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Abstract

With the increase of human dependency over computer software, consider-
able effort has been given to determine software reliability effectively. A huge
variety of software reliability growth models (SRGMs) have been developed
to explain statistically how system reliability varies over time by monitoring
the failure data sets during the testing process. The paper proposes a new
SRGM based on taking into account the fault removal efficiency which is
the ratio of corrected and detected faults during the testing process. The new
model is compared to some known model from the relevant literature for
two certain data sets and it turns out to perform better in terms of four GOF
benchmarks.
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1 Introduction

The word — “Reliability” is somehow a qualitative term. In general, a
product is reliable, if it delivers on its promises. Most engineering products
are expected to function reliably once they have been developed, tested, and
delivered. Software industry suffers many challenges in producing highly
reliable software. A software development project cannot go off the rails;
the project manager must adhere to a strict timeline and budget. On the one
hand, management expects its testing team to eliminate all software flaws in
order to increase software reliability. The management, on the other hand,
wants to keep testing expenses to a minimum. These are two characteristics
of software development that cannot be overlooked. As a result, management
must make an informed decision about when the software will be released.
Early release may result in less reliable software but lower testing expenses.
A later release would result in more reliable software, but at the expense of
increased testing expenditures. In such a scenario, the management prefers an
optimal path or a trade-off option based on the considerations of reliability
growth and testing cost. The primary objective of employing SRGMs is to
test and debug the system until it achieves the necessary level of reliability.
An SRGM is a statistical model that forecasts how software reliability will
increase over time when faults are found and fixed [1, 2]. The strategy
is based on the notion that a program has faults and these faults present
themselves as visible failures during the testing process, which are identified
and corrected. A crucial component of the development of these statistical
models is recognizing realistic assumptions and then modelling the testing
activities effectively within a specified or adequate analytical framework.
Software reliability models offer a systematic and quantitative approach to
figure out the failures in a timely manner. These models aid management in
determining the amount of time and effort that should be spent on testing [3].
Since 1970s, a plenty of SRGMs have been developed under various sets of
assumptions on testing environment [4]. The majority of the models have
a common drawback that is unrealistic assumptions. They assume that the
faults are independent and that the faults are corrected as soon as they are
identified i.e. the number of detected faults is equal to the number of corrected
faults [5]. These two assumptions do not hold true in a real-world testing
scenario. The remedy of one fault may be contingent on the correction of
another fault in the future. As a result, it is not always possible to remove all
the identified faults immediately. Furthermore, it’s possible that when fixing
the target fault, some other faults are rectified as well, which may have been
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exposed in the future. It indirectly implies that detecting one fault leads to the
correction of multiple faults. Thus, the number of repaired faults may be the
same, higher, or lower than the number of detected faults in practise.

This paper presents a software reliability model that takes into account
a special parameter “ϕ” called fault removal efficiency that maps between
the number of identified faults and the number of repaired faults. The fault
removal efficiency is defined as the fault removal rate per detected fault.

