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Abstract

In this paper, we consider the classical and the Bayesian inferences for
unknown parameters of inverse Lomax distribution and their correspond-
ing survival characteristics under the adaptive progressive type-II censoring
scheme. In the classical setup, first we obtain the maximum likelihood
estimates for the unknown shape parameter of the distribution and its cor-
responding survival characteristics. Further, we consider symmetric and
asymmetric loss functions for the estimation of shape parameter and its
corresponding survival characteristics under the Bayesian paradigm. The
performances of various derived estimators were recorded using Markov
chain Monte Carlo simulation technique for different sample sizes. Finally,
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a COVID-19 mortality data set is provided to illustrate the computation of
various estimators.

Keywords: Inverse Lomax distribution, adaptive progressive type-II cen-
soring, maximum likelihood estimator, Bayesian estimation, Markov chain
Monte Carlo, COVID-19.

1 Introduction

Several life-time models are available in literatures which play an extensive
role to analyse the uncertainty of various fields. Initially, exponential distri-
bution was very famous and useful because of its simplicity and analytical
flexibility. Although, the exponential distribution has limitations in the study
of life-time models due to its constant hazard rate, which is not appropriate
to analyse many life-time models. Therefore, several other researchers have
proposed different new life-time distributions which overcome the limitation
of constant hazard rate. Such few specific distributions are Weibull distribu-
tion, gamma distribution, Lomax distribution, lognormal distribution which
are extension of exponential distribution. The Lomax or Pareto II distribution
as non-constant hazard rate distribution was proposed by Lomax (1954) [28].
Ahsanullah (1991) [2], Balakrishnan and Ahsanullah (1994) [7] and Lee et al.
(2009) [27] discussed the properties and moments of Lomax distribution.
Kleiber and Kotz (2003) [25] discussed inverse Lomax distribution (ILD)
in the fields of stochastic modelling, actuarial sciences, economics and life
testing. The ILD was used by Kleiber (2004) [24] to obtain Lorenz ordering
relationship among ordered statistics. This distribution is a special case of
generalized beta distribution of second kind and the said distribution also
belongs to an inverted family of distribution. It has analytical flexibility
where the non-monotonicity of failure rate has been realized (see, Singh
et al (2013) [37]). Rehman et al. (2013) [33] discussed the problem of
estimation and prediction for ILD through Bayesian approach. The survival
estimation under type-II censoring scheme and the Bayesian estimation
under type-II hybrid censoring scheme for this distribution were discussed
by Singh et al. (2016) [38] and Yadav et al. (2016) [44] respectively. Jan
and Ahmad (2017) [23] used approximation techniques through Bayesian
approach. Recently, Sharma and Kumar (2020) [36] discussed the problem
of parameter estimation under type-II censoring scheme for ILD.

The probability density function (PDF) f(x) and Cumulative distribution
function (CDF) F (x) of the ILD with shape parameter α and scale parameter
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β are given by

f(x;α, β) =
αβ

x2

(
1 +

β

x

)−(1+α)
, x > 0, α, β > 0 (1)

and

F (x) =

(
1 +

β

x

)−α
(2)

The corresponding survival function S(t) and hazard function H(t) of
this distribution at same time t > 0 are given, respectively, by

S(t) = 1−
(

1 +
β

t

)−α
(3)

and

H(t) =
αβ
(

1 + β
t

)−(1+α)
t2
(

1 + β
t

)−α (4)

In any life-testing experiments, it is very cumbersome to complete the
experiment for a long period due to time and cost constraints. There are
various types of censoring schemes which have been introduced in the lit-
erature to reduce the time and cost involved into the experiments. Among the
various schemes, Type-I censoring and Type-II censoring are the two most
common censoring schemes. In Type-I censoring, the life testing experiment
is terminated at a pre-determined time whereas in Type-II censoring, lifetime
experiment terminates after achieving a certain number of failures. These two
are the most commonly used censoring schemes but these both schemes don’t
have the flexibility of removing the units from the experiment. Progressive
censoring scheme proposed by Cohen (1963) [15]. In this scheme, the exper-
imenter initially puts n units, X1, X2, . . . Xn, at time zero and the test can
be terminated at the time of any failure. When the first failure has occurred,
r1 of the remaining (n − 1) surviving units are removed randomly from the
experiment. At the time of the second failure r2 of the remaining n− r1 − 2
surviving units are chosen randomly and removed from the experiment. At
the time of mth observed failure, the experiment eventually terminates with
removals of all remaining rm = n−r1−r2−· · ·−m surviving units. In this
scheme, ri and m are fixed in advance. A more general censoring scheme,
called type-II progressive censoring was introduced. In progressive type-II
censoring scheme, the experimenter may not change the experiment time
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Figure 1.1. Schematic representation of Adaptive progressive type-II censoring scheme 
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APT-II censoring scheme. The classical and Bayesian inference for a general exponential form of underlying 
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considered the APT-II censoring scheme for the generalized Rayeigh distribution. El-Sagheer et al. (2019) [19] 

and Sewailem (2019) [35] studied APT-II censored data for statistical analysis of Weibull exponential and log-

logistic distribution respectively. Recently, Mohan and Chacko (2021) [30] considered Kumarswamy-

exponential distribution under APT-II censoring scheme.  
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under APT-II censoring scheme when scale parameter is known. 

The rest of the paper is organized as follows. In Section 2, the Maximum likelihood estimation (MLE) for the 

shape parameter and the survival characteristics of ILD are presented. The Bayes estimation under symmetric 

and asymmetric loss functions are obtained in Section 3. Squared error loss function (SELF) is taken as 

symmetric loss function. General entropy loss function (GELF) and linear exponential loss function (LINEX) 

are taken as asymmetric loss function. In Section 4, interval estimation is described. Asymptotic confidence 

intervals (ACI) are obtained under classical set up. Credible interval and highest posterior density (HPD) 

intervals are constructed under Bayesian paradigm. In section 5, Markov Chain Monte Carlo technique is 

discussed.  A simulation study is presented to report the performances of the various estimators in section 6. In 
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2. MAXIMUM LIKELIHOOD ESTIMATION 
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Figure 1 Schematic representation of Adaptive progressive type-II censoring scheme.

accordingly under the experiment. Thus, Ng et al. (2009) [32] suggested an
adaptive progressive type-II (APT-II) censoring scheme which is the mixture
of type I and progressive type-II censoring scheme. In APT-II censoring
scheme, the total test time T and the number of observed failurem is prefixed
i.e. Xm < T . Suppose the number of failure j is observed before time T i.e.
Xj < T < Xj+1, j = 0, 1, . . . ,m where X0 = 0 and Xm+1 = ∞. If the
experimenter time runs over T , then setRj+1 = · · · = Rm = 0. The pictorial
representation of this scheme is given in Figure 1.

This censoring scheme has been considered by many researchers for
statistical analysis on different lifetime distributions. The statistical analysis
under APT-II censoring scheme for exponential distribution was proposed
by Ng et al. (2009) [32]. Parameter estimation of generalized Pareto distri-
bution was discussed by Mahmoud et al. (2013) [29] for APT-II censored
data. Ye et al. (2014) [45] and Sobhi and Soliman (2016) [40] considered
extreme value distribution and exponential Weibull distribution respectively
for parameter estimation under APT-II censoring scheme. The classical and
Bayesian inference for a general exponential form of underlying distribution
under APT-II censored data was discussed by El-Din et al. (2018) [18].
Almetwally et al. (2019) [5] considered the APT-II censoring scheme for the
generalized Rayeigh distribution. El-Sagheer et al. (2019) [19] and Sewailem
(2019) [35] studied APT-II censored data for statistical analysis of Weibull
exponential and log-logistic distribution respectively. Recently, Mohan and
Chacko (2021) [30] considered Kumarswamy-exponential distribution under
APT-II censoring scheme.
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The present paper considers the problem of estimating shape parameter
and survival characteristics of ILD under APT-II censoring scheme when
scale parameter is known.

