− l) +

∫ c−l

0
dbf+1(b)a+1,l+b(c)

]
+ p0,0

+ p0,−1

(
1 +

∫ l−c

0
dbf−1(b) · a−1,l−b(c) + F−1(l − c)a−1,c(c)

)}
.

(30)
At this point we get a−1,l(c):

a−1,l(c) =
[
p−1,1 +

p−1,0 · p0,1
1− p0,0

]
·
(
F1(c− l) +

∫ c−l

0
dbf+1(b) · a+1,l+b(c)

)
+
[
p−1,0 +

p−1,0 · p0,0
1− p0,0

]
+
[
p−1,−1 +

p−1,0 · p0,−1
1− p0,0

]
·
(

1 +

∫ l−c

0
dbf−1(b)a−1,l−b(c) + F−1(l − c)a−1,c(c)

)
.

(31)

The term a0,·(c) does not appear in the equations (29) and (31), hence
we have obtained a system composed by two equations with two unknown
variables, a−1,·(c) and a1,·(c). In this way we can calculate a0,·(c) from
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the equations (23). We may simplify the writing by considering ti,j :=
pi,j +

pi,0·p0,j
1−p0,0 ∀i, j ∈ E and we obtain the following system of two integral

equations which can be claimed as follows

Proposition 1 The expected value of the first hitting time of the total charge
of the battery satisfies the next system of integral equations

a1,l(c) = [t1,1 · F1(c− l) + t1,0 + t1,−1]

+ t1,1 ·
∫ c−l

0
dbf+1(b) · a+1,l+b(c)

+ t1,−1

∫ l−c

0
dbf−1(b) · a−1,l−b(c)

+ t1,−1F−1(l − c)a−1,c(c)

a−1,l(c) = [t−1,1 · F1(c− l) + t−1,0 + t−1,−1]

+ t−1,1 ·
∫ c−l

0
dbf+1(b) · a+1,l+b(c)

+ t−1,−1

∫ l−c

0
dbf−1(b) · a−1,l−b(c)

+ t−1,−1F−1(l − c)a−1,c(c)

(32)

while a0,l(c) can be recovered from relation (24) once the system (32) has
been solved.

In the same way we can define τ(c) = inf{t ∈ N : S(t) = c} the first
time of total discharging of the battery. With

Ri,l(c;m) = P(τ(c) > m|B(0) = i, S(0) = l) = P(i,l)(τ(c) > m),

we denote its conditional survival function. Let

ai,l(c) = E[τ(c)|B(0) = i, S(0) = l] = E(i,l)[τ(c)] (33)

in a similar way we obtain

ai,l(c) =
∑
g≥0

P(i,l)[τ(c) > g] (34)
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Pi,l[τ(c) > g] =
∑
j∈E

P(i,l)(τ(c) > m,B(1) = j)

=
∑
j∈E

E(i,l)[P(i,l)(τ(c) > m,B(1) = j, S(1) > c|S(1))]

=
∑
j∈E

E(i,l)[1{S(1)>c,B(1)=j}P(j,S(1))(τ(c) > m− 1)].

(35)

We can use the definition of the SOC process to have the following result:

P(i,l)[τ(c) > g]

= E(i,l)[1{B(1)=1,(R+1+l)∧c>c}P(+1,(R+1+l)∧c)(τ(c) > m− 1)]

+ E(i,l)[1{B(1)=0,l>c}P(0,l)(τ(c) > m− 1)]

+ E(i,l)[1{B(1)=−1,(l−R−1)∨c>c}P(−1,(l−R−1)∨c)(τ(c) > m− 1)]

(36)

= E(i,l)[1{B(1)=1,(R+1+l)>c}P(+1,(R+1+l)(τ(c) > m− 1)] (37)

+E(i,l)[1{B(1)=0,l>c}P(0,l)(τ(c) > m− 1)] (38)

+E(i,l)[1{B(1)=−1,l−R−1>c}P(−1,l−R−1)(τ(c) > m− 1)] (39)

We name the equations (37), (38) and (39), B1, B2, and B3, respectively.
We can write the following equation:

B1 = pi,+1 ·
∫ ∞
0

dbf+1(b) ·R+1,b+l(c;m− 1). (40)

We observe that R+1,l(c;m) is defined only into the interval l ∈ [c, c].
Therefore, we obtain:

B1 = pi,+1 ·
(∫ c−l

0
dbf+1(b) ·R+1,b+l(c;m− 1)

+

∫ ∞
c−l

dbf+1(b) ·R+1,b+l(c;m− 1)

)
= pi,+1 ·

(∫ c−l

0
dbf+1(b) ·R+1,b+l(c;m− 1)

+ F+1(c− l) ·R+1,c(c;m− 1)

)
.

