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Abstract

Two complex multi-state systems subject to multiple events are built in an
algorithmic and computational way by considering phase-type distributions
and Markovian arrival processes with marked arrivals. The internal perfor-
mance of the system is composed of different degradation levels and internal
repairable and non-repairable failures can occur. Also, the system is subject
to external shocks that may provoke repairable or non-repairable failure.
A multiple vacation policy is introduced in the system for the repairperson.
Preventive maintenance is included in the system to improve the behaviour.
Two types of task may be performed by the repairperson; corrective repair
and preventive maintenance. The systems are modelled, the transient and
stationary distributions are built and different performance measures are
calculated in a matrix-algorithmic form. Cost and rewards are included in the
model in a vector matrix way. Several economic measures are worked out and
the net reward per unit of time is used to optimize the system. A numerical
example shows that the system can be optimized according to the existence
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of preventive maintenance and the distribution of vacation time. The results
have been implemented computationally with Matlab and R (packages: expm,
optim).

Keywords: Phase-type distribution (PH), Marked Markovian arrival process
(MMAP), vacation policy, preventive maintenance.

1 Introduction

The occurrence of repairable and non-repairable failures in a reliability sys-
tem can provoke severe damage and major financial costs. To avoid such an
outcome, several methodologies are considered, such as redundant systems
and preventive maintenance.

Preventive maintenance (PM) is the maintenance methodology of systems
in order to keep them running and prevent any costly unplanned downtime.
A successful maintenance policy requires planning and scheduling mainte-
nance of system before a failure takes place. In this respect, several preventive
maintenance policies have been proposed in the reliability field. Barlow and
Hunter (1960) considered two types of preventive maintenance policies to
optimize a system depending on the failure distribution. Multiple preventive
maintenance policies were given in detail in Nakagawa (1977, 2005) and
Finkelstein et al. (2020) developed a new model for the hybrid preventive
maintenance of systems with partially observable degradation. Recently,
other strategies to optimize a reliability system are given in Shi et al. (2022).
In this work an advanced estimation strategy is proposed, in which only one
surrogate model is built, being able to estimate the failure probabilities of
different performance functions.

Nowadays binary systems have been extended by multi-state systems
(MSS). Complex systems that have a finite number of performance lev-
els and various failure modes, each producing different effects on system
performance, are termed multi-state systems. Murchland (1975) discussed
this concept, which has since been developed extensively. One of the main
problems when complex multi-state systems are modelled is that intractable
expressions appear in the modelling and in the performance functions. This
fact makes difficult the algorithmization and interpretation of results. One
possible solution is based on two elements, phase-type distributions (PH)
and Markovian arrival processes (MAP), which enable to express complex
systems in an algorithmic and computational way. PH were introduced by
Neuts (1975) and studied in detail in Neuts (1981). PH has been considered



MMAPs to Model Complex Multi-State Systems with Vacation Policies 475

in multiple fields such as queuing theory, physics, reliability and survival. In
the physics field PH has been considered to model the behaviour of resistive
memories RRAM in Acal et al. (2019). They have also been considered in
survival to study the evolution of several illnesses such as cancer (Pérez-
Ocón et al, 1998; Ruiz-Castro and Zenga, 2020). The modelling with PH
in reliability is extensive. A transient analysis of a multi-state system was
modelled by using PH in Pérez-Ocón et al. (2006). One of the main properties
of PH is that it is dense in the non-negative probability distributions set.
Therefore, any non-negative probability distribution can be approximated so
much as it is desirable through a PH.

MAP is a counting process in which PH distributions play an important
role. This process was given by Neuts (1979) and reviewed by Artalejo et al.
(2010) and He (2014). A special case is that of the MAP with marked arrivals
(MMAP), which enables us to count different types of arrival. MMAPs are
developed in a compressive form in He (2014). This markovian structure,
analogously to PH, enables to count event in an algorithmic way. Multiple
examples in several fields are proposed in He and Neuts (1998) and it has also
been considered in the modelling of reliability discrete systems (Ruiz-Castro,
2018, 2020).

In complex multi-state systems is usual to consider either repairing
immediately after repairable failure or immediate replacement when a non-
repairable occurs. However, this might not be the case in a real scenario.
For example, a failed unit might not be repaired immediately in a small or
medium-sized firm that cannot afford to employ a full-time repairperson.
The permanent service facility may increase cost, idleness, deterioration in
quality. To reduce the wastage of valuable resources like time, money, quality,
etc., vacation is a prominent idea for the service facility. Instead of remaining
idle during this period, the repairperson may take a ‘vacation’ and/or use
the time to do other work, thus optimising resources and reducing costs.
A repairperson is on vacation when absent from the repair facility, whether
or not it is empty. The economic implications of this situation should be
considered, taking into account that the vacation policy applied might impact
both on performance and also on economic rewards/costs.

Multiple vacation policies have been considered in queuing theory and
reliability. A comparative study of different vacation policies on the reli-
ability characteristics is presented in Shekhar et al. (2020). A Markovian
queuing model with a vacation policy in the repair facility where the vaca-
tion period follows negative exponential is developed in Kalyanaraman and
Sundaramoorthy (2019).
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Multi-state Markov systems with vacation periods have also been consid-
ered. In Zhang et al. (2017) a k-out-of-n system with a single repairperson,
assuming a phase-type distribution for the vacation time and an exponential
distribution for the lifetime of the units is modelled.