The rest of the paper is organized as follows. In Section 2, the Maxi-
mum likelihood estimation (MLE) for the shape parameter and the survival
characteristics of ILD are presented. The Bayes estimation under symmetric
and asymmetric loss functions are obtained in Section 3. Squared error loss
function (SELF) is taken as symmetric loss function. General entropy loss
function (GELF) and linear exponential loss function (LINEX) are taken
as asymmetric loss function. In Section 4, interval estimation is described.
Asymptotic confidence intervals (ACI) are obtained under classical set up.
Credible interval and highest posterior density (HPD) intervals are con-
structed under Bayesian paradigm. In Section 5, Markov Chain Monte
Carlo technique is discussed. A simulation study is presented to report the
performances of the various estimators in Section 6. In Section 7, a COVID-
19 mortality data set is provided to illustrate the computation of various
estimators. Lastly, the conclusions appear in Section 8.

2 Maximum Likelihood Estimation

Suppose n items are put on test from the ILD with pdf f(x) and cdf F (x)
given in Equations (1) and (2) respectively. LetX(1) ≤ X(2) ≤ X(3) ≤ · · · ≤
X(m), 1 ≤ m ≤ n, be an APT-II censored sample with censoring scheme
(R1, R2, . . . , Rm). The likelihood function based on the APT-II censored
sample is given by

l(α, β|x) = BK

(
m∏
i=1

f(xi)

)(
K∏
i=1

(1− F (xi))

)ri
(1− F (xm))n−m−

∑K
i=1 ri

(5)
where,

BK =

m∏
i=1

n− i+ 1−
max(i−1,K)∑

h=1

rh


Substituting Equations (1) and (2) into Equation (5), the likelihood

function will be

l (α, β|x) = BK

(
m∏
i=1

αβ

x2i

(
1 +

β

xi

)−(1+α))
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×

(
K∏
i=1

(
1−

(
1 +

β

xi

)−α))ri

×

(
1−

(
1 +

β

xm

)−α)n−m− K∑
i=1

ri

(6)

The corresponding log-likelihood function can be written as

L = ln l(α, β|x)

= A+mlnα +mlnβ −
m∑
i=1

ln xi − (1 + α)
m∑
i=1

ln

(
1 +

β

xi

)

− α
K∑
i=1

ri ln

(
1 +

β

xi

)
− α

(
n−m−

K∑
i=1

ri

)
ln

(
1 +

β

xm

)
(7)

where, A = ln BK .
Further, obtaining partial derivative of the Equation (7) with respect to

parameter α and equating it to zero will give the normal equation to find the
MLE of the unknown shape parameter as

∂L

∂α
=
m

α
−

m∑
i=1

ln

(
1 +

β

xi

)
+

K∑
i=1

ri ln

(
1 +

β

xi

)

+

(
n−m−

K∑
i=1

ri

)
ln

(
1 +

β

xm

)
(8)

From the Equation (8), it is clear that the normal equation does not
yield the MLE of α because of its implicit form. Therefore, the MLE of the
unknown shape parameter cannot be obtained analytically. Thus, one may use
any numerical approximation techniques, such as, Newton-Raphson (N-R)
method, fixed point iterations, etc. In this paper, we have used N-R method to
evaluate the MLE of the parameters. Using the invariance property of MLE,
expressions for the MLEs of survival characteristics are given as

Ŝ(t) = 1−
(

1 +
β

t

)−α̂
(9)
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and

Ĥ(t) =
α̂β
(

1 + β
t

)−(1+α̂)
t2
(

1 + β
t

)−α̂ (10)

3 Bayesian Estimation

In this section, we obtain Bayes estimates of unknown shape parameter
of the distribution and survival characteristics of ILD under the symmet-
ric and asymmetric loss functions. Most of the inferential procedures for
lifetime models are frequently developed under the squared error loss func-
tion (SELF), which is symmetrical and associates equal importance to the
losses due to overestimation and underestimation of equal magnitude. But
in survival and hazard rate functions, the nature of losses are not always
symmetric and hence the use of SELF is impractical in many situations.
Inappropriateness of SELF has been recognized by different authors. Fer-
guson (1967) [20], Zellner and Geisel (1968) [46], Aitchison and Dunsmore
(1975) [3], Varian (1975) [43] and Berger (1980) [10] are few among many
authors. It is because of this fact that Varian (1975) [43] introduced LINEX
loss function (LLF). But it has pointed out by various authors that LINEX
loss function is not as appropriate for the estimation of the scale parameters.
Keeping this point in mind, Basu and Ebrahimi (1991) [9] defined a modified
LINEX loss function. A suitable alternative to the modified LINEX loss
function is the general entropy loss function (GELF) proposed by Calabria
and Pulcini (1996) [12]. Some works considers symmetric/asymmetric or
both loss functions for parameter estimation in Bayesian inference (see,
Soliman et al. (2013) [41], Goyal et al. (2019) [21] and Hora et al. (2021) [22],
Albalawi et al. (2022) [4]).

When no information is given regarding parameter then non-informative
prior is good choice. To incorporate some given previous information,
informative prior has been used. The prior distribution for unknown shape
parameter is thus taken to be Gamma distribution, i.e.,

π(α) =
abαb−1e−aα

Γb
, α > 0, a, b > 0 (11)

where a and b are hyperparameters.
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Combining the likelihood function and prior density using Bayes theo-
rem, the posterior density is given as

Π(α, β|x) =
π (α) l (α, β|x)∫∞

0 π(α)l(α, β|x)dα

Π(α, β|x) =
K1

K0
(12)

where,

K1 =

(
m∏
i=1

αβ

x2i

(
1 +

β

xi

)−(1+α))( K∏
i=1

(
1−

(
1 +

β

xi

)−α))ri

×

(
1−

(
1 +

β

xm

)−α)(n−m−
∑K
i=1 ri)

abαb−1e−aα

Γb

and

K0 =

∫ ∞
0

K1dα

3.1 Bayes Estimate Under Symmetric Loss Function

Squared Error Loss Function (SELF): In the SELF, the magnitude of under-
estimation and overestimation are equal. It is also known as Quadratic loss
function. In SELF, the Bayes estimator is represented by the posterior mean.

SELF is defined as

L(δ̂, δ) = (δ̂ − δ)
2
, δ̂ ∈ D, δ ∈ Θ

where, δ̂ is the Bayes estimator of δ.D is a decision space and Θ is parameter
space.

The Bayes estimator α̃SELF of unknown parameter α, is,

α̃SELF =

∫ ∞
0

αΠ(α|x)dα =
1

K0

∫ ∞
0

αK1dα (13)

The Bayes estimator S̃SELF and H̃SELF of the survival function S(t)
and hazard rate function H(t), respectively, are

S̃SELF =
1

K0

∫ ∞
0

(
1−

(
1 +

β

t

)−α)
K1dα (14)
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and

H̃SELF =
1

K0

∫ ∞
0

αβ
(

1 + β
t

)−(1+α)
t2
(

1 + β
t

)−α
K1dα (15)

3.2 Bayesian Estimate Under Asymmetric Loss Function

When the magnitude of overestimation and underestimation are not equal
then we used the asymmetric loss function. In the asymmetric loss function,
we consider LINEX loss function and GELF.

LINEX Loss function: The LINEX loss function is defined as

L(δ̂ − δ) ∝ ec(δ̂−δ) − c
(
δ̂ − δ

)
− 1, c 6= 0, δ̂ ∈ D, δ ∈ Θ.