(41)
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We can also obtain the quantities B2 and B3.

B2 = pi,0 ·R0,l(c;m− 1)). (42)

B3 = pi,−1 ·
∫ l−c

0
dbf−1 ·R−1,l−b(c;m− 1). (43)

At this point apply with
∑

m≥0(B1 +B2 +B3) to get

ai,l(c) =
∑
m≥0
{pi,+1 ·

(∫ c−l

0
dbf+1(b) ·R+1,l+b(c;m− 1)

+ F+1(c− l) ·R+1,c(c;m− 1)

)
+ pi,0 ·R0,l(c;m− 1)

+ pi,−1

∫ l−c

0
dbf−1(b) ·R−1,l−b(c;m− 1)}.

(44)

We put h = m− 1 and we observe that∑
m≥0

R·,·(c;m− 1) =
∑
h+1≥0

R·,·(c;h)

=
∑
h≥−1

R·,·(c;h) = 1 +
∑
h≥0

R·,·(c;h) = 1 + a·,·(c).
(45)

Therefore, we obtain the following equation:

ai,l(c) = pi,+1 ·
(∫ c−l

0
dbf+1(b) · (1 + a1,l+b(c))

+ F+1(c− l) · (1 + a+1,c(c))

)
+ pi,0 · (1 + a0,l(c)) + pi,−1 ·

∫ l−c

0
dbf−1(b) · (1 + a−1,l−b(c))

= pi,+1 ·
(∫ c−l

0
dbf+1(b) · a1,l+b(c)

+ F+1(c− l) + F+1(c− l) + F+1(c− l) · a+1,c(c)

)
+ pi,0 + pi,0 · a0,l(c) + pi,−1F−1(l − c)

+ pi,−1

∫ l−c

0
dbf−1(b)a−1,l−b(c).

(46)
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The previous equation is equivalent to the following:

ai,l(c) = pi,+1 ·
∫ c−l

0
dbf+1(b) · a1,l+b(c) + pi,+1

+ pi,+1 · F+1(c− l) · a+1,c(c) + pi,0 + pi,0 · (a0,l(c))

+ pi,−1 · F−1(l − c) + pi,−1 ·
∫ l−c

0
dbf−1(b) · a−1,l−b(c).

(47)

As we vary i ∈ {+1, 0,−1} we obtain the system composed by the
following three equations:

a1,l(c) = p1,1 ·
(

1 +

∫ c−l

0
dbf+1(b) · a1,l+b(c) + F+1(c− l) · a+1,c(c)

)
+ p1,0 + p1,0 · a0,l(c) + p1,−1 · F−1(l − c)

+ p1,−1 ·
∫ l−c

0
dbf−1(b) · a−1,l−b(c)

(48)

a0,l(c) = p0,1 ·
(

1 +

∫ c−l

0
dbf+1(b) · a1,l+b(c) + F+1(c− l) · a+1,c(c)

)
+ p0,0 + p0,0 · a0,l(c) + p0,−1 · F−1(l − c)

+ p0,−1 ·
∫ l−c

0
dbf−1(b) · a−1,l−b(c)

(49)

a−1,l(c) = p−1,1 ·
∫ c−l

0
dbf+1(b) · a1,l+b(c) + p−1,1

+ p−1,1 · F+1(c− l) · a+1,c(c) + p−1,0 + p−1,0 · a0,l(c)

+ p−1,−1 · F−1(l − c) + p−1,−1 ·
∫ l−c

0
dbf−1(b) · a−1,l−b(c)

(50)
Similar calculations as we did before for the system of expected values

of the first hitting time of complete charge of the battery, can reduce the
system to only two equations with unknown functions a+1,·(c), a−1,·(c) and
a formula expressing a0,·(c) depending on the two previous unknowns.