In this paper, two complex multi-state unit systems subject to multiple
events, such as internal and external repairable and non-repairable failures are
modelled. The internal performance of the system is partitioned into several
levels of degradation. A vacation policy is introduced by considering the
internal degradation levels. The first system is extended to include preven-
tive maintenance and the corresponding vacation policy. The repairperson
performs two different tasks, corrective repair and preventive maintenance.
The corrective and preventive time distributions can be different for both
cases. The system is modelled by using PHs and MMAPs in an algorithmic
and computational way. Multiple measures such as availability, reliability
function, rate of occurrence of failure (ROCOF) and mean number of events
are worked out. The transient and stationary distributions are calculated in a
matrix-algorithmic form. Costs and rewards, depending on the internal degra-
dation levels, are included. Everything is algorithmically and computationally
modelled and has been applied to compare and optimize two similar systems
with and without preventive maintenance. The results have been implemented
computationally with Matlab and R-cran.

The paper is organized as follows. Both systems are described in Sec-
tion 2. These systems are modelled in Section 3. Measures and costs/profits
are developed in Sections 4 and 5, respectively. In Section 6 a numerical
application is given where optimization and comparison are shown. Conclu-
sions are given in Section 7. Finally two Appendices show the algorithm of
the models in detail.

2 The Systems

Two different multi-state one-unit systems are modelled by considering
Markovian Arrival Processes with marked arrivals, with and without pre-
ventive maintenance. Both systems are subject to internal degradation and
external shocks. Repairable and non-repairable failures, depending on the
internal degradation state, can occur in both cases. The systems can be
observed only by the repairperson and this one is not always at his workplace.
A policy of multiple vacation periods for the repairperson is given.
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2.1 The System Without Preventive Maintenance

The internal behaviour of the unit consists of two different levels, minor
degradation and moderate degradation. The number of states for the first and
second level is n1 and n2 respectively. The unit can suffer repairable and
non-repairable failures from both degradation levels. The plug in which unit
is connected can undergo external shocks that can also provoke repairable
or non-repairable failures. The system is composed of one repairperson.
This repairperson can take multiple vacation periods depending on the unit
degradation level. Thus, the repairperson is on vacation initially. When
this one returns, if the system is in minor degradation level then a new
random vacation period will be started by the repairperson. Otherwise this
subject stays at the workplace waiting for a possible repairable failure. If
the repairperson is on vacations and a repairable failure occurs, it remains
in repairable failure macro-state till the repairperson returns and then he
begins the repair. Analogously, if the repairperson is on vacations and a non-
repairable failure occurs then it will be replaced by an identical unit when the
repairperson returns. On the contrary, if the repairperson is at the workplace
and a repairable or non-repairable occurs, then the repair starts immediately
or it is replaced in a negligible time respectively. All random times embedded
in the model go through different states until the event occurs.

These times embedded in the system verify the following assumptions.

Assumption 1. The internal operational time follows a PH distribution with
representation (α,T) with order n. The n phases are partitioned into two
macro-states, minor degradation (first n1 phases) and moderate degradation
level (remaining phases, n2). The PH representation is composed of matrix
blocks according to the levels. Then, α1 is a row vector composed of the first
n1 elements of α. The matrix T is given by

T =

(
T11 T12

0 T22

)
.

The order of T11 and T22 is n1 and n2 respectively.
The column vector T0 = −Te contains the failure rates from the different

operational phases. Throughout this paper e is a column vector of ones with
appropriate order and A0 = −Ae for any matrix A.

The column vector is expressed as T0 = T0
r + T0

nr where T0
r and T0

nr

are column vectors which contain the repairable and non-repairable failure
rates from the operational phases, respectively. These vectors are partitioned
according to the degradation levels as T0

i,r and T0
i,nr for i = 1, 2.
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Assumption 2. The external shock is modelled through a PH renewal process
where the time between two consecutive shocks is PH distributed with repre-
sentation (γ,L). The order of this representation is p. The vector L0 contains
the transition intensities up to external shock rate depending on the phases of
external shock time. This vector is partitioned as L0 = L0

r + L0
nr where L0

r

and L0
nr are column vectors which contain the repairable and non-repairable

external shock rates, respectively.

Assumption 3. The vacation time follows a PH distribution with representa-
tion (υ,V), being V a matrix of order v.

Assumption 4. The correction repair time follows a PH distribution with
representation (β1,S1), with S1 being a matrix of order m1.

Therefore, the behaviour of the system can be partitioned into six macro-
states of the state-space S,

S = {E1 = O1, E2 = OWR
2 , E3 = OR2 , E4 = RFWR,

E5 = NRFWR, E6 = CR}.

These macro-states contain the phases with the following situations:

• E1 = O1: The unit is working in minor internal degradation.

