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Abstract

This article introduced the determination of reliability analysis of the alpha
power Gompertz model using the Bayesian techniques. The method devel-
oped has been evaluated using women breast cancer in the Stan imple-
mentation in R. A survival data used illustrates the proposed Bayesian
approach.

Keywords: Bayesian inference, posterior, prior, regression analysis, rstan
package, simulation.

1 Introduction

Modeling survival time in an event has received attention recently. This
may be due to an upsurge in data analyses and their applications. However,
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modeling survival time in events depends on the statistical distributions.
Thus, there is a need to developed a model that represents the true characteris-
tics of the survival datasets. In statistical distribution, most newly developed
traditional distributions do not characterised the true characteristics of the
data set. However, to improve these distributions, families of statistical distri-
butions are being developed to extend, make adequate, and improve existing
traditional distributions. One of such all times classical distribution is the
Gompertz distribution.

The Gompertz distribution is a continuous probability distribution named
after the author Benjamin Gompert. The Gompertz distribution is often
applied to describe the distribution of adult lifespans and more recently, it
has been applied to failure rates of computer code. The Gompertz distribu-
tion has exponentially increasing failure rate. Thus, a monotonic increasing
survival rate function are used to describe survival rates in epidemiology,
biology, chemistry, engineering, hydrology, gerontology, public health, and
economics. Thus, because of its all inclusions applications, there is need
to modify the Gompertz model to represent the true nature of the applied
data set. The alpha power Gompertz distribution proposed by Eghwerido
et al. 2020 has found its tractability, simplicity, applicability and flexibility
in classical statistical literature.

A number of distinct Bayesian models have been proposed in exist-
ing literature researched. [14] presented the Marshall-Olkin one-parameter
transformation. [1] proposed the Bayesian analysis of the Marshall-Olkin
model with special attention to exponential, exponentiated exponential and
exponential extension. [2] proposed the Bayesian survival analysis of the
type I generalized exponential model. [5] proposed the Bayesian analysis of
the generalized log-Burr family of distribution. [3] proposed the Bayesian
analysis with Stan with emphasis on the exponential model. [8] proposed
the Bayesian method of analysis for data analysis. [4] proposed a Bayesian
analysis of the Topp-Leone generalized model. [19] obtained the unimodal
density using the Bernstein polynomials. [15] proposed the Bayesian analysis
of the Topp-Leone generalized exponential model. [11] proposed the prior
distribution for variance parameters. [16] proposed the Bayesian model with
the inverse Gaussian model prior. [13] proposed the Bayesian procedure
using Fourier series residual to fit the logistic growth model. [18] proposed
the adaptive Bayesian credible bands using the Gaussian prior. [7] proposed
the Bayes estimator for Topp-Leone distribution. [12] proposed the Bayes
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estimation for Gompertz distribution. [20] proposed the Bayesian analysis of
the Normal model. [6] proposed the Bayesian reliability analysis of the bino-
mial model. [10] proposed the Bayesian and non-Bayesian reliability analysis
for the Topp-Leone model under type 11 censored data, and [17] proposed
the Bayes estimator of the reliability function of the parameter of the inverted
exponential model.

This article is motivated as a result of researched literature. Thus, intro-
ducing a class of Bayesian technique with a bathtub shaped using the rstan
package in R. The Bayesian reliability of the alpha power Gompertz (APGz)
model is proposed.

This study aims to propose a Bayesian reliability analysis of the alpha
power Gompertz model for survival time data.

2 The Alpha Power Gompertz Model (APGz)

Let M be a random variable such that M ~ APGz(«, 0, ) with « as the
extra shape parameter. Then [9] expressed the pdf as
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However, since the APGz model has a variety of applications in biology,
gerontology, computer codes failure rate, survival analysis etc., it becomes
very important for the flexibility, simplicity and tractability of the APGz
distribution to be enhanced to represent the true characteristics of the data
set. Thus, lifetime survival data were used to verify this distribution.