Remark 1 It is worth noting that the problem can be extended to build
more complex models with more than 3 states. An example is represented
when the hybrid plant has several batteries and each of them has a specific
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charge/discharge policy. This more complex framework can be managed
with the introduction of more states but the mathematical apparatus remains
almost unchanged.

2.3 Numerical Solution Method

To solve the system (32) we proceed numerically by means of a discretization.
We consider the interval [0, c] which indicated the possible values of energy to
be charged or discharged into the battery and we discretize it by introducing
a grid of n intervals of amplitude δ = c

n .
Let {si}ni=0 be the n+ 1 points of the partition. We observe that s0 = 0,

si = si−1 + δ ∀i = 1, .., n, and sn = c.
In general, let φ : [0, c]→ R be any real valued function and let consider

its approximation over the grid {si}ni=0 as follows:

φ(l) =

{
φ(c) if l = c = sn

φ(sh−1) if sh−1 ≤ l < sh ∀i = 1, .., n.
(51)

Consequentially, we can approximate the functions of the system as
follows: ∫ c−l

0
dbf+1(b) · a+1,l+b(c)

≈
n−[l]∑
k=1

F1(sk)− F1(sk−1)

δ
a+1,s[l]+kδ(c)

where [l] = max {i : si ≤ l}.

(52)

∫ l−c

0
dbf−1(b) · a−1,l−b(c) ≈

[l]−[c]∑
k=1

F−1(sk)− F−1(sk−1)
δ

a−1,s[l]−kδ(c)

where [c] = max {i : si ≤ c}
(53)

F−1(l − c)a−1,c(c) ≈ F−1(s[l] − s[c])a−1,s[c](c). (54)

By putting [l] = s[c], s[c]+1, .., sn−1, we obtain a system with 2 · (n− [c])
equations in 2 · (n− [c]) unknown variables ai,sj (c) with i ∈ {+1,−1} and
j ∈ {[c], [c] + 1, .., n− 1}.

For completeness, we write again the the discrete system:

a1,s[c](c) = [t1,1F1(sn − s[c]) + t1,0 + t1,−1]
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+ t1,1

n−[c]∑
k=1

F1(sk)− F1(sk−1)

δ
a+1,s[c]+kδ(c)

+ 0 + t1,−1 · 1 · a−1,s[c](c) (55)

a1,s[c]+1(c) = [t1,1F1(sn − s[c]+1) + t1,0 + t1,−1]

+ t1,1

n−([c]+1)∑
k=1

F1(sk)− F1(sk−1)

δ
a+1,s[c]+1+kδ(c)

+ t1,−1 ·
[c]+1−[c]∑
k=1

F−1(sk)− F−1(sk−1)
δ

a−1,s[c]+1−kδ(c)

+ t1,−1 · F−1(s[c]+1 − s[c]) · a−1,s[c](c)
(56)...

a1,sn−1(c) = [t1,1 · F1(sn − sn−1) + t1,0 + t1,−1]

+ t1,1

n−(n−1)∑
k=1

F1(sk)− F1(sk−1)

δ
a+1,sn−1+kδ(c)

+ t1,−1 ·
n−1−[c]∑
k=1

F−1(sk)− F−1(sk−1)
δ

a−1,sn−1−kδ(c)

+ t1,−1 · F−1(sn−1 − s[c])a−1,s[c](c)

(57)

a−1,s[c](c) = [t−1,1F1(sn − s[c]) + t−1,0 + t−1,−1]

+ t−1,1

n−[c]∑
k=1

F1(sk)− F1(sk−1)

δ
a+1,s[c]+kδ(c) + 0

+ t−1,−1 · 1 · a−1,s[c](c)

(58)

a−1,s[c]+1
(c) = [t−1,1F1(sn − s[c]+1) + t−1,0 + t−1,−1]

+ t−1,1

n−[c]−1∑
k=1

F+1(sk)− F1(sk−1)

δ
a+1,s[c]+1+kδ(c)

+ t−1,−1 ·
[c]+1−[c]∑
k=1

F−1(sk)− F−1(sk−1)
δ

a−1,s[c]+1+kδ(c)

+ t−1,−1 · F−1(s[c]+1 − s[c])a−1,s[c](c)
(59)
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...

a−1,sn−1(c) = [t−1,1F1(sn − sn−1) + t−1,0 + t−1,−1]