2 Related Work

The most commonly used technique in developing the SRGMs is Non-
homogeneous Poisson process (NHPP) [5]. Other techniques include
Bayesian models, Markov models etc. Many recent models [6–11] emphasize
the use of different machine learning methods including neural network,
fuzzy logic, deep learning etc. The Jelinski-Mornada model [12], regarded
as the first SRGM was published in 1972. Since then, a lot of work has been
done as the researchers shown a great interest in suggesting novel models
that would best suit the failure data from the past. The literature on reliability
modelling is large and extensive, as many researchers came up with a variety
of models based on a variety of assumptions and techniques. Goel and
Okumoto [13] developed a simple NHPP model that received a huge attention
by the researchers. The Delayed S-Shaped model [14] is a variant of the
NHPP process that divides the testing process into two different phases: fault
detection phase and fault removal phase. The model incorporates a learning
process as a result of the project team’s increasing experience and skill
improvement. The Inflection S-Shaped model [15] is developed under the
assumption that some faults are not exposed before some others are removed.
The likelihood of detecting a failure at any given time is related to the
number of detectable defects in the program at the time. Kapur and Garg [16]
suggested a model based on the concept of dependent faults. While correcting
the leading faults, several additional faults (called dependent faults) that may
have caused future failure are also corrected. Kapur et al. [17] also presented
two general frameworks for NHPP models: one for when the fault detection
and fault elimination processes are supposed to be the same, and another for
when they are supposed to be separate processes. Huang et al. [18] proposed
a model for software reliability growth that integrates fault dependency and
a time-dependent delay function. Peng et al. [19] designed a model that
includes the fault detection and fault removal processes with the presence
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of a testing effort function. Zhu and Pham [6] presented a software reliability
model that took into account the fault-dependent detection and the imperfect
fault removal. They used a genetic algorithm (GA) to estimate parameters
in their model. Haque and Ahmad [20] proposed a similar type model that
considers the issue of dependent faults in imperfect debugging environment.
Haque and Ahmad [21] suggested another model that takes into account
the uncertainty impact of the testing environment and assumptions when
estimating software product reliability. Li and Pham [22] developed a model
that uses fault introduction rate (i.e. number of new faults introduced per
corrected fault) to represent the dependencies between fault detection and
fault correction processes. The model additionally includes a testing coverage
rate function. Chatterjee et al. [23] proposed a model that addresses the fault
dependency issue in the context of multi-release software.

There are already a vast number of SRGMs, and it is impossible to include
them all. We have tried to cover some models that address the issue of fault
dependency. They are mainly based on imperfect debugging which provides
the concept of fault introduction rate. These models simply consider ϕ < 1.
There is one model known as Kapur-Garg model [16] that assumes ϕ > 1.
However, most of the current SRGMs are based on the consideration that ϕ =
1. Our proposed model treats the fault detection and fault removal operations
as two distinct processes and attempts to construct a link between them. The
model is flexible to deal with any real value of ϕ (i.e. ϕ < 1, ϕ > 1 and
ϕ = 1).

3 Proposed Model

The proposed model is an NHPP model that is represented using a mean value
function. Most of the SRGMs suggested till now are based on the assumptions
that the faults are independent and they are fixed as soon as they are detected
(i.e. the number of detected faults are equal to the number of corrected faults).
They use a generalized function [17, 24]:

dm(t)

dt
= b(t)[N −m(t)] (1)

where,

– m(t): estimated number of faults identified over time t.
– N: the total number of faults in the system before testing begins.
– b(t): time dependent fault detection rate function.
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The proposed model uses the concept of fault removal efficiency by incor-
porating a parameter ‘ϕ’. It is the ratio of corrected and detected faults.
Naturally, ϕ ≥ 0. Here, ϕ < 1 means that the number of corrected faults is
less than the number of detected faults and ϕ > 1 means that the number of
corrected faults is greater than the number of detected faults. ϕ = 1 indicates
that both are equal. Thus, the number of faults removed over time t is “ϕm(t)”
and Equation (1) can be framed as:

dm(t)

dt
= b(t)[N−ϕm(t) ] (2)

In this paper, we use the two-parameter logistic function to represent the
fault detection rate. It is generally known as the inflection S-shaped fault
detection rate function which has been used in many studies [14, 25]. It is
expressed as follows:

b(t) =
b

1+βe−bt
, b > 0, β > 0; (3)

where ‘b’ is a constant and β is the inflection factor. Replacing the value of
b(t) in Equation (2),

dm(t)

dt
=

b

1+βe−bt
[N−ϕm(t) ] (4)

Before testing begins, the number of detected faults and the number of
corrected faults are both zero. Thus, ϕ = 1. Solving Equation (4), for the
mean value function m(t) with these initial conditions (i.e. m(0) = 0 and
ϕ = 1), we find:

m(t) =
N

ϕ

[
1− 1+β

(β+ebt)
ϕ

]
(5)

Table 1 presents the proposed model and some established models with
their mean value functions.