Figure 1 shows the pdf, cdf, survival, and hazard rate functions respec-
tively of the APGz model. Figure 1 indicates that the APGz distribution is
unimodal, left skewed, increasing, decreasing and bathtub shaped.

The R codes for generating the various functions are provided in
Appendix A.
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Figure 1 Continued
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(d) APGz hazard rate function

Figure 1 The pdf, cdf, survival and hazard rate plots of the APG model.

3 The Regression Analysis

Parametric models are often used to estimate the survival function of uni-
variate distributions. These parametric models that provide good fit provide

precise estimates for quantities of interest.

Let M be APGz random variable with pdf in Equation (1). Then, a
regression model for location parameter for random variable X = log(M) is

log APGz (LOAPGz) distributed. Then,
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X =n(e)+ Z, Z isnot in ¢ and Z is the residual term.
More so, the cdf and pdf of the X for a support x is expressed in alpha
power transformation as
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3.1 The Log APGz Model

Let M be APGz distributed and X = log(M) the log APGz distribution.
Then, the density function of X (x € R) can be expressed as
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where ¢ € R is the location parameter. However, for a linear location
regression model with response variable X; and explanatory variable vector

i, we have
Xi=nI\+2Z; i=1,2,3,4,5,...n. (8)

The standardized density function of Equation (7) is expressed as
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4 The Prior Distribution

In Bayesian analysis, the prior is specified irrespective of the parameter of
interest before using the pdf to analyze the experimental data.

Several priors like the Gaussian and the Uniform distributions have
been used in literature. However, the uniform prior has been very useful in
Bayesian analysis because it assumes that the value of the parameters for the
prior is equally likely and is impossible for a particular threshold. Thus, the
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Figure 2 Half-Cauchy pdf for different parameter values.

Half-Cauchy distribution with upper tail with a large mass that approaches
zero for large values is preferred because, it exhibit the characteristics of the
uniform distribution for a scale parameter of 25.

However, the pdf of the Half-Cauchy is expressed as

2y

") = iz )

m >0, ¥ >0, (10)
with 1 as the scale parameter. It is important to note that, the variance and
mean of the Half-Cauchy model do not exist. However, the Half-Cauchy has
a mode of zero. Now, for a scale parameter of 25, the pdf of the Half-Cauchy
is almost flat (see Figure 2). Hence, this gives the Half-Cauchy a better edge
as a prior to provide enough information that can be used to evaluate the
algorithm numerically that can explore the required target posterior density.
Thus, the Half-Cauchy distribution with a scale parameter of 25 is used as a
prior in this study. (see [2, 14-16]).

5 Bayesian Reliability Analysis of the APGz Model

The Bayesian reliability analysis can be obtained using the pdf given in Equa-
tion (1) and the corresponding survival function Equation (3), the likelihood
function can be expressed as
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Such that for §,, = 0 for censored and &,, = 1 for uncensored. Hence,
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However, the joint posterior density can be expressed as
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where
o~ HC(0,25), 0 ~ HC(0,25) and A\g ~ N(0,10),
d=1,2,3,4,5,..., D, with HC = Half-Cauchy.

The closed form of Equation (14) does not exist. Thus, the marginal (the
basis of the Bayesian inference) posterior densities of the parameter cannot
be obtained in a closed form. Hence, MCMC methods are used to evaluate
the posterior parameters. The posterior parameters can be evaluated using the
rstan package in R to fit the Bayesian contest.

6 The Stan Implementations

The Bayesian analysis of the APGz model using the rstan package is carried
out following the log survival, log hazard rate functions and defining the
sampling models for the right censored data steps. However, the distribution
at the stage is built on the function definition blocks, data block and parameter
block; which allows the variable used in the model to be defined in terms of
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the data and parameters used. rstan Code for the implementation is shown in
Appendix B.

7 Data Creation and Implementation

This section presents the dataset used for the analysis and how the data are
coded in the Stan package. The value of the Rhat is used to investigate the
applicability and flexibility of the Bayesian model. The closer the Rhat is to
1, the better the model.