The Bayes estimator δ̂LINEX of δ under the LINEX loss function is

δ̂LINEX = −1

c
ln[Eδ(exp(−cδ))], (16)

provided, Eδ(exp(−cδ)) exists and finite.
The Bayes estimators α̃LINEX of parameter α under LINEX loss func-

tion is

α̃LINEX = −1

c
ln

[∫ ∞
0

exp (−cα)

]
Π(α|x)dα

= −1

c
ln

[
1

K0

∫ ∞
0

exp(−cα)K1dα

]
(17)

The Bayes estimators S̃LINEX and H̃LINEX of the survival function S(t)
and hazard function H(t), respectively, are

S̃LINEX = −1

c
ln

[
1

K0

∫ ∞
0

exp

(
−c

(
1−

(
1 +

β

t

)−α))
K1

]
dα

(18)

And

H̃LINEX = −1

c
ln

 1

K0

∫ ∞
0

exp

−c
αβ

(
1 + β

t

)−(1+α)
t2
(

1 + β
t

)−α

K1

dα.
(19)
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General Entropy Loss Function: The GELF is defined as

L(δ̂, δ) ∝

(
δ̂

δ

)q
− qln

(
δ̂

δ

)
− 1, q 6= 0, δ̂ ∈ D, δ ∈ Θ.

The Bayes estimator δ̂GELF of δ under GE loss function is

δ̂GELF =
[
Eδ
(
δ−q
)]− 1

q , (20)

provided, Eδ(δ−q) exists and finite.
The Bayes estimators α̃GELF of parameter α under GELF is,

α̃GELF =

[∫ ∞
0

(
α−q

)
Π (α|x) dα

]− 1
q

=

[
1

K0

∫ ∞
0

α−qK1dα

]− 1
q

(21)

The Bayes estimators S̃GELF and H̃GELF of the survival function S(t)
and hazard function H(t), respectively, are

S̃GELF =

[
1

K0

∫ ∞
0

(
1−

(
1 +

β

t

)−α)−q
K1dα

]− 1
q

(22)

and

H̃GELF =

 1

K0

∫ ∞
0

αβ
(

1 + β
t

)−(1+α)
t2
(

1 + β
t

)−α

−q

K1dα


− 1
q

(23)

All the above equations cannot be solved analytically. Therefore, for
these kinds of equations, one of the simulation technique like Markov Chain
Monte Carlo (MCMC) are used to generate samples and compute Bayes
estimators under symmetric and asymmetric loss functions (see, El-Din et al.
(2017) [17], Riad et al. (2020) [34] and Almongy et al. (2021) [6], Hora et al.
(2021) [22]).

4 Interval Estimation

In this section, we deal with the ACI for the parameter under the classical
setup. In the Bayesian paradigm, we obtained credible intervals and HPD
intervals for the parameter. The intervals under classical and Bayesian setup
are as follows
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4.1 Confidence Interval

In the classical setup, the ACI can be obtained from the diagonal elements
of the inverse Fisher information matrix I−1(α̂, β̂) that gives the asymptotic
variance for the parameters α and β respectively. Thus, the two sided 100(1−
η)% confidence interval for α, S(t) and H(t) can be defined as respectively[

α̂− Zη/2
√
var(α̂), α̂+ Zη/2

√
var(α̂)

]
,[

Ŝ(t)− Zη/2
√
var(Ŝ(t)), Ŝ(t) + Zη/2

√
var(Ŝ(t))

]
[
Ĥ(t)− Zη/2

√
var(Ĥ(t)), Ĥ(t) + Zη/2

√
var(Ĥ(t))

]
Where, Zη/2 is a standard normal variate.
The Fisher information matrix can be defined as

I(α̂, β̂) =

[
var α̂ covar(α̂, β̂)

covar(α̂, β̂) var β̂

]

4.2 Credible Interval and HPD Interval

In the Bayesian paradigm, let parameter τ is a random variable and the
probability for this parameter τ lies within the specified intervals. The cred-
ible and the HPD intervals were discussed by Edwards et al. (1963) [16].
The HPD interval is the shortest interval among all credible intervals. The
HPD interval for parameter τ based on the simulation method MCMC sam-
ples, ie., τ(1), τ(2), . . . , τ(M) was discussed by Chen and Saho (1999) [14].
For the parameter τ , the credible interval 100(1 − η)% is obtained as
((τ {(1)}, τ {[(1−η)M ]+1}), . . . , (τ {[Mη]}, τ {M}), where, [K] defines
the largest integer value which is less than or equal to K. Therefore, for the
parameter τ , the shortest length interval is the HPD interval. There are few
other researchers also who discussed HPD interval in very detailed form (see,
Box and Tiao (1973) [11] and Sinha (1987) [39]).

5 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) simulation method is conducted to
measure the performances of various estimators obtained from Bayes com-
putation. In Bayesian paradigm, we generate different posterior samples of
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the different values on sample size with the different sampling technique
of MCMC method. Metropolis Hastings and Gibbs sampling are the two
common techniques of MCMC method. Here, we are used Gibbs sampling
technique to generate the samples from posterior distribution. (see, Kumar
et al. (2012) [26], Adegoke et al. (2018) [1], Chaudhary et al. (2020) [13] and
Srivastava et al. (2020) [42], Hora et al. (2021) [22]).

6 Simulation Study

In this section, the simulation study is conducted to measure the performances
of various estimators obtained in this article. Here, we perform Markov chain
Monte Carlo (MCMC) simulation method for the ILD under the APT-II cen-
sored sample. The algorithm for generation of APT-II censored sample was
given by Balakrishnan and Sandhu (1995) [8] and Ng et al. (2009) [32] with
the predetermined value of n and m. The algorithm is modified according to
our problem and is given as:

• Generate m independent identical distributed (iid) random numbers
W1,W2, . . . ,Wm

From U(0, 1).
• Determine the values of the censored scheme ri, for i = 1, 2, . . . ,m.

• Set Vi = W
1/(i+

∑m
j=m−i+1 rj)

i for i = 1, 2, . . .m.
• Set Ui = 1 − Vm · Vm−1 . . . Vm−i+1, i = 1, 2, . . .m. Then {Ui, i =

1, 2, . . . ,m} is the progressive type-II censored sample from U(0, 1).
• Set

Xi = F−1(Ui) =
β(

U
− 1
α

i − 1

)
Thus, X1, X2, . . . , Xm is the progressive type-II censored sample from
the specified distribution.

• Identify the value of J , where xj < T < xj+1 and discard the sample
xj+2, . . . , xm.

• Simulate the first m− j−1 order statistics from a truncated distribution
considered as f(x)

[1−F (xj+1)]
with sample size (n −

∑j
i=1Ri − J − 1) as

xj+2, xj+3, . . . , xm.

The censoring schemes shown in Table 1 with the different value of
n and m. In order to calculate mean square error (MSEs) under classical
and Bayesian paradigm, we have replicated our results 30000 times. All the
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Table 1 Censoring schemes (CS) with the different value of n and m
n m Schemes Censoring Schemes
50 30 I (010,120)

II (1,010,119)
III (1,22,012,115)

60 35 I (010,125)
II (1,010,124)
III (1,22,012,120)

80 50 I (020,130)
II (1,020,129)
III (1,22,022,125)

120 65 I (010,155)
II (1,010,154)
III (1,22,012,150)

results are reported in Tables 2–7. Tables 2 and 3 represent the estimates of
the unknown shape parameter under classical and Bayesian paradigm along
with their MSEs at different test time T = 1.5 and T = 2.5 respectively.
Tables 4 and 5 show the estimates of survival function at t = 0.75 along
with their MSEs respectively with the test time T = 1.5 and at T = 2.5,
the estimates of hazard function at t = 0.75 represents in Tables 6 and 7
respectively. Lower limit (LL), upper limit (UL) and average length (AL) of
different intervals for the shape parameter α, S(t) and H(t) are also given in
Tables 8–10 respectively.