4 Model Validation, Comparison and Analysis

The acceptability of a model is determined by identifying its strengths,
weaknesses, and the level of trust that can be placed in the findings presented.
SRGMs are evaluated using two major steps: first, parameter estimation and
second, verification of the model fittings using different comparison criteria.
The performance analysis of the new model is discussed in detail in the
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Table 1 A set of reliability models

Model m(t)

G-O Model [13] a(1-e−bt)

DSS Model [14] a(1-(1+bt)ebt)

ISS Model [15]
a
(
1−e−bt

)
1+βe−bt

TC Model [26] N

(
1−

(
β

β+(at)b

)α)

Loglog Model [27] N(1−e−(at
b
−1) )

New Model
N

ϕ

[
1− 1+β

(β+ebt)
ϕ

]

following subsections. The model was compared to some existing models
mentioned in Table 1.

4.1 Comparison Criteria

An SRGM is judged based on its potential to recreate the software’s actual
behaviour and forecast the software’s future behaviour using past failure data.
There are many Goodness-of-Fit (GOF) criteria available to compare the
efficiency of different models and investigate how well a model fits a set of
observations. In this paper, the model validation has been carried out using
four GOF criteria namely – Mean square error or MSE, Predictive ratio risk
or PRR, Coefficient of determination or R2 and Akaike information criteria
or AIC. The formulas of these criteria [21, 28] are given below where, ‘n’
denotes the number of samples in the dataset, and ‘p’ denotes the number of
model parameters.

• MSE: The mean square error (MSE) represents the average squared
residual (i.e. the difference between the observed value and predicted
value), and is defined as:

MSE =

n∑
i=1

(mi−m(ti))
2

n− p
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• PRR: The predictive-ratio risk (PRR) calculates the error per model-
estimate and it is defined as:

PRR =
n∑

i=1

(
m(ti)−mi

m(ti)

)2

• R2: It measures the distribution of data points around the fitted regres-
sion line. This evaluation criteria is also known as the coefficient of
determination:

R2= 1−

n∑
i=1

(mi−m(ti))
2

n∑
i=1

(mi−
n∑

j=1

mj

n )
2

• AIC: AIC is used to determine which of several models is most likely to
be the best for a given dataset by providing a score value that penalizes
the number of model parameters. The well known formula of AIC is:

AIC = 2p− 2 log(L)

where, L represents the maximum likelihood estimate. An alternate measure
for LSE regression is as follows [29]:

AIC = n× ln (MSE)+2p

The smaller MSE, PRR, and AIC values, as well as the greater R2 value
that tends to 1, are always anticipated to justify fewer fitting flaws and
improved model performance [27].

4.2 Dataset Used

In [30], the failure datasets of four different releases of a Tandem Computer
Project have been reported. We used the failure data of first two releases for
our model validation and comparison. In release-1, after 20 weeks of testing
and 10000 hrs of CPU execution, total 100 errors were collected. In release-
2, total 120 errors were reported over the testing duration of 19 weeks and
10272 CPU Hrs. The datasets of Release-1 and Release-2 are shown together
in Table 2.

4.3 Results and Comparison

The fittings of software reliability models are determined only when it is
feasible to estimate their parameters. Parameter estimation refers to the
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Table 2 Tandem computers test data

Cumulative Faults Cumulative Faults

Test Week Release-1 Release-2 Test Week Release-1 Release-2

1 16 13 11 81 95

2 24 18 12 86 100

3 27 26 13 90 104

4 33 34 14 93 110

5 41 40 15 96 112

6 49 48 16 98 114

7 54 61 17 99 117

8 58 75 18 100 118

9 69 84 19 100 120

10 75 89 20 100 —

process of making efficient use of sample data in estimating the values of
unknown variables that exist in the mathematical models [31]. There are
several techniques available to estimate the parameters, for example, least
square estimation, maximum likelihood estimation, Bayes parameter estima-
tion etc. Generally, LSE is recommended when the sample size is small and
censoring is not particularly heavy [32, 33]. Thus, we have preferred Least
Square Estimation (LSE) approach to decide the parameters’ values of all six
models (listed in Table 1).

