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Abstract

In this investigation, various statistical models were fitted on simulated sym-
metric and asymmetric data. Fitting of models was carried out with the help
of various libraries in R studio, and various selection criteria were also used
while fitting of models. In order to evaluate different validation techniques
the simulated data was divided in training and testing data set and various
functions in R were developed for the purpose of validation. Coefficient sum-
mary revealed that all statistical models were statistically significant across
both symmetric as well as asymmetric distributions. In preliminary analysis
TFEM (Type First Exponential Model) was found out to be the best linear
model across both symmetric and asymmetric distributions with lower values
of RMSE, MAE, BIAS, AIC and BIC. Among non-linear models, Haung
model was found out to be best model across both the distributions as it
has lower values of RMSE, MAE etc. Different validation techniques were
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used in the present study. Lower rates of prediction error in comparison to
its counter parts, 5-folded cross validation performed better across all the
statistical models.

Keywords: Cross validation, prediction error rate, linear and non-linear
model.

1 Introduction

Economic policy and planning requires regional agricultural data as they
are extremely vital for decision making. More sophisticated models depend
on mathematical statements and consequently allow us not only to explain
observable facts but also to predict possibly unobserved events. Models
can provide researchers a tool to make sound recommendations, to aid the
conceptualization and to predict the consequences of an action that would
be expensive, difficult or destructive to do with the real world. Statistical
models are mostly used for making prediction on the data set. To finalize
any model a number of models are compared and the best performed model
is selected and proceeded for further process using different selection criteria
approaches validation technique. Validation is an approach for concluding the
results obtained from the real data and generalize the same to an unrelated or
independent data. The concept of validation was pioneered in 1930s (Larson,
1931), and generalized by (Mosteller, 1968). Evaluation is not just a meager
reflection to statistical formulation model, but is taken into consideration
at every point even when functions are decided and executed on the data
and when the functions are taken together to finalize the completed model.
Usually in evaluating growth models it has become common to keep some
data aside in order to take an unrelated benchmark test for the developed
model (Snee, 1977 and Shifley, 1987). From the behavior of the model, the
survive cannot be tested by the role of an unrelated or benchmark test. The
cost of benchmarking may be more than the benefits if the procedure for
model fitting is disclose casual parameters (Hirsch, 1991). Splitting a sample
into two groups is not change for the testing data from replicated, controlled
trails. The stand density and site efficiency were mystified from the passive
monitory data set proposing a growth models disadvantages (Vanclay, 1994).
To minimize the dangers of bias, objective procedures (Snee, 1977) may be
utilized to choose benchmark data. For an unrelated data to use resampling
techniques for these tests is a well reputed method (Efron and Gong, 1983;
Weisberg, 1985). Subdividing the data for model selection and benchmarking
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cross validation is one of the reasonable method (Burk, 1990). Rather than
ignoring some portion of data, each data point is ignored in turn and the
model is made to the rest data. From the ignored data points benchmark
tests are averaged and for the case of squared error and linear model (test
statistics) then the cross validation is approximation of pure error is n times
the PRESS statistics calculated by several regression packages. By omitting
data, a variation on these individual observation using resampling procedures
for instance geographical location etc (Tarp-Johansen et al., 1996). The
most accredited methods for obtaining good internal validation estimates of
statistical models in terms of predictive performance are half splitting, leave
one out cross validation and k-folded cross validation.

Keeping in view all the above mentioned aspects of model validation, in
the present study, we would evaluate the progress of validation techniques
for linear and non-linear statistical model and will propose the efficient
validation technique in terms of predictive ability of fitted linear & non-linear
models.

2 Materials and Methods

Both symmetric and asymmetric data was generated through simulation
technique in R Studio (R version 3.5.1) 2018 “Feather Spray”). In our study
we used several statistical models to check which models works better. The
functional form and description of models used in the present investigation is
given below:

1. First degree polynomial model with the functional form as follows:

Y = a+ bX, − ∝< X < + ∝

2. Power model having form:

Y = aXb, − ∝< X < + ∝

3. Type I Exponential having the form:

Y = aebX , − ∝< X < + ∝

4. Winsor model with the form:

Y = ae−be−cX
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5. Grosenbaugh model with form:

Y = ae

(
−b
X

+ c

)
6. Haung Model with the form:

Y =

(
a

1 + b−1X−c

)
It is not left handed work to confine a selection criteria in evaluating

the performance of a model and as of now, the literature does not give any
evidence for any particular method for choosing the best statistical model
among the available models. The common approach used to evaluate the
performances of the models are using several approaches rather confine to
a particular method.

Various selection criteria were used in the present study while fitting the
statistical models. Some of the important selection criteria along with their
descriptions are given below:

• RMSE or Root Mean Square Error
• MAE or Mean Absolute Error
• AIC or Akaike’s Information Criterion
• BIC or Bayesian Information Criterion

In order to evaluate the precision of the model in practice, we used val-
idation techniques. Brief about the validation techniques used in the present
study is as under:

• Half-splitting
• Cross-validation
• Jackknife Technique

3 Results

The present study is conducted with a view to evaluate validation techniques
in linear and non-linear statistical models. The summary statistics of the
symmetric and asymmetric data generated through simulation are given in
Table 1. The overall summary of the coefficients of statistical models across
symmetric and asymmetric distribution has been presented in Table No: 2, 3,
4 and 5. The estimates in the model were significant that indicates the models
are well fitted for both the distributions.
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Table 1 Summary statistics of simulated data
Shapiro Wilk Test

Variables Mean Median