The data represent the number of women breast cancer cases in the
Western World Hospital as used in [15] and [1]. Censored survival times are
indicated as an asterisk. The data are represented as follows:

Negatively stained: 23, 47, 69, 70*, 71*, 100*, 101*, 148, 181, 198*, 208%*,
212%,224*

Positively stained: 5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61,
68,71, 76*, 105%, 107*, 109*, 113, 116%*, 118, 143*, 154*, 162*, 188%*, 212%,
217%*,225%

In this regard, Censored is denoted with O and uncensored is recorded
as 1. The data are recorded as data in matrix form. The summary results
for the performance rating are shown in Table 1. In Table 1, the following
abbreviations where used; posterior mean is denoted as mean, se-mean is
the Monte Carlo standard errors, posterior standard deviation is denoted as
std, numbers of effective sample size denoted as NE and spits is denoted as
(Rhat).

Table 1 shows the Stan results for individual and merged chains. The
posterior Bayesian estimate of 3y is 6.51 = 1.51 with percentage confidence
of 1.54, 11.49 with Rhat 1.00. This implies that it is significant. Also, The
posterior Bayesian estimate of 57 is —1.31£0.51 with percentage confidence
of (—2.11, —0.05) with Rhat 1.05. This implies that it is significant since the
Rhat is close to 1.

Table 1 Performance results with rstan function for APGz model (approximate) values

Std Mean Se-mean  97.5% 75% 50% 25% 2.5% Rhat NE
dev 2.03 312.40 0.03 320.27 317.59 310.56 310.27 309.49 1.09 2157
Beta[1] 0.50 —1.31 0.01 —0.05 —0.58 —1.00 —1.14 —2.11 105 1997
Beta[0] 1.51 6.51 0.09 11.49 9.13 7.61 4.76 1.54 1.00 1094
Ip- 1.51 —155.24 0.04 —119.51 —120.71 —121.28 —122.42 —139.55 1.03 1203
shape 419.51 19.10 5.82 56.25 5.49 0.68 0.25 0.15 1.00 2267

scale 6.17 0.61 0.11 7.16 0.87 0.21 0.12 0.01 1.00 2217
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Conclusion

This article has introduced the APGz Bayesian reliability analysis that
extends the usual conventional classical statistical properties of the APGz
distribution in [9]. The APGz regression analysis was also derived in this
study to further enhanced its applicability. The rstan package for the imple-
mentation of the Bayesian analysis was explicitly derived and investigated.
The proposed model was also applied to real-life data to examine the model
flexibility. The results show that the Bayesian approach is flexible, applicable
and tractable in censored data.

Appendix A
Function for APGz Distribution in R

In this subsection, the R codes for generating the various functions are
provided. The following variables where used a = alpha,b = beta and
L = sigma.

1. R code for APGz pdf
APGz-pdf<-function(x,a,L,b){
((log(a))/(a — 1))*L*exp(b*x — (L/b)*(exp(b*x) — 1))*a” (1 — exp
%—(L/b)*(exp(b*X) - 1))
2. R code for APGz cdf
APGz-cdf <-function(x,a,L,b){
((@"(1 — exp(-(L/b)*(exp(b*x) — 1)) — D/(a — 1))}
3. R code for generating APGz random numbers
APGz-r <-function(u,a,L,b){
(b"-1)*log(1 — (b/L)*log(1 — (((log (@))\(-1))*log(u*(a - 1) + D))}
4. R code for APGz survival function
APGz-S <-function(x,a,L,b){
1- (((@"(1 - exp(-(L/b)*(exp(b*x) — 1))) — 1)/(a — 1))}
5. R code for APGz hazard rate function
APGz-H <-function(x,a,L,b){
(L¥exp(b*x — (L/bY*(exp(b*x) — 1))*((@" (1 — exp(-(L/b)*(exp(b*x) -
1) -1)/(1 —a™(1 - exp(-(L/b)*(exp(b*x) — 1)) — 1))) *log(a)}
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Appendix B

stan(file, model_name = “anon_model”, model_code = “’.fit = NA, data =

list(), pars = NA, chains = 4, iter = 2000, warmup = floor(iter/2), thin = 1,

init = “random”,algorithm = c(“NUTS”, “HMC”, “Fixed_param”),)

library(rstan)