From Tables 2–10, we conclude that,

I. Tables 2 and 3 show the MSEs of the parameter α decreases when the
different choices of (n,m) increases for both classical and Bayesian
inferences at the test time T = 1.5 and T = 2.5 respectively.

II. The Bayes estimator for GELF at 2 exhibits lower MSEs among other
Bayes estimators for the parameter α [Tables 2 and 3].

III. For the survival characteristics, the MSEs for both survival function S(t)
and hazard rate function H(t) decreases in the increment of (n,m) with
given different choices in Table 4, Table 6 with T = 1.5 and Table 5,
Table 7 with T = 2.5 respectively under both estimation methods
(classical and Bayesian).

IV. Tables 4–7 show the Bayes estimators for GELF at 2 exhibits lower
MSEs for S(t) and H(t) among other Bayes estimators.

V. Table 8 show that the HPD interval length is smaller than other intervals
length at both test time T = 1.5 and T = 2.5 of the parameter α.
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Table 2 MLE and Bayes estimates of α with their MSEs under APT-II censoring scheme
with (α, β) ∼(1.5, 0.5)

T = 1.5
LINEX (MSE) GELF (MSE)

MLE SELF
n m CS (MSE) (MSE) −2 2 −2 2
50 30 I 1.1226

(0.3154)
0.7402

(0.5789)
0.7348

(0.5856)
0.7832

(0.5872)
0.7339

(0.5869)
0.7472

(0.5727)
II 1.2873

(0.4400)
0.7396

(0.5798)
0.7342

(0.5865)
0.7823

(0.5881)
0.7333

(0.5878)
0.7466

(0.5736)
III 1.4565

(7.7211)
0.7372

(0.5834)
0.7319

(0.5901)
0.7804

(0.5914)
0.7310

(0.5913)
0.7442

(0.5770)
60 35 I 1.0679

(0.2759)
0.7688

(0.5361)
0.7645

(0.5412)
0.8048

(0.5369)
0.7636

(0.5423)
0.7740

(0.5314)
II 1.1873

(0.2424)
0.7681

(0.5371)
0.7637

(0.5423)
0.8041

(0.5379)
0.7628

(0.5435)
0.7733

(0.5324)
III 1.5315

(0.4637)
0.7679

(0.5373)
0.7635

(0.5425)
0.8040

(0.5380)
0.7627

(0.5437)
0.7731

(0.5326)
80 50 I 1.1017

(0.2347)
0.7772

(0.5248)
0.7717

(0.5307)
0.8245

(0.5482)
0.7709

(0.5317)
0.7837

(0.5200)
II 1.2227

(0.1906)
0.7777

(0.5240)
0.7722

(0.5300)
0.8250

(0.5475)
0.7714

(0.5310)
0.7842

(0.5193)
III 1.5958

(0.2794)
0.7776

(0.5245)
0.7723

(0.5301)
0.8243

(0.5487)
0.7715

(0.5310)
0.7839

(0.5202)
120 65 I 1.0370

(0.2402)
0.7879

(0.5141)
0.7765

(0.5239)
0.8851

(0.7769)
0.7757

(0.5248)
0.8032

(0.5131)
II 1.0911

(0.1981)
0.7878

(0.5141)
0.7764

(0.5240)
0.8851

(0.7470)
0.7757

(0.5249)
0.8032

(0.5132)
III 1.2418

(0.1157)
0.7877

(0.5144)
0.7763

(0.5242)
0.8849

(0.7472)
0.7755

(0.5251)
0.8030

(0.5134)

Table 3 MLE and Bayes estimates of α with their MSEs under APT-II censoring scheme
with (α, β) ∼(1.5,0.5)

T = 2.5
LINEX (MSE) GELF (MSE)

MLE SELF
n m CS (MSE) (MSE) −2 2 −2 2
50 30 I 1.0112

(0.3401)
0.6699

(0.6901)
0.6660

(0.6956)
0.7061

(0.6824)
0.6651

(0.6970)
0.6753

(0.6840)
II 1.1468

(0.3264)
0.6694

(0.6909)
0.6656

(0.6964)
0.7056

(0.6832)
0.6647

(0.6978)
0.6748

(0.6848)
(Continued)
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Table 3 Continued
T = 2.5

LINEX (MSE) GELF (MSE)
MLE SELF

n m CS (MSE) (MSE) −2 2 −2 2
III 1.5335

(1.1372)
0.6679

(0.6935)
0.6640

(0.6990)
0.7043

(0.6854)
0.6631

(0.7004)
0.6733

(0.6872)
60 35 I 0.9708

(0.3441)
0.6950

(0.6490)
0.6908

(0.6548)
0.7355

(0.6472)
0.6900

(0.6561)
0.7008

(0.6427)
II 1.0707

(0.2861)
0.6934

(0.6516)
0.6892

(0.6575)
0.7339

(0.6498)
0.6883

(0.6588)
0.6992

(0.6453)
III 1.3727

(0.5266)
0.6931

(0.6521)
0.6889

(0.6579)
0.7336

(0.6504)
0.6881

(0.6592)
0.6989

(0.6458)
80 50 I 0.9984

(0.3060)
0.6843

(0.6677)
0.6780
(6759)

0.7381
(0.6953)

0.6770
(0.6773)

0.6929
(0.6604)

II 1.1005
(0.2397)

0.6841
(0.6681)

0.6778
(0.6762)

0.7379
(0.6956)

0.6768
(0.6777)

0.6928
(0.6607)

III 1.4305
(0.2109)

0.6825
(0.6707)

0.6761
(0.6789)

0.7362
(0.6983)

0.6852
(0.6803)

0.6911
(0.6634)

120 65 I 0.9465
(0.3247)

0.6936
(0.6562)

0.6834
(0.6673)

0.7904
(0.8624)

0.6822
(0.6690)

0.7078
(0.6513)

II 0.9911
(0.2807)

0.6941
(0.6555)

0.6839
(0.6665)

0.7909
(0.8617)

0.6826
(0.6683)

0.7082
(0.6505)

III 1.1156
(0.1815)

0.6933
(0.6567)

0.6831
(0.6677)

0.7901
(0.8629)

0.6819
(0.6695)

0.7074
(0.6518)

Table 4 MLEs and Bayes estimates of Survival function S(t) with their MSEs under APT-II
censoring scheme and S(t = 0.75) = 0.53524

T = 1.5
LINEX (MSE) GELF (MSE)

MLE SELF
n m CS (MSE) (MSE) −2 2 −2 2
50 30 I 0.4261

(0.0205)
0.3138

(0.0490)
0.3133

(0.0492)
03146

(0.0488)
0.3126

(0.0495)
0.3146

(0.0488)
II 0.4655

(0.0159)
0.3136

(0.0491)
0.3131

(0.0493)
0.3143

(0.0489)
0.3124

(0.0496)
0.3144

(0.0489)
III 0.5559

(0.0140)
0.3128

(0.0495)
0.3123

(0.0497)
0.3135

(0.0493)
0.3116

(0.0499)
0.3135

(0.0492)
60 35 I 0.4144

(0.0204)
0.3240

(0.0446)
0.3236

(0.0448)
0.3246

(0.0445)
0.3230

(0.0450)
0.3246

(0.0445)
(Continued)
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Table 4 Continued
T = 1.5