+ t−1,1

n−(n−1)∑
k=1

F+1(sk)− F+1(sk−1)

δ
a+1,sn−1+kδ(c)

+ t−1,−1 ·
n−1−[c]∑
k=1

F−1(sk)− F−1(sk−1)
δ

a−1,sn−1−kδ(c)

+ t−1,−1 · F−1(sn−1 − s[c]) · a−1,s[c](c).
(60)

At this point we can notice that

si − si−1 = δ, ∀i

and that

F (sk)− F (sk−1) = F (kδ)− F ((k − 1)δ),

F (sn − sc) = F ((n− [c])δ),

ai,sn(c) = ai,c(c) = 0,

0∑
k=1

= 0.

The system can be written in matrix notation by introducing the following
matrices where the symbol ∗ ∈ {−1, 1}.

a∗,·(c) =


a∗,s[c](c)

a∗,s[c]+1
(c)

·
·
·

a∗,sn−1(c)

 (61)

T∗,f (c) =


t∗,1 · F1((n− [c])δ) + t∗,0 + t∗,−1

t∗,1 · F1((n− [c]− 1)δ) + t∗,0 + t∗,−1
·
·
·

t∗,1 · F1(δ) + t∗,0 + t∗,−1

 (62)
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∆F∗(i, j) =

{
F∗(j−i)δ−F∗(j−i−1)δ

δ if i < j
0 if i ≥ j

(63)

with i = 1, 2, . . . , n− [c], j = 1, 2, . . . , n− [c].

F−(i, j) =

{
F−1(δ(i− 1)) i = 1, 2, . . . , n− [c]− 1, j = 1

0 otherwise
(64)

In this way we obtain a system of linear equations which can be repre-
sented by means of block matrices operations. It can be solved by means of
standard algebraic or numerical techniques.[

I − t1,1 ·∆F+ −t1,−1 · (∆F T− + F−)

−t−1,1 ·∆F+I −t−1,1 · (∆F T− + F−)

]
·
[
a+1,·(c)
a−1,·(c)

]
=

[
T+1,f (c)
T−1,f (c)

]
(65)

3 Results and Discussion

In this section we present the results we obtain by considering as study
case a wind plant composed by only a wind turbine located in Sardinia
(geographical coordinates 39.5 N latitude and 8.75 E longitude) and con-
nected to a battery. We use MATLAB to implement the model and obtain the
results.

The starting point is the wind speed data obtained from the Modern-Era
Retrospective analysis for Research and Applications, Version 2 (MERRA-
2) [17]. The values we have are hourly based and they refer to a period
of 10 years, from the 1st of August 2008 to the 1st of August 2018. The
wind turbine has hub height equal to 95 metres and rated power of 2 MW. It
starts generating power with a wind speed of 4 m/s and the maximum wind
speed at which the generator can produce power is 25 m/s. We show the
power curve we use to get the power production from the wind speed data in
Figure 1.

By limiting the ramp-rate of the power produced by the wind turbine we
obtain a new power profile in which the steep rises and falls of power are
smooth according to the limit chosen. We can clearly see this in Figure 2
where the difference in power production between the two cases is evident.
In particular the production without limitation reaches about 0.4 MW around
hour 15 and the limited production reaches about 0.15 MW at the same time.
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Figure 1 The power curve [15].

Figure 2 Comparison between power with and without a ramp-rate limitation of 1%.

In this work we consider the ramp-rate limitation of 1%, 2% and 5%. Fur-
thermore, we consider the following two scenarios of battery configuration:

• 1-battery scenario in which we take into consideration only one battery
connected to the system of capacity 0.36 MWh and with minimum and
maximum SOC level equal to 0.036 MW and 0.324 MW, respectively.
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Table 1 Mean, standard deviation, coefficient of skewness and kurtosis of the charge values
for the real and the modeled cases

Charge Values
Percentage limitation – Case Mean Std Skewness kurtosis

1%−Real case 0.4482 0.4401 1.0468 3.0908

1%−Model 0.4471 0.4401 1.0475 3.0788

2%−Real case 0.3739 0.3721 1.2059 3.7162

2%−Model 0.3742 0.3728 1.2157 3.7356

5%−Real case 0.2826 0.2887 1.4330 4.7442

5%−Model 0.2825 0.2868 1.4176 4.7106

Table 2 Mean, standard deviation, coefficient of skewness and kurtosis of the discharge
values for the real and the modeled cases