E1 = O1 = {(i, j, k); i = 1, . . . , n1, j = 1, . . . , p, k = 1, . . . , ν}

i: phase of the minor internal degradation level
j: phase of the external shock time
k: phase of the vacation time

• E2 = OWR
2 : The unit is working in middle internal degradation with

the repairperson on vacation. The superscript WR indicates “without
repairperson” in the repair facility,

E2 = OWR
2 = {(i, j, k); i = 1, . . . , n2, j = 1, . . . , p, k = 1, . . . , ν}

i: phase of the middle internal degradation level
j: phase of the external shock time
k: phase of the vacation time

• E3 = OR2 : The unit is working in middle internal degradation with
the repairperson on the workplace. The superscript R indicates that the
“repairperson” is in the repair facility,

E3 = OR2 = {(i, j); i = 1, . . . , n2, j = 1, . . . , p}
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i: phase of the middle internal degradation level
j: phase of the external shock time

• E4 = RFWR: The unit is broken with repairable failure and the
repairperson is on vacation. RF indicates that the system is in “repairable
failure” and the superscript indicates “without repairperson” in the repair
facility,

E4 = RFWR = {(j, k); j = 1, . . . , p, k = 1, . . . , ν}

j: phase of the external shock time
k: phase of the vacation time

• E5 = NRFWR: The unit is broken with non-repairable failure and
the repairperson is on vacation. NRF indicates that the unit is in “non-
repairable failure” and the superscript indicates “without repairperson”
in the repair facility

E5 = NRFWR = {(j, k); j = 1, . . . , p; k = 1, . . . , ν}

j: phase of the external shock time
k: phase of the vacation time

• E6 = CR: The unit is on “corrective repair” with the repairperson

E6 = CR = {(j, l); j = 1, . . . , p; l = 1, . . . ,m1}

j: phase of the external shock time
l: phase of the corrective repair

The system will be operational while it occupies a state of the macro-state
W = {E1 = O1, E2 = OWR

2 , E3 = OR2 } and it will be non-operational
when it is found in some macro-state of F = {E4 = RFWR, E5 =
NRFWR, E6 = CR}.

2.2 The System with Preventive Maintenance

The system described in section above is extending by including preventive
maintenance. In this case we assume that the internal behaviour is composed
of three different levels, i.e., minor, middle and major degradation. The
number of states is n1, n2 and n3 for these levels respectively. External shocks
with similar consequences are also included in this model. The vacation time
policy is different for this system with preventive maintenance. The repair-
person is also on vacation initially. When this one returns, the repairperson
can observe five different situations instead of four.
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• Minor internal degradation level. The repairperson begins a new random
vacation period.

• Middle internal degradation. The repairperson stays at the workplace
waiting for a possible repairable failure.

• Major internal damage. The repairperson starts the preventive mainte-
nance.

• Repairable failure. The repairperson begins the corrective repair.
• Non-repairable failure. The repairperson replaces the unit by a new and

identical one in a negligible time.

Other possibility is that a repairable failure or a non-repairable failure
occurs while the repairperson is at the workplace without working. In this
case, the corrective repair begins or the unit is replaced immediately after
occurring the event, respectively.

When preventive maintenance is considered, the times embedded in the
system verify the following assumptions.

Assumption 1. The internal operational time follows a PH distribution with
representation (α,T) with order n. The n phases are partitioned into three
macro-states, minor degradation level (first n1 phases), middle degradation
level (the following first n2 phases) and major degradation level (last n3

phases). The PH representation is composed of matrix blocks according to
the levels. Then, α1 is a row vector composed of the first n1 elements of α.
The matrix T is given by

T =

T11 T12 T13

0 T22 T23

0 0 T33

 .

The order of T11, T22 and T33 is n1, n2 and n3, respectively.
The column vector T0 is expressed as T0 = T0

r + T0
nr again. These

vectors are partitioned according to the degradation levels as T0
i,r and T0

i,nr

for i = 1, 2, 3.

Assumption 2. The same assumption 2 that the one given for the system
without preventive maintenance.

Assumption 3. The same assumption 3 that the one given for the system
without preventive maintenance.

Assumption 4. The same assumption 4 that the one given for the system
without preventive maintenance.
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Assumption 5. The preventive maintenance time follows a PH distribution
with representation (β2,S2), with S2 being a matrix of order m2.

When preventive maintenance is included, eight macro-states are possi-
ble. The macro-state space for this layout is the following,

S = {E1 = O1, E2 = OWR
2 , E3 = OR2 , E4 = OWR

3 ,

E5 = RFWR, E6 = NRFWR, E7 = PM,E8 = CR}.

The macro-states E1, E2 and E3 are the same as for the case without
preventive maintenance. The macro-states E5, E6 and E8 defined in the
current system are the macro-states E4, E5 and E6, respectively. Then the
new macro-states for this system are E4 = OWR

3 , and E7 = PM .
These new macro-states contain the phases with the following situations:

• E4 = OWR
3 : The unit is working in major internal degradation. The

superscript indicates “without repairperson” in the repair facility,

E4 = OWR
3 = {(i, j, k); i = 1, . . . , n3, j = 1, . . . , p, k = 1, . . . , ν}

i: phase of the major internal degradation level
j: phase of the external shock time
k: phase of the vacation time

• E7 = PM : The unit is in “preventive maintenance”.

E7 = PM = {(j, l); j = 1, . . . , p; l = 1, . . . ,m2}

j: phase of the external shock time
l: phase of the preventive maintenance time

For the system with preventive maintenance, the operational macro-state
is W = {E1 = O1, E2 = OWR

2 , E3 = OR2 , E4 = OWR
3 } and the non-

operational is given by F = {E5 = RFWR, E6 = NRFWR, E7 =
PM,E8 = CR}.

3 Modelling the Systems Through Marked Markovian
Arrival Processes

The systems described in Section 2 are modelled through Markovian Arrival
Processes with marked arrivals. These models enable us not only to analyse
the system evolution, but also the number of different events can be worked
out over time. The model for the system with preventive maintenance is
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developed in this work. The case for without preventive maintenance is given
in Appendix A.