LINEX (MSE) GELF (MSE)
MLE SELF

n m CS (MSE) (MSE) −2 2 −2 2
II 0.4462

(0.0152)
0.3237

(0.0448)
0.3234

(0.0449)
0.3243

(0.0446)
0.3227

(0.0451)
0.3243

(0.0446)
III 0.5265

(0.0101)
0.3237

(0.0448)
0.3233

(0.0449)
0.3242

(0.0446)
0.3227

(0.0451)
0.3243

(0.0446)
80 50 I 0.4251

(0.0173)
0.3266

(0.0436)
0.3262

(0.0437)
0.3273

(0.0434)
0.3255

(0.0440)
0.3273

(0.0434)
II 0.4573

(0.0126)
0.3268

(0.0435)
0.3263

(0.0437)
0.3275

(0.0433)
0.3257

(0.0439)
0.3275

(0.0433)
III 0.5445

(0.0091)
0.3268

(0.0436)
0.3263

(0.0437)
0.3274

(0.0434)
0.3257

(0.0439)
0.3274

(0.0434)
120 65 I 0.4093

(0.0180)
0.3288

(0.0428)
0.3280

(0.0430)
0.3300

(0.0425)
0.3272

(0.0433)
0.3299

(0.0426)
II 0.4250

(0.0146)
0.3288

(0.0428)
0.3280

(0.0430)
0.3300

(0.0425)
0.3272

(0.0433)
0.3299

(0.0426)
III 0.4664

(0.0079)
0.3287

(0.0428)
0.3280

(0.0430)
0.3299

(0.0426)
0.3271

(0.0433)
0.3298

(0.0426)

Table 5 MLEs and Bayes estimates of Survival function S(t) with their MSEs under APT-II
censoring scheme and S(t = 0.75) = 0.53524

T = 2.5
LINEX (MSE) GELF (MSE)

MLE SELF
n m CS (MSE) (MSE) −2 2 −2 2
50 30 I 0.3965

(0.0261)
0.2890

(0.0606)
0.2887

(0.0608)
0.2896

(0.0604)
0.2281

(0.0610)
0.2897

(0.0604)
II 0.4324

(0.0195)
0.2889

(0.0607)
0.2885

(0.0609)
0.2894

(0.0605)
0.2879

(0.0611)
0.2895

(0.0604)
III 0.5213

(0.0125)
0.2883

(0.0610)
0.2879

(0.0611)
0.2889

(0.0607)
0.2873

(0.0614)
0.2890

(0.0607)
60 35 I 0.3863

(0.0270)
0.2980

(0.0563)
0.2976

(0.0564)
0.2987

(0.0560)
0.2970

(0.0567)
0.2987

(0.0560)
II 0.4148

(0.0206)
0.2975

(0.0565)
0.2971

(0.0567)
0.2981

(0.0563)
0.2964

(0.0570)
0.2982

(0.0563)
III 0.4907

(0.0109)
0.2974

(0.0566)
0.2970

(0.0567)
0.2980

(0.0564)
0.2964

(0.0570)
0.2981

(0.0563)
(Continued)
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Table 5 Continued
T = 2.5

LINEX (MSE) GELF (MSE)
MLE SELF

n m CS (MSE) (MSE) −2 2 −2 2
80 50 I 0.3955

(0.0238)
0.2937

(0.0584)
0.2931

(0.0586)
0.2946

(0.0581)
0.2924

(0.0589)
0.2946

(0.0581)
II 0.4245

(0.0176)
0.2936

(0.0584)
0.2931

(0.0586)
0.2945

(0.0581)
0.2923

(0.0590)
0.2946

(0.0581)
III 0.5079

(0.0088)
0.2930

(0.0587)
0.2925

(0.0589)
0.2939

(0.0584)
0.2917

(0.0593)
0.2940

(0.0584)
120 65 I 0.3819

(0.0252)
0.2960

(0.0574)
0.2953

(0.0577)
0.2972

(0.0571)
0.2942

(0.0580)
0.2972

(0.0571)
II 0.3955

(0.0214)
0.2962

(0.0573)
0.2954

(0.0576)
0.2974

(0.0570)
0.2944

(0.0580)
0.2974

(0.0570)
III 0.4319

(0.0033)
0.2959

(0.0575)
0.2952

(0.0577)
0.2971

(0.0571)
0.2941

(0.0581)
0.2971

(0.0571)

Table 6 MLEs and Bayes estimates of Hazard rate function H(t) with their MSEs under
APT-II censoring scheme and H(t = 0.75) = 0.8

T = 1.5
LINEX (MSE) GELF (MSE)

MLE SELF
n m CS (MSE) (MSE) −2 2 −2 2
50 30 I 0.5985

(0.0897)
0.3947

(0.1646)
0.3925

(0.1661)
0.4041

(0.1681)
0.3914

(0.1669)
0.3985

(0.1629)
II 0.6865

(0.1251)
0.3944

(0.1649)
0.3922

(0.1663)
0.4038

(0.1621)
0.3911

(0.1672)
0.3982

(0.1631)
III 0.9368

(2.1962)
0.3931

(0.1659)
0.3909

(0.1673)
0.4026

(0.1630)
0.3899

(0.1681)
0.3969

(0.1641)
60 35 I 0.5695

(0.0784)
0.4100

(0.1524)
0.4083

(0.1535)
0.4169

(0.1500)
0.4072

(0.1542)
0.4128

(0.1511)
II 0.6332

(0.0689)
0.4096

(0.1527)
0.4079

(0.1538)
0.4166

(0.1503)
0.4068

(0.1546)
0.4124

(0.1514)
III 0.8168

(0.1319)
0.4095

(0.1528)
0.4078

(0.1539)
0.4165

(0.1503)
0.4067

(0.1546)
0.4123

(0.1515)
80 50 I 0.5876

(0.0667)
0.4145

(0.1492)
0.4123

(0.1505)
0.4246

(0.1473)
0.4111

(0.1512)
0.4179

(0.1479)
II 0.6521

(0.0542)
0.4147

(0.1490)
0.4125

(0.1503)
0.4248

(0.1471)
0.4114

(0.1510)
0.4182

(0.1477)
(Continued)
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Table 6 Continued
T = 1.5

LINEX (MSE) GELF (MSE)
MLE SELF

n m CS (MSE) (MSE) −2 2 −2 2
III 0.8511

(0.0794)
0.4147

(0.1492)
0.4126

(0.1503)
0.4246

(0.1475)
0.4115

(0.1510)
0.4180

(0.1479)
120 65 I 0.5531

(0.0683)
0.4202

(0.1462)
0.4151

(0.1484)
0.4517

(0.1673)
0.4137

(0.1492)
0.4284

(0.1459)
II 0.5819

(0.0563)
0.4202

(0.1462)
0.4151

(0.1484)
0.4517

(0.1673)
0.4137

(0.1493)
0.4283

(0.1459)
III 0.6623

(0.0329)
0.4201

(0.1463)
0.4150

(0.1485)
0.4516

(0.1674)
0.4136

(0.1493)
0.4283

(0.1460)

Table 7 MLEs and Bayes estimates of Hazard rate function H(t) with their MSEs under
APT-II censoring scheme and H(t = 0.75) = 0.8

T = 2.5
LINEX (MSE) GELF (MSE)