Then we can calculate the aforementioned four GOF criteria of all
SRGMs using the parameter values. For the Tandem project release-1 dataset,
Table 3 provides the results including the estimated parameter values and
criteria values. Similarly, Table 4 presents the results for release-2 dataset.
The following is a summary of the Table 3:

• MSE = 1.936. It is nearly four times lower than the second best value
achieved (i.e. Loglog model – 8.437) in this study.

• PRR= 0.026. It is roughly 8-times lower than the second best value for
G-O model.

• R2 = 0.998. It is the highest among all models.
• AIC = 10.751 which is the smallest among all models.

Table 4 can be summarized as:

• MSE = 3.77. It is near about half of the second best value achieved (i.e.
ISS model – 7.139) in this study.
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Table 3 Model validation on release-1 dataset

Model LSEs MSE PRR R2 AIC

G-O Model a = 130.2, b = 0.083 12.915 0.203 0.986 51.061

DSS Model a = 103.984, b = 0.265 28.066 1.084 0.969 66.584

ISS Model a = 110.829, b = 0.172,
β = 1.205

10.564 0.305 0.989 47.899

TC Model N = 119.205,
a = 13.798×10−3,
b = 1.111, β = 7.337,
α = 65.069

14.577 0.3 0.987 55.836

Loglog Model N = 105.109, a = 1.095,
b = 0.947

8.437 0.238 0.991 43.403

New Model N = 110.382, b = 0.287,
β = 7.624, ϕ = 1.069

1.936 0.026 0.998 10.751

Table 4 Model validation on release-2 dataset

Model LSEs MSE PRR R2 AIC

G-O Model a = 182.95, b = 0.061 26.217 0.212 0.982 59.948

DSS Model a = 127.399, b = 0.242 14.693 0.796 0.990 48.946

ISS Model a = 124.445, b = 0.254,
β = 3.778

7.139 0.261 0.996 35.08

TC Model N = 128.17, a = 0.02,
b = 1.442, β = 7.05,
α = 83.734.

12.913 0.45 0.993 45.805

Loglog Model N = 119.881, a = 1.06,
b = 1.157

7.956 0.263 0.995 37.139

New Model N = 124.553, b = 0.314,
β = 8.258, ϕ = 1.032

3.77 0.016 0.998 22.724

• PRR = 0.016. It is nearly 13-times lower than the second best value
achieved (i.e. 0.212) in this study.

• R2 = 0.998 again. It is the highest among all models.
• AIC = 22.724 which is the smallest among all models.

Thus on both the datasets, the proposed model achieved the best fitting
values with the lowest MSE, PRR, AIC and the highest R2. Figures 1 and
2 display the curves representing the model performance on each dataset,
comparing the estimated faults to the observed faults.
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5 Conclusion

The new model suggested in the paper, establishes a relationship between
fault detection and fault correction processes assuming that they are two
different processes. It incorporates the widely used inflection S-shaped fault
detection rate function and a parameter that represents the fault removal
efficiency. The model has been validated on two real world datasets and
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compared its Goodness-of-fit with five reputed models using four evaluation
criteria. In all four benchmarks, the findings clearly indicate that the proposed
model beats the other five models. The accuracy of SRGMs heavily depends
on the types of datasets. A model may perform well on some datasets while
failing to deliver good results on others. Therefore, it will be premature to
claim the superiority of the model. In the future, we will concentrate on
a thorough analysis of the model using a wide range of datasets and other
comparison criteria.
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