The multi-state unit may undergo the following types of events which are
denoted as,

O: No events (no PM, no failure, no end of vacation)
RF+CR: Repairable failure and start of corrective repair (the repairper-
son was at the workplace)
RF: Only repairable failure (the repairperson continues on vacations)
PM: preventive maintenance (the repairperson continues on vacations)
NRF+NU: Non-repairable failure and immediate replacement (immedi-
ate new unit because the repairperson was at the workplace)
NRF: Only non-repairable failure (the repairperson continues on vaca-
tions)
I: Only return from vacations
I+PM: Return from vacations and start preventive maintenance (the unit
is at major degradation level)
I+CR: Return from vacations and start corrective repair (the unit was in
RF)
I+NU: Return from vacations and immediate replacement (immediate
new unit because the repairperson was at the workplace)

3.1 The MMAP

The MMAP associated to the system has been built according to the different
events aforementioned. The representation is given by

(D0,DRF+CR,DRF ,DNRF+NU ,DNRF ,DI ,DI+CR,DI+NU ),

where DY contains the transition intensities for the event Y. These matrices
are composed of matrix blocks. Each matrix block contains the transition
intensities for the event Y by considering the macro-states of the state-space S.

The block matrices for the events RF and RF+CR are described next. The
remainder are given in Appendix B.

Matrix Block DRF

The matrix block DRF contains the transitions intensities from an operational
state to a repairable failure (without other event). Therefore, it is only possible
for the transitions between the macro-states O1 → RF , OWR

2 → RF or
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OWR
3 → RF . The block DRF is given by,

DRF =



0 0 0 0 CO1RF 0 0 0
0 0 0 0 COWR

2 RF 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 COWR

3 RF 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

The matrix CO1RF contains the transition between the macro-states
O1 → RF . It occurs when an internal repairable failure takes place and the
external shock and the vacation times do not change (T0

1,r⊗I⊗I), or because
an external shock occurs by provoking a repairable failure (e ⊗ L0

rγ ⊗ I).
In the last case, the internal damage finishes and the vacation time is not
altered. Then,

CO1RF = T0
1,r ⊗ I⊗ I + e⊗ L0

rγ ⊗ I.

The matrix COWR
2 RF contains the transition between the macro-states

OWR
2 → RF . It occurs when an internal repairable failure takes place

from middle degradation level without repair and the external shock and the
vacation time remain identical (T0

2,r ⊗ I ⊗ I), or because an external shock
occurs by provoking a repairable failure (e⊗ L0

rγ ⊗ I). Then,

COWR
2 RFWR = T0

2,r ⊗ I⊗ I + e⊕ L0
rγ ⊗ I.

Finally, the matrix COWR
3 RF contains the transition between the macro-states

OWR
3 → RF . The reasoning is similar as for the case above but from the

macro-state in major degradation level without repair. It is given by,

COWR
3 RFWR = T0

3,r ⊗ I⊗ I + e⊕ L0
rγ ⊗ I.

Matrix Block DRF+CR

The matrix block DRF+CR contains the transitions intensities from an opera-
tional state to repairable failure (with immediate corrective repair). Therefore,
it is only possible for the transitions between the macro-states OR2 → RF
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because the repairperson must be at the workplace. This matrix block is

DRF+CR =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 COR

2 CR

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

The matrix COR
2 RF

contains the transition between the macro-states

OR2 → RF . The repairperson is at the workplace and a repairable fail-
ure occurs (internal or external) from middle degradation level. After the
repairable repair occurs, a corrective repair begins given that the repairperson
is prepared for that. The remainder does not change. Then,

COR
2 CR

= T0
2,r ⊗ I⊗ β1 + e⊗ L0

rγ ⊗ β1.

3.2 Transient Distribution

The system is modelled by the MMAP given in Section 3.1. Therefore, the Q-
matrix associated with the Markov process by which the system is governed
adopts the expression

D = D0 + DRF+CR + DRF + DNRF+NU + DNRF

+ DI + DI+CR + DI+NU .

We assume that the system is new and the repairperson in on vacation
initially. Therefore, the initial distribution for the system with preventive
maintenance is given by θ = (α ⊗ ω ⊗ υ, 0) respectively, with ω being the
stationary distribution of the external failure. This fact is assumed because
external shocks happen in a continuous way. Therefore, ω = (0, 1)((L +
L0γ)∗|e)−1.

The transient distribution probability is worked out from P(t) = exp(Dt)
and the probability of being at any phase of the macro-state Ei, that is, pEi

(t),
is given by the vector p(t) = θ exp(Dt) restricted to the elements of the
macro-state Ei.
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3.3 The Stationary Distribution

The stationary distribution is denoted as π and it is partitioned according
to the macro-state space S. Therefore, it is denoted as πi to the vector
πi = limt→∞ pEi

(t). To ease the development, the generator of the process
is denoted as

D =



D11 D12 0 D14 D15 D16 0 0
0 D22 D23 D24 D25 D26 0 0
D31 0 D33 0 0 0 D37 D38

0 0 0 D44 D45 D46 D47 0
0 0 0 0 D55 0 0 D58

D61 0 0 0 0 D66 0 0
D71 0 0 0 0 0 D77 0
D81 0 0 0 0 0 0 D88


.

As it is well known, the stationary distribution is the solution of the matrix
balance equation π · D = 0 with the normalization condition π · e = 1.