Discharge Values
Percentage Limitation – Case Mean Std Skewness kurtosis

1%−Real case -0.2562 0.2513 -1.4080 4.9237

1%−Model -0.2559 0.2524 -1.4096 4.8816

2%−Real case -0.2943 0.2998 -1.4418 4.7503

2%−Model -0.2939 0.2995 -1.4440 4.7737

5%−Real case -0.2759 0.2735 -1.4523 5.0271

5%−Model -0.2751 0.2759 -1.4296 4.8188

• 2-battery scenario in which we take into consideration two batteries con-
nected to the system of total capacity 0.72 MWh and with minimum and
maximum SOC level equal to 0.036 MW and 0.648 MW, respectively.

In Table 1 and Table 2 mean, standard deviation, coefficient of Skewness
and Kurtosis of the charge and discharge values, respectively, are shown. In
particular, the real and the model statistics can be compared.

As it is evident, the values of each statistics for real and modeled cases
are similar both for the charge and discharge values.
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We report the probability transition matrices for each ramp-rate limitation
according to [15].

Matrix (1%) =

0.889 0.071 0.039
0.075 0.817 0.108
0.060 0.051 0.889

 (66)

Matrix (2%) =

0.859 0.108 0.033
0.064 0.855 0.081
0.055 0.088 0.858

 (67)

Matrix (5%) =

0.788 0.185 0.027
0.039 0.917 0.043
0.039 0.186 0.775

 (68)

If we consider the matrix (67) which refers to the case of a ramp-rate
percentage limitation equal to 2% and we are in the status −1, we have the
86% of probability that the next state is again −1.

In Tables 3 and 4 we show the results obtained from the real and the
modeled cases, respectively. We considered the scenarios in which the battery
switches from the fully charged condition to the half charged condition and
from the fully charged condition to the empty condition. It is possible to
notice that there is a growing trend of the amount of hours which follows both
the increase of the ramp-rate percentage limitation and the increase of the

Table 3 Real-case results of the average time measured in hours elapsed between fully
charged and medium charged conditions, and fully charged and empty conditions
Battery Scenarios 1-battery 2-battery 1-battery 2-battery 1-battery 2-battery
Ramp-rate Limitation 1% 1% 2% 2% 5% 5%

fully charged− 2.4228 3.3083 2.7337 4.4589 3.4168 4.8599
half charged

fully charged− empty 3.3043 4.6777 3.4342 4.8246 4.6058 6.4024

Table 4 Modeled results of the average time measured in hours elapsed between fully
charged and medium charged conditions, and fully charged and empty conditions
Battery Scenarios 1-battery 2-battery 1-battery 2-battery 1-battery 2-battery
Ramp-rate Limitation 1% 1% 2% 2% 5% 5%

fully charged− 1.3448 1.6721 1.4722 1.9659 2.0504 3.2790
half charged

fully charged− empty 2.2511 3.6150 2.3425 3.7199 3.2873 6.0083
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capacity of the battery. The first aspect is due to the fact that a higher ramp-
rate percentage corresponds to a less strict limitation and, consequently, to
lower values of energy which have to be charged or discharged into/from the
battery. The second aspect is a consequence of the bigger capacity available
into the battery which can absorb more variations of power and spend more
time to switch from the fully charged condition to the half charged or empty
condition. What it is also evident, and corresponds to what we expect to
happen, is that the average time to switch from the two extreme conditions of
the battery is bigger than the one needed to reach the half charged condition.

4 Concluding Remarks

In this piece of work, we have proposed the computation of some hitting
times for the SOC of a battery system connected to a wind power plant under
a ramp-rate limitation scheme. The results consist in a system of integral
equations expressing the first moment of the hitting times and to the proposal
of a numerical discretization scheme that transforms the system of integral
equations into a system of linear equations.

An application to a real wind speed data set is also presented as an
illustration of the potentiality of the results. The theoretical results show a
good agreement with those based on real data. This means that the model
can be effectively applied in practical problems that the energy manager
should face such as limitation of penalties for unavailability of battery power
transmission or the optimal sizing of the storage system.
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