MLE SELF
n m CS (MSE) (MSE) −2 2 −2 2
50 30 I 0.5393

(0.0967)
0.3573

(0.1963)
0.3557

(0.1974)
0.3640

(0.1930)
0.3547

(0.1982)
0.3601

(0.1945)
II 0.6116

(0.0928)
0.3570

(0.1965)
0.3555

(0.1976)
0.3637

(0.1932)
0.3545

(0.1984)
0.3599

(0.1948)
III 0.8178

(0.3234)
0.3562

(0.1972)
0.3546

(0.1984)
0.3629

(0.1939)
0.3536

(0.1992)
0.3591

(0.1954)
60 35 I 0.5177

(0.0978)
0.3706

(0.1846)
0.3689

(0.1858)
0.3782

(0.1812)
0.3680

(0.1866)
0.3737

(0.1828)
II 0.5710

(0.0814)
0.3698

(0.1853)
0.3681

(0.1865)
0.3773

(0.1820)
0.3671

(0.1874)
0.3729

(0.1835)
III 0.7321

(0.1498)
0.3696

(0.1855)
0.3679

(0.1867)
0.3772

(0.1821)
0.3670

(0.1875)
0.3727

(0.1837)
80 50 I 0.5324

(0.0870)
0.3649

(0.1899)
0.3623

(0.1917)
0.3776

(0.1873)
0.3610

(0.1926)
0.3695

(0.1878)
II 0.5869

(0.0681)
0.3648

(0.1900)
0.3622

(0.1917)
0.3775

(0.1874)
0.3609

(0.1927)
0.3694

(0.1879)
III 0.7629

(0.0599)
0.3640

(0.1908)
0.3613

(0.1925)
0.3766

(0.1881)
0.3601

(0.1935)
0.3686

(0.1887)
(Continued)
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Table 7 Continued
T = 2.5

LINEX (MSE) GELF (MSE)
MLE SELF

n m CS (MSE) (MSE) −2 2 −2 2
120 65 I 0.5048

(0.0923)
0.3699

(0.1866)
0.3655

(0.1890)
0.3989

(0.1999)
0.3638

(0.1903)
0.3774

(0.1852)
II 0.5285

(0.0798)
0.3701

(0.1864)
0.3657

(0.1888)
0.3992

(0.1997)
0.3640

(0.1900)
0.3777

(0.1850)
III 0.5950

(0.0516)
0.3697

(0.1868)
0.3653

(0.1892)
0.3988

(0.2000)
0.3636

(0.1904)
0.3773

(0.1854)

Table 8 Classical and Bayesian Interval estimation for α under APT-II censoring scheme
Confidence Interval Credible Interval HPD Interval

n m CS Interval AL Interval AL Interval AL

T = 1.5 50 30 I (0.3227,1.9217) 1.5989 (0.6983,0.7713) 0.0730 (0.6959,0.7683) 0.0724
II (0.2294,2.3451) 2.1156 (0.6974,0.7720) 0.0746 (0.6971,0.7695) 0.0724
III (0.0425,3.4704) 3.4279 (0.6981,0.7688) 0.0707 (0.6951,0.7634) 0.0683

60 35 I (0.4265,1.7093) 1.2828 (0.7318,0.7993) 0.0675 (0.7304,0.7971) 0.0667
II (0.4079,1.9667) 1.5588 (0.7308,0.7993) 0.0685 (0.7285,0.7956) 0.0671
III (0.3393,2.7238) 2.3844 (0.7290,0.7976) 0.0686 (0.7275,0.7935) 0.0660

80 50 I (0.5168,1.6867) 1.1698 (0.7440,0.7954) 0.0514 (0.7401,0.7897) 0.0496
II (0.5197,1.9257) 1.4060 (0.7466,0.7951) 0.0485 (0.7457,0.7941) 0.0484
III (0.5240,2.6676) 2.1435 (0.7465,0.8001) 0.0536 (0.7446,0.7947) 0.0501

120 65 I (0.6309,1.4431) 0.8121 (0.7586,0.7926) 0.0340 (0.7583,0.7900) 0.0317
II (0.6473,1.5349) 0.8876 (0.7561,0.7942) 0.0381 (0.7556,0.7901) 0.0345
III (0.6881,1.7956) 1.1074 (0.7589,0.7940) 0.0351 (0.7558,0.7888) 0.0330

T = 2.5 50 30 I (0.3266,1.6959) 1.3692 (0.6352,0.6979) 0.0627 (0.6317,0.6936) 0.0591
II (0.2718,2.0219) 1.7501 (0.6353,0.6971) 0.0618 (0.6328,0.6919) 0.0595
III (0.1509,2.9161) 2.7652 (0.6348,0.6963) 0.0615 (0.6323,0.6918) 0.0528

60 35 I (0.4028,1.5388) 1.1359 (0.6646,0.7192) 0.0546 (0.6615,0.7143) 0.0546
II (0.3903,1.7511) 1.3608 (0.6615,0.7171) 0.0556 (0.6594,0.7140) 0.0529
III (0.3471,2.3983) 2.0511 (0.6619,0.7151) 0.0532 (0.6599,0.7128) 0.0360

80 50 I (0.4817,1.5150) 1.0332 (0.6576,0.6942) 0.0366 (0.6568,0.6928) 0.0372
II (0.4866,1.7144) 1.2277 (0.6569,0.6963) 0.0394 (0.6568,0.6940) 0.0384
III (0.4932,2.3679) 1.8747 (0.6539,0.6945) 0.0406 (0.6531,0.6915) 0.0253

120 65 I (0.5825,1.3104) 0.7279 (0.6659,0.6963) 0.0304 (0.6659,0.6912) 0.0249
II (0.5965,1.3856) 0.7891 (0.6659,0.6939) 0.0280 (0.6657,0.6906) 0.0253
III (0.6315,1.5997) 0.9682 (0.6659,0.6969) 0.0310 (0.6659,0.6912) 0.0591
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Table 9 Classical and Bayesian Interval estimation for S(t) under APT-II censoring scheme
Confidence Interval Credible Interval HPD Interval

n m CS Interval AL Interval AL Interval AL

T = 1.5 50 30 I (0.4236,0.4287) 0.0052 (0.3115,0.3277) 0.0163 (0.3092,0.3143) 0.0052
II (0.4627,0.4684) 0.0058 (0.3114,0.3274) 0.0161 (0.3085,0.3139) 0.0054
III (0.5527,0.5592) 0.0065 (0.3105,0.3258) 0.0154 (0.3094,0.3128) 0.0034

60 35 I (0.4124,0.4165) 0.0042 (0.32160.3389) 0.0173 (0.3197,0.3249) 0.0053
II (0.4439,0.4486) 0.0047 (0.3217,0.3384) 0.0168 (0.3193,0.3244) 0.0051
III (0.5238,0.5293) 0.0056 (0.3211,0.3387) 0.0176 (0.3195,0.3253) 0.0058

80 50 I (0.4232,0.4271) 0.0040 (0.3238,0.3446) 0.0209 (0.3218,0.3278) 0.0061
II (0.4551,0.4596) 0.0045 (0.3240,0.3440) 0.0200 (0.3218,0.3271) 0.0053
III (0.5419,0.5471) 0.0053 (0.3237,0.3463) 0.0226 (0.3221,0.3274) 0.0053

120 65 I (0.4080,0.4106) 0.0026 (0.3253,0.3508) 0.0256 (0.3242,0.3281) 0.0039
II (0.4237,0.4264) 0.0028 (0.2553,0.3505) 0.0953 (0.3239,0.3276) 0.0038
III (0.4649,0.4680) 0.0032 (0.3254,0.3503) 0.0249 (0.3243,0.3273) 0.0031

T = 2.5 50 30 I (0.3942,0.3988) 0.0046 (0.2867,0.3026) 0.0159 (0.2855,0.2896) 0.0042
II (0.4298,0.4351) 0.0053 (0.2868,0.3025) 0.0158 (0.2851,0.2896) 0.0045
III (0.5182,0.5243) 0.0062 (0.2865,0.3018) 0.0154 (0.2841,0.2896) 0.0056

60 35 I (0.3845,0.3883) 0.0039 (0.2962,0.3108) 0.0147 (0.2930,0.2994) 0.0064
II (0.4126,0.4169) 0.0043 (0.2954,0.3102) 0.0149 (0.2932,0.2986) 0.0055
III (0.4882,0.4934) 0.0052 (0.2953,0.3104) 0.0151 (0.2933,0.2989) 0.0056