In a matrix way, the balance equations are given by

π1D11 + π3D31 + π6D61 + π7D71 + π8D81 = 0
π1D12 + π2D22 = 0
π2D23 + π3D33 = 0
π1D14 + π2D24 + π4D44 = 0
π1D15 + π2D25 + π4D45 + π5D55 = 0
π1D16 + π2D26 + π4D41 + π6D66 = 0
π3D37 + π4D47 + π7D77 = 0
π3D38 + π5D58 + π8D88 = 0
π · e = 1

The solution of this matrix system is given by

πi = π1Ri; i = 2, . . . , 8

with

R2 = G12

R3 = R2G23

R4 = G14 + R2G24
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R5 = G15 + R2G25 + R4G45

R6 = G16 + R2G26 + R4G46

R7 = R3G37 + R4G47

R8 = R3G38 + R5G58.

Being Gjk = −DjkD−1
kk for the corresponding case.

The π1 is achieved from the first and last matrix equation,

π1D11 + π3D31 + π6D61 + π7D71 + π8D81 = 0
π · e = 1

Then,

π1 = (0, 1)

(
A∗|

(
I +

8∑
a=2

Ra

)
e

)−1

,

with A∗ being the matrix A without the first column and A = D11 +R3D31 +
R6D61 + R7D71 + R8D81.

4 Measures

Several interesting measures in the reliability field such as ROCOF, avail-
ability, reliability and several mean number of events are worked out in this
section.

4.1 Availability

The availability is the probability of being operational the system at a certain
time. It is given by

A(t) =
4∑
i=1

pEi(t)e.

For the stationary case it is A =
∑4

i=1 πie.

4.2 Reliability

Several reliability functions may be defined for this system (time up to
repairable failure, time up to non-repairable failure or time up to first case
that the system in not operational). We define it as the first time that the
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unit is not operational. The probability distribution of this time is PH with
representation (θ′,D′) being

θ′ = (α⊗ ω ⊗ υ, 0);

D′ =


C1
O1O1

+ C2
O1O1

CO1OWR
2

0 CO1OWR
3

0 COWR
2 OWR

2
COWR
′2 OR

2
COWR
′2 OWR

3

0 0 COR
2 O

R
2

0

0 0 0 COWR
3 OWR

·3

 .

The reliability function is given by R(t) = θ′ exp(D′t) · e.

4.3 ROCOFRF and ROCOFNRF (Rate of Occurrence of Repairable
and Non-repairable Failure)

The rate of occurrence of repairable failure is the rate of undergoing a
repairable failure at a certain time t. It is given by

ROCOFRF (t) = pE1
(t) · CE1E5 · e + pE2

(t) · CE2E5 · e

+ pE3
(t) · CE3E8 · e + pE4

(t) · CE4E5 · e.

In stationary regime it is

ROCOFRF = π1 · CE1E5 · e + π2 · CE2E5 · e + π3 · CE3E8 · e

+ π4 · CE4E5 · e.

Analogously for the non-repairable case the rate of occurrence of non-
repairable failure is defined as the rate of undergoing a non-repairable failure
at a certain time t. It is given by

ROCOFNRF (t) = pE1
(t) · CE1E6 · e + pE2

(t) · CE2E6 · e

+ pE3
(t) · CE3E1 · e + pE4

(t) · CE4E6 · e

This measure in steady-state is

ROCOFNRF (t) = π1 · CE1E6 · e + π2CE2E6 · e

+ π3 · CE3E1 · e + π4 · CE4E6 · e
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4.4 Mean Number of Events

The mean number of events described in Section 3 is worked out from the
MMAP. Given an event Y, the mean number of events up to time t is given by

MN Y (t) = θ

∫ t

0
exp(Dt)dtDY e = θ(exp(Dt)− I− teπ)(D− eπ)−1DY e.

From this expression the mean number of even per unit of time in
stationary regime is

MN Y = lim
t→∞

MN Y (t)

t
= lim

t→∞

θ
∫ t

0 exp(Dt)dtDY e
t

= πDY e.

Therefore, depending on DA, the following measures are calculated.

Mean number of repairable failures: DY = DRF+CR + DRF

Mean number of non-repairable failures: DY = DNRF + DNRF+NU

Mean number of preventive maintenance: DY = DPM + DI+PM

Mean number of corrective repairs: DY = DRF+CR + DI+CR

Mean number of incorporations: DY = DI+PM+DI+NU+DI+DI+CR

Mean number of new units: DY = DI+NU + DNRF+NU

5 Cost and Rewards

The system described is subject to different events that can provoke costs and
rewards according to the macro-states defined. Each time that the system is
operational, a reward equal to B is achieved, and analogously, each time that
the system is not operational a cost equal to A is produced. Also, a cost is
produced while the system is operational. This cost depends on the phases of
the internal degradation level. It is given by the column vectors c1, c2 and c3

for minor, middle and major level, respectively.
If the system is in macro-state PM or CR, the repairperson produces a cost

per unit of time depending on the corresponding repairing phases. This cost
is given by the vectors cPM and cCR respectively. Also, if the repairperson is
at the workplace, but idles, a cost equal to rS per unit of time is produced.

The net reward vectors according to the macro-states are given as follows,

nrO1 = Ben1·p·v − c1 ⊗ ep·v,nrOWR
2

= Ben2·p·v − c2 ⊗ ep·v,

nrOR
2

= (B − rS) en2·p − c2 ⊗ ep,nrOWR
3

= Ben3·p·v − c3 ⊗ ep·v,
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nrRF = −Aep·v,nrNRF = −Aep·v,nrPM = −Aep·m2 − ep ⊗ cPM ,

nrCR = −Aep·m1 − ep ⊗ cCR.