APGz="

functions{

//defined survival

vector log_s(vector t, real shape, real scale,

vector rate){

vector[num_elements(t)] log_s;

for(i in 1:num_elements(t)){log_s[i]=log(1- ((((rate[i])"(1 — exp(-(shape/

scale)*(exp(shape*t[i]) — 1))) — D/(rate[i] — 1)))}

)

//define log_ft

vector log_ft(vector t, real shape,real scale,

vector rate){

vector[num_elements(t)] log_ft;

for(i in 1:num_elements(t)){
log_ft[i]= log(((log(rate[i]))/(rate[i] — 1))*shape*exp(scale*t[i] —
(shape/scale)*(exp(scale*t[i]) — 1))*a’ (1 — exp(-(shape/scale)*
(exp(scale*t[i]) - 1))))

return log_ft;}

//define log hazard

vector log_h(vector t, real shape,real scale, vector

rate){

vector[num_elements(t)] log_h;

vector[num_elements(t)] logft;

vector[num_elements(t)] logs;

logft=log_ft(t,shape,scale,rate);

logs=log_s(t,shape,scale,rate);

log_h=logft-logs;

return log_h;

}

//define the sampling distribution

real surv_APGz_Ipdf(vector t, vector d,

real shape,real scale, vector rate){

vector[num_elements(t)] log_lik;
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real prob;

log_lik=d .* log_h(t,shape,scale,rate)+log_s
(t,shape,scale,rate);

prob=sum(log_lik);

return prob;

3

//data block

data {

int N; // number of observations
vector<lower=0>[N] y; // observed times
vector<lower=0,upper=1>[N] censor;//censoring indicator
(1=observed, O=censored)

int M; // number of covariates

matrix[N, M] x; // matrix of covariates (with n rows and
H columns)}

parameters {

vector[M] beta; // Coefficients in the linear predictor
(including intercept)

real<lower=0> shape; // shape parameter
real<lower=0> scale;}

transformed parameters {

vector[N] linpred;

vector[N] rate;

linpred = x*beta;

for (i in 1:N) {

rate[i] = exp(linpred[i]);

13

model {

shape ~cauchy(0,25);

scale ~cauchy(0,25);

beta ~normal(0,1000);

y ~surv_APGz(censor, shape, scale, rate);
}

generated quantities{

real dev;

dev=0;

dev=dev + (-2)*surv_APGz_lpdf(y|censor,
shape,scale,rate);

}
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#regression coefficient with log(y) as a guess to
initialize
betal=solve(crossprod(x),crossprod(x,log(y)))
#convert matrix to a vector

betal=c(betal)
S1<-stan(model_code=model_codel,init=list
(list(beta=betal ) list(beta=2*betal)),
data=dat,iter=5000,chains=2)

print(S1,c(“beta”, ’shape”,“dev”),digits=2)

stan_ac(S1,“beta”)

Appendix C

y<c(23,47,69,70,71,100,101,148,181,198,208,212,224,5,8,10,13,18,24,26,
26,31,35,40,41,48,50,59,61,68,71, 76,105,107,109,113,116,118,143,154,
162,188,212,217,225)

x1<-c(rep(0,13), rep(1,32))
censor<-c(rep(1,3),rep(0,4),rep(1,2),rep(0,4),rep(1,18),
rep(0,4),1,0,1,1,rep(0,6))

X <- cbind(1,x1)

N = nrow(x)

M = ncol(x)

event=censor

dat <- list( y=y, x=x, event=event, N=N, M=M)
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