80 50 I (0.3937,0.3973) 0.0036 (0.2910,0.3100) 0.0191 (0.2898,0.2935) 0.0038
II (0.4226,0.4266) 0.0041 (0.2908,0.3098) 0.0191 (0.2897,0.2932) 0.0036
III (0.5054,0.5104) 0.0050 (0.2902,0.3091) 0.0189 (0.2877,0.2923) 0.0046

120 65 I (0.3808,0.3830) 0.0023 (0.2924,0.3187) 0.0264 (0.2911,0.2950) 0.0040
II (0.3944,0.3968) 0.0024 (0.2929,0.3186) 0.0258 (0.2911,0.2949) 0.0039
III (0.4306,0.4334) 0.0028 (0.2926,0.3186) 0.0261 (0.2911,0.2949) 0.0039

Table 10 Classical and Bayesian Interval estimation for H(t) under APT-II censoring
scheme

Confidence Interval Credible Interval HPD Interval
n m CS Interval AL Interval AL Interval AL

T = 1.5 50 30 I (0.5924,0.6046) 0.0123 (0.3898,0.4267) 0.0370 (0.3862,0.3940) 0.0078
II (0.6773,0.6958) 0.0186 (0.3895,0.4262) 0.0368 (0.3852,0.3934) 0.0082
III (0.8959,0.9777) 0.0818 (0.3882,0.4236) 0.0355 (0.3866,0.3917) 0.0051

60 35 I (0.5651,05739) 0.0088 (0.4051,0.4413) 0.0362 (0.4023,0.4103) 0.0081
II (0.6276,0.6388) 0.0112 (0.4053,0.4406) 0.0354 (0.4017,0.4094) 0.0078
III (0.8068,0.8269) 0.0201 (0.4044,0.4410) 0.0367 (0.4020,0.4109) 0.0090

80 50 I (0.5835,0.5917) 0.0082 (0.4085,0.4536) 0.0452 (0.4055,0.4148) 0.0094
II (0.6472,0.6571) 0.0100 (0.4089,0.4528) 0.0439 (0.4055,0.4136) 0.0082
III (0.8434,0.8587) 0.0154 (0.4084,0.4563) 0.0480 (0.4060,0.4142) 0.0082

120 65 I (0.5507,0.5554) 0.0048 (0.4108,0.4830) 0.0722 (0.4091,0.4151) 0.0061
II (0.5794,0.5845) 0.0052 (0.4108,0.4825) 0.0717 (0.4086,0.4144) 0.0059
III (0.6591,0.6656) 0.0066 (0.4110,0.4821) 0.0711 (0.4092,0.4139) 0.0047

(Continued)
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Table 10 Continued
Confidence Interval Credible Interval HPD Interval

n m CS Interval AL Interval AL Interval AL

T = 2.5 50 30 I (0.5347,0.5440) 0.0094 (0.3528,0.3846) 0.0318 (0.3510,0.3571) 0.0062
II (0.6050,0.6183) 0.0133 (0.3529,0.3845) 0.0316 (0.3504,0.3570) 0.0067
III (0.8021,0.8336) 0.0315 (0.3524,0.3835) 0.0311 (0.3489,0.3570) 0.0082

60 35 I (0.5140,0.5215) 0.0075 (0.3667,0.3977) 0.0311 (0.3621,0.3715) 0.0095
II (0.5664,0.5758) 0.0094 (0.3655,0.3969) 0.0314 (0.3623,0.3703) 0.0081
III (0.7216,0.7427) 0.0211 (0.3654,0.3972) 0.0318 (0.3625,0.3708) 0.0084

80 50 I (0.5290,0.5359) 0.0069 (0.3590,0.4026) 0.0436 (0.3572,0.3628) 0.0056
II (0.5828,0.5911) 0.0084 (0.3588,0.4023) 0.0436 (0.3571,0.3624) 0.0053
III (0.7563,0.7696) 0.0134 (0.3579,0.4013) 0.0434 (0.3542,0.3610) 0.0068

120 65 I (0.5028,0.5068) 0.0040 (0.3611,0.4280) 0.0670 (0.3592,0.3650) 0.0059
II (0.5264,0.5307) 0.0044 (0.3619,0.4279) 0.0661 (0.3592,0.3649) 0.0058
III (0.5923,0.5977) 0.0054 (0.3614,0.4279) 0.0666 (0.3592,0.3649) 0.0058

VI. For the survival characteristics, HPD interval length for both survival
function S(t) and hazard rate function H(t) is smaller than other inter-
vals length (confidence interval and credible interval) at both test time
T = 1.5 and T = 2.5 respectively [Tables 9 and 10]. At T = 1.5,
the HPD length of S(t) and H(t) increases For the choice of (120, 65)
for the schemes (I, II) respectively. For the same choice of (n,m) as
(120, 65), the HPD length of S(t) andH(t) increases for all schemes (I,
II, III) at T = 2.5 respectively.

VII. From the Tables 2–7, we observe that, the scheme III performs better
than other censoring schemes (I, II).

7 Real Data Analysis

In this section, we have considered the mortality data set due to COVID-19
of the United Kingdom. The COVID-19 (coronavirus disease) declared as a
pandemic by World Health Organization (WHO) in 2020. The COVID-19
is the third-highest cause of deaths in 2020 which has been revealed by the
US Centers for Disease Control and Prevention (CDC). The mortality rate
actually calculated by the ratio of number of deaths and total number of cases
(reported cases). The Mortality rate due to COVID-19 increases by 15.9%
from 2019 (see, https://www.pharmaceutical-technology.com/comment/
covid-19-cause-death-2020/). Here, this COVID-19 data set represents the
mortality rate of 76 days of United Kingdom (see, https://covid19.who.int/).

https://www.pharmaceutical-technology.com/comment/covid-19-cause-death-2020/
https://www.pharmaceutical-technology.com/comment/covid-19-cause-death-2020/
https://covid19.who.int/
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Table 11 ML estimates of the parameters, -Log L, K-S distance, AIC and BIC for the fitted
models

Estimates
Models α β -Log L K-S AIC BIC
IE – 1.9400 149.6024 0.3340 301.2048 303.5335
IL – 0.6578 185.8067 0.3138 373.6134 375.9441
IW 0.6701 0.7896 145.1722 0.1021 294.3445 299.0059
ILD 2.1440 0.4195 142.7440 0.0741 289.4879 294.1494
IG 0.7359 2.6362 146.9445 0.1320 297.8889 302.5504

The mortality rate of United Kingdom recorded from 15 April to 27 June,
2020 (also see, Mubarak and Almetwally (2021) [31]) and the data set is –

0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 0.1652, 0.2079, 0.2395,
0.2751, 0.2845, 0.2992, 0.3188, 0.3317, 0.3446, 0.3553, 0.3622, 0.3926,
0.3926, 0.4110, 0.4633, 0.4690, 0.4954, 0.5139, 0.5696, 0.5837, 0.6197,
0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438, 1.0602, 1.1305, 1.1468,
1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017, 1.6083, 1.6324,
1.6998, 1.8164, 1.8392, 1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225,
2.7087, 2.7946, 3.3609, 3.3715, 3.7840, 3.9042, 4.1969, 4.3451, 4.4627,
4.6477, 5.3664, 5.4500, 5.7522, 6.4241, 7.0657, 7.4456, 8.2307, 9.6315,

10.1870, 11.1429, 11.2019, 11.4584.

In the terms of suitable fitting of the distribution, the ILD is compared
with other related distributions such as Inverse exponential (IE) distribu-
tion, Inverse gamma (IG) distribution, Inverse Weibull (IW) distribution and
Inverse Lindley (IL) distribution. The data set has been measured on the
basis of negative log likelihood and Kolmogorov-Smirnov (K-S) test statistic,
Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC). Results are given in Table 11.

From the Table 11, we observe that the value of AIC, BIC and -Log L
of the ILD is minimum rather than the other distributions values. This shows
that the ILD is better fit for the considered data set. Empirical cdf and Q-Q
plot also support that ILD fits well.