The net reward vector by considering the phases of the system is,

nr =



nrO1

nrOWR
2

nrOR
2

nrOWR
3

nrRFWR

nrNRFWR

nrPM
nrCR


.

Defined the net reward vector according the state space, the expected net
reward up to a certain time t id given by

Φ(t) = θ

∫ t

0
P(t)dt · nr.

This measure per unit of time is Φ(t)
t and this value in stationary regime

is given by Φ = π ·nr. It can be interpreted as the net reward per unit of time
when the system is balanced.

Other costs associated with different events are added in the model. These
are,

fNU : fix cost per new unit
fCR: fix cost per corrective repair
fPM : fix cost per preventive maintenance
fI : fix cost per incorporation from vacation

Therefore, the total expected net reward up to a certain time t is

Ψ(t) = Φ(t)−
(
1 +MNNU (t)

)
fNU −MNCR(t)fCR

−MNPM (t)fPM −MN I(t)fI .

This measure per unit of time up to a certain time t is Γ(t) = Ψ(t)
t , and

this value in stationary regime is

Γ = lim
t→∞

Ψ(t)

t
= Φ−MNNUfNU −MNCRfCR

−MNPMfPM −MN IfI .



490 J. E. Ruiz-Castro and C. Acal

6 Numerical Example: An Optimization Problem

One interesting problem in reliability is the optimization of systems. In
this section, two similar systems, with and without preventive maintenance,
are optimised according to the vacation time distribution. Both cases are
developed and the optimum systems are compared. The general system
consists of multiple internal stages and they are partitioned into minor, middle
and major degradation level depending on the damage. In particular, there
are seven states partitioned as follows: 1-2, minor degradation level; 3-4,
middle degradation level and 5-6-7, major degradation level (if it is observed,
the repairperson sends it to preventive maintenance). The repair facility is
composed of one sole repairperson. This repairperson can take vacations and
the vacation time is random for the general case.

The internal operational time is PH distributed with representation (α,T)
where α = (1, 0, 0, 0, 0, 0, 0) and

T =



−1 0.51 0.24 0.25 0 0 0
1.2 −2 0.5 0.3 0 0 0
0 0 −0.8 0.2 0 0.16 0.16
0 0 0.225 −0.9 0.11 0.11 0.14
0 0 0 0 −0.4 0.03 0.07
0 0 0 0 0.1 −0.9 0.125
0 0 0 0 0.07 0.03 −0.4


.

The internal repairable and non-repairable failure is governed by the
following column vectors respectively,

T0
r =



0
0
0.24
0.27
0.28
0.63
0.28


and T0

nr =



0
0
0.04
0.045
0.02
0.045
0.02


.

The system is exposed to random external shocks with PH representation

(γ,L) with γ = (1, 0) and L =

(
−3 2.9
2.9 −3

)
. The shock can provoke

repairable or non-repairable failure according to these transition rates,

L0
r =

(
0.08
0.08

)
and L0

nr =

(
0.02
0.02

)
.
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The corrective repair and preventive maintenance time are phase-type
distributed with representation (β1,S1) and (β2,S2) respectively, where

β1 = (1, 0), β2 = (1, 0),

S1 =

(
−1 0.5
0.5 −1

)
, S2 =

(
−2 0.005

0.005 −2

)
.

Rewards and cost are introduced in the problem. A profit per unit of
time equal to B = 100 monetary units (m.u.) occurs whereas the system is
operational (equal cost when it is not operational, A=100). A cost is pro-
duced depending on the operational degradation level while it is operational;
0.1 m.u. 0.5 m.u. and 1 m.u. respectively for each one. Each unit of time
that the repairperson is idle at the workplace, a cost equal to rS = 0.5 m.u.
is produced. This amount increases when the repairperson is working. If the
repairperson is engaged in preventive maintenance, the cost increases by 1.5
m.u. and 9.5 m.u. for corrective repair.

In the following, we examine how the repairperson’s vacation time should
be distributed to optimise net rewards. To do so, it is assumed that the
distribution of the vacation time is phase-type (gamma distribution) with
representation,

v = (1, 0); V =

(
−λ1 λ1

0 −λ2

)
.

To get the optimum model, the net reward profit in stationary regime is
maximised,

λ̂1, λ̂2 s.t. Γ(λ̂1, λ̂2) = sup
λ1,λ2

Γ(λ1, λ2).

These values are λ̂1 = 5.8003 and λ̂2 = 5.8003 for the case with pre-
ventive maintenance (maximum net profit in stationary regime 2.0943 m.u.
per unit of time) and λ̂1,smp = 5.4502 and λ̂2,smp = 5.4502 for the scenario
without preventive maintenance.

For both optimum systems, the cumulative net profit per unit of time
is compared in Figure 1. It is observed that the system with preventive
maintenance is always better than the system without preventive maintenance
from an economic point of view. The system without preventive maintenance
is in deficit at any time, but when preventive maintenance is included in the
system it is profitable from time 433.17.

Several performance measures such as the availability and mean events
time have been worked out. Figure 2 shows the availability for both cases.
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Figure 1 Cumulative net profit per unit of time over time (with preventive maintenance,
continuous line; without preventive maintenance, dashed line).
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Figure 2 Availability for the optimum systems (with preventive maintenance, continuous
line; without preventive maintenance, dashed line).

Table 1 shows the stationary distribution for both models. These values
can be interpreted as the proportion of time in each macro-state.

Finally, several measures as ROCOF and mean number of events in
transient and stationary regime are compared in Table 2.
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Table 1 Stationary distribution by considering the macro-states (without preventive mainte-
nance in parenthesis)
πO1 · e πOWR

2
·e πOR

2
· e πOWR

3
· e πRF · e πNRF ·e πPM · e πCR · e

0.3851
(0.2909)

0.0502
(0.0407)

0.2387
(0.3304)

0.0038 0.0133
(0.0100)

0.0030
(0.0023)

0.0479 0.2581
(0.3257)

Table 2 ROCOF and mean number of events (without preventive maintenance in parenthe-
sis)

t = 1 t = 5 t = 10 t = 50 t =∞
ROCOFRF (t) 0.1423

(0.1602)
0.1315

(0.1688)
0.1291

(0.1628)
0.1290

(0.1629)
ROCOFRF 0.1290

(0.1629)
ROCOFNRF (t) 0.0292

(0.0308)
0.0263

(0.0272)
0.0259

(0.0263)
0.0259

(0.0264)
ROCOFNRF 0.0259

(0.0264)
MNRF (t) 0.1201

(0.1262)
0.6764

(0.8332)
1.3247

(1.6540)
6.4860

(8.1686)
MNRF 0.1290

(0.1629)
MNNRF (t) 0.0261

(0.0266)
0.1376

(0.1458)
0.2676

(0.2782)
1.3027

(1.3326)
MNNRF 0.0259

(0.0264)
MNPM (t) 0.0487 0.4614 0.9429 4.7694 MNPM 0.0957
MNCR(t) 0.0978

(0.1042)
0.6631

(0.8235)
1.3114

(1.6440)
6.4727

(8.1586)
MNCR 0.1290

(0.1629)
MN I(t) 2.1841

(2.1750)
7.6818

(6.6759)
13.8847

(11.3160)
63.5153

(48.7966)
MN I 1.2408

(0.9372)
MNNU (t) 0.0210

(0.0217)
0.1347

(0.1436)
0.2646

(0.2760)
1.2997

(1.3303)
MNNU 0.0210

(0.0264)

7 Conclusions

This paper presents two complex multi-state systems subject to various types
of failure where in one of them preventive maintenance is applied. These
systems are composed of several internal degradation levels and are subject
to internal failure and random external shocks. The possible internal failure
and/or external shocks may provoke repairable or non-repairable failure.
A vacation policy is included in the model to optimize it, considering a
financial point of view. Both systems are modelled using a Markovian Arrival
Process with Marked arrivals in an algorithmic and computational form.

It is shown that the PH and MMAP enable us to express the modelling
and its associated measures in a well structured way. Costs and rewards are
included in the model and several associated measures are worked out. One
interesting measure, the net reward per unit of time function, is built and it
is considered to optimize systems according to vacation time distribution.
A numerical example, optimizing similar systems with and without pre-
ventive maintenance, and comparing them, illustrates the versatility of the
model.
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Appendix A

In this appendix, the matrix blocks and the stationary regime is given for
the case without preventive maintenance addressed in Section 2.1. The state
space is described in that section. The events associated with this system are

Events

0: No events (no PM, no failure, no end of vacation)
RF+CR: Repairable failure and corrective repair
RF: Repairable failure without immediate corrective repair
NRF+NU: Non-repairable failure and new unit
NRF: Non-repairable failure without immediate new unit
I: return of a vacation period
I+CR: return of a vacation period and corrective repair
I+NU: return and new unit

Therefore, the MMAP has the following representation

(D0,DRF+CR,DRF ,DNRF+NU ,DNRF ,DI ,DI+CR,DI+NU ).

The block matrices are

DO =


C1

O1O1
CO1O

WR
2

0 0 0 0
0 COWR

2 OWR
2

0 0 0 0
0 0 COR

2 OR
2

0 0 0
0 0 0 CRFWRRFWR 0 0
0 0 0 0 CNRFWRNRFWR 0

CCRO1 0 0 0 0 CCRCR
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DRF+CR =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 COR
2 CR

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

DRF =



0 0 0 CO1RFWR 0 0

0 0 0 COWR
2 RFWR 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



DNRF+NU =



0 0 0 0 0 0

0 0 0 0 0 0

COR
2 O1

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



DNRF =



0 0 0 0 CO1NRFWR 0

0 0 0 0 COWR
2 NRFWR 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0



DI =


C2
O1O1

0 0 0 0 0
0 0 COWR

2 OR
2

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,
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DI+CR =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 CRFWRCR

0 0 0 0 0 0
0 0 0 0 0 0

 ,

DI+NU =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

CNRFO1 0 0 0 0 0
0 0 0 0 0 0

 ,

where the matrix-blocks are

C1
O1O1

= T11 ⊕ L⊗ I + I⊗ I⊗ V;

C2
O1O1

= I⊗ I⊗ V0υ; CO1OWR
2

= T12 ⊗ I⊗ I;

CO1RFWR = T0
1,r ⊗ I⊗ I + e⊗ L0

rγ ⊗ I;

CO1NRFWR = T0
1,nr ⊗ I⊗ I + I⊗ L0

nrγ ⊗ I;

COWR
2 OWR

2
= T22 ⊕ L⊗ I + I⊗ I⊗ V;

COWR
2 OR

2
= I⊗ I⊗ V0;

COWR
2 RFWR = T0

2,r ⊗ I⊗ I + e⊗ L0
rγ ⊗ I;