For n = 76, we consider m = 45 and make same censoring schemes
as done in simulation [I = (014, 131), II = (1, 014, 130), III =
(1, 22, 016, 126)] with both test time T = 1.5 and T = 2.5 under APT-
II censoring scheme. MLEs and the Bayes estimates are calculated under
symmetric and asymmetric loss functions. The calculated estimates of α,
the survival function S(t) and hazard rate function H(t) as t = 0.75 with
T = 1.5 and T = 2.5 are given in Table 12. Table 13 shows the confidence
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Figure 7.1. QQ-plot and empirical cdf plot of the IL distribution for COVID-19 mortality data set of United 

                    Kingdom of 76 days. 
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II censoring scheme. MLEs and the Bayes estimates are calculated under symmetric and asymmetric loss 
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with       and       are given in Table 12. Table 13 shows the confidence intervals, credible intervals and 

HPD intervals for the parameter   , survival function  ( ) and hazard rate function  ( ) at       . 

 

Table 12 MLEs and Bayes estimates of  , S(t) and H(t) under APT-II censoring scheme for the COVID-19 

mortality data set. 

  n m CS MLE SELF 
LINEX GELF 

-2 2 -2 2 

  

T=1.5 76 45 

I 1.0546 0.7894 0.7851 0.8279 0.7844 0.7946 

II 1.1581 0.7891 0.7847 0.8276 0.7841 0.7942 

III 1.4721 0.7891 0.7848 0.8276 0.7841 0.7943 

T=2.5 76 45 

I 0.9593 0.6842 0.6797 0.7279 0.6789 0.6902 

II 1.0455 0.6839 0.6794 0.7276 0.6786 0.6899 

III 1.3172 0.6810 0.6769 0.6968 0.6760 0.6854 

S(t) T=1.5 76 45 

I 0.4120 0.3301 0.3307 0.3315 0.3301 0.3315 

II 0.4405 0.3309 0.3305 0.3314 0.3300 0.3314 

III 0.5174 0.3309 0.3305 0.3314 0.3300 0.3314 

Figure 2 QQ-plot and empirical cdf plot of the IL distribution for COVID-19 mortality data
set of United Kingdom of 76 days.

Table 12 MLEs and Bayes estimates of α, S(t) and H(t) under APT-II censoring scheme for
the COVID-19 mortality data set

LINEX GELF
n m CS MLE SELF −2 2 −2 2

α T = 1.5 76 45 I 1.0546 0.7894 0.7851 0.8279 0.7844 0.7946
II 1.1581 0.7891 0.7847 0.8276 0.7841 0.7942
III 1.4721 0.7891 0.7848 0.8276 0.7841 0.7943

T = 2.5 76 45 I 0.9593 0.6842 0.6797 0.7279 0.6789 0.6902
II 1.0455 0.6839 0.6794 0.7276 0.6786 0.6899
III 1.3172 0.6810 0.6769 0.6968 0.6760 0.6854

S(t) T = 1.5 76 45 I 0.4120 0.3301 0.3307 0.3315 0.3301 0.3315
II 0.4405 0.3309 0.3305 0.3314 0.3300 0.3314
III 0.5174 0.3309 0.3305 0.3314 0.3300 0.3314

T = 2.5 76 45 I 0.3840 0.2941 0.2937 0.2947 0.2930 0.2948
II 0.4093 0.2940 0.2936 0.2946 0.2929 0.2947
III 0.4812 0.2931 0.2927 0.2937 0.2920 0.2938

(Continued)
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Table 12 Continued
LINEX GELF

n m CS MLE SELF −2 2 −2 2
H(t) T = 1.5 76 45 I 0.5624 0.4210 0.4193 0.4286 0.4184 0.4237

II 0.6176 0.4208 0.4191 0.4284 0.4182 0.4236
III 0.7851 0.4208 0.4191 0.4284 0.4182 0.4236

T = 2.5 76 45 I 0.5116 0.3649 0.3631 0.3732 0.3620 0.3681
II 0.5576 0.3647 0.3629 0.3731 0.3619 0.3679
III 0.7025 0.3632 0.3616 0.3667 0.3605 0.3655

Table 13 Classical and Bayesian Interval estimation for α, S(t) and H(t) under APT-II
censoring scheme for the COVID-19 mortality data set

Confidence Interval Credible Interval HPD interval
n m CS Interval AL Interval AL Interval AL

α T = 1.5 76 45 I (0.5039,1.6053) 1.1013 (0.7561,0.8129) 0.0568 (0.7561,0.8184) 0.0623
II (0.5075,1.8087) 1.3011 (0.7540,0.8209) 0.0669 (0.7499,0.8115) 0.0616
III (0.5039,2.4402) 1.9363 (0.7541,0.8200) 0.0659 (0.7528,0.8131) 0.0603

T = 2.5 76 45 I (0.4700,1.4485) 0.9784 (0.6563,0.7004) 0.0441 (0.6556,0.6988) 0.0432
II (0.4753,1.1404) 1.1404 (0.6560,0.7010) 0.0450 (0.6536,0.6963) 0.0427
III (0.4785,2.1558) 1.6773 (0.6532,0.6973) 0.0441 (0.6531,0.6965) 0.0434

S(t) T = 1.5 76 45 I (0.4102,0.4139) 0.0037 (0.3279,0.3492) 0.0212 (0.3263,0.3331) 0.0067
II (0.4384,0.4426) 0.0041 (0.3277,0.3483) 0.0206 (0.3267,0.3319) 0.0052
III (0.5149,0.5199) 0.0049 (0.3279,0.3477) 0.0197 (0.3244,0.3311) 0.0067

T = 2.5 76 45 I (0.3824,0.3857) 0.0033 (0.2912,0.3098) 0.0185 (0.2903,0.2944) 0.0041
II (0.4075,0.4112) 0.0037 (0.2914,0.3090) 0.0175 (0.2902,0.2933) 0.0031
III (0.4789,0.4835) 0.0046 (0.2909,0.3059) 0.0150 (0.2900,0.2933) 0.0032

H(t) T = 1.5 76 45 I (0.5587,0.5662) 0.0074 (0.4149,0.4583) 0.0433 (0.4125,0.4231) 0.0105
II (0.6131,0.6221) 0.0090 (0.4145,0.4569) 0.0423 (0.4130,0.4212) 0.0081
III (0.7778,0.7923) 0.0145 (0.4150,0.4560) 0.0410 (0.4095,0.4199) 0.0104

T = 2.5 76 45 I (0.5085,0.5147) 0.0062 (.3594,0.3972) 0.0378 (0.3580,0.3641) 0.0061
II (0.5539,0.5613) 0.0074 (0.3597,0.3960) 0.0363 (0.3579,0.3625) 0.0045
III (0.6966,0.7083) 0.0116 (0.3590,0.3891) 0.0301 (0.3577,0.3625) 0.0048

intervals, credible intervals and HPD intervals for the parameter α, survival
function S(t) and hazard rate function H(t) at t = 0.75.

8 Conclusion

In this paper, we have considered the classical and Bayesian inference of the
unknown shape parameter, survival characteristics (survival and hazard rate
function) of the ILD when the data are APT-II censored. The MLEs and the
Bayes estimators of the parameter and survival characteristics are obtained.
The MLEs are not in closed form. Therefore, numerical approximation
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technique has been implemented to evaluate them. We have used symmetric
(SELF) and symmetric (LINEX, GELF) loss functions to compute the Bayes
estimates and their MSEs. Simulation technique MCMC has been done for
the different choices of (n,m) combinations to report the performances
of the various estimators. Lastly, a COVID-19 mortality data set has been
considered to illustrate the computation of various estimators.
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