COWR
2 NRFWR = T0

2,nr ⊗ I⊗ I + e⊗ L0
nrγ ⊗ I;

COR
2 O1

= T0
2,nr ⊗α1 ⊗ I⊗ υ + e⊗α1 ⊗ L0

nrγ ⊗ υ;

COR
2 O

R
2

= T22 ⊗ I + I⊗ L;

COR
2 CR

= T0
2,r ⊗ I⊗ β1 + e⊗ L0

rγ ⊗ β1;

CRFWRRFWR = (L + L0γ)⊕ V; CRFWRCR = I⊗ V0 ⊗ β1;

CNRFWRO1
= α1 ⊗ I⊗ V0υ;CNRFWRNRFWR = (L + L0γ)⊕ V;

CCRO1 = α1 ⊗ I⊗ υ ⊗ S0
1; CCRCR = (L + L0γ)⊕ S1.



MMAPs to Model Complex Multi-State Systems with Vacation Policies 497

Stationary Distribution

The stationary distribution for the case without preventive maintenance is
also partitioned according to the macro-state space S, composed of six macro-
states in this case. The process generator is denoted as

D =


D11 D12 0 D14 D15 0
0 D22 D23 D24 D25 0

D31 0 D33 0 0 D36

0 0 0 D44 0 D46

D51 0 0 0 D55 0
D61 0 0 0 0 D66

 .

The balance equations are given by

π1D11 + π3D31 + π5D51 + π6D61 = 0
π1D12 + π2D22 = 0
π2D23 + π3D33 = 0
π1D14 + π2D24 + π4D44 = 0
π1D15 + π2D25 + π5D55 = 0
π3D36 + π4D46 + π6D66 = 0
π · e = 1

The solution of this matrix system is given by

πi = π1Ri; i = 2, . . . , 6

with

R2 = G12,R3 = R2G23,R4 = G14 + R2G24,

R5 = G15 + R2G25,R6 = R3G36 + R4G46,

where Gjk = −DjkD−1
kk for the corresponding case.

The π1 vector is achieved from the first and last matrix equation,

π1D11 + π3D31 + π5D51 + π6D61 = 0
π · e = 1

Then,

π1 = (0, 1)

(
A∗|

(
I +

6∑
a=2

Ra

)
e

)−1

with A∗ being the matrix A without the first column and A = D11 +R3D31 +
R5D51 + R6D61.
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Appendix B

This appendix contains the rest of the block-matrices for the system with
preventive maintenance described in Section 3.1.

DO =



C1
O1O1

CO1OWR
2

0 CO1OWR
3

0
0 COWR

2 OWR
2

0 COWR
2 OWR

3
0

0 0 COR
2 O

R
2

0 0
0 0 0 COWR

3 OWR
·3

0
0 0 0 0 CRFWRRFWR

0 0 0 0 0
CPMO1 0 0 0 0
CCRO1 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

CNRFWRNRFWR 0 0
0 CPMPM 0
0 0 CCRCR



DPM =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 COR

2 PM
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



DI+PM =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 COWR

3 PM 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


;
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DI+NU =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

CNRFWRO1
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



DNRF =



0 0 0 0 0 CO1NRFWR 0 0

0 0 0 0 0 COWR
2 NRFWR 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 COWR
3 NRFWR 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



DNRF+NU =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

COR
2 O1

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



DI =



C2
O1O1

0 0 0 0 0 0 0
0 0 COWR

2 OR
2

0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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DI+CR =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 CRFWRCR

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

C1
O1O1

= T11 ⊕ L⊗ I + I⊗ I⊗ V; C2
O1O1

= I⊗ I⊗ V0υ;

CO1OWR
2

= T12 ⊗ I⊗ I; CO1OWR
3

= T13 ⊗ I⊗ I;

CO1NRFWR = T0
1,nr ⊗ I⊗ I + e⊗ L0

nrγ ⊗ I

COWR
2 OWR

2
= T22 ⊕ L⊗ I + I⊗ I⊗ V; COWR

2 OR
2

= I⊗ I⊗ V0;

COWR
2 OWR

3
= T23 ⊗ I⊗ I;

COWR
2 NRFWR = T0

2,nr ⊗ I⊗ I + e⊕ L0
nrγ ⊗ I;

COR
2 O1

= T0
2,nr ⊗α1 ⊗ I⊗ υ + e⊗α1 ⊗ L0

nrγ ⊗ υ;

COR
2 O

R
2

= T22 ⊗ I + I⊗ L;

COR
2 PM

= T23e⊗ I⊗ β2;

COWR
3 OWR

3
= T33 ⊕ L⊗ I + I⊗ I⊗ V;

COWR
3 RFWR = T0

3,r ⊗ I⊗ I + e⊗ L0
rγ ⊗ I;

COWR
3 NRFWR = T0

3,nr ⊗ I⊗ I + e⊗ L0
nrγ ⊗ I;

COWR
3 PM = e⊗ I⊗ V0 ⊗ β2;

CRFWRRFWR = (L + L0γ)⊕ V ;

CRFWRCR = I⊗ V0 ⊗ β1; CNRFWRO1
= α1 ⊗ I⊗ V0υ;

CNRFWRNRFWR = (L + L0γ)⊕ V; CPMO1 = α1 ⊗ I⊗ υ ⊗ S0
2;

CPMPM = (L + L0γ)⊕ S2; CCRO1 = α1 ⊗ I⊗ υ ⊗ S0
1;

CCRCR = (L + L0γ)⊕ S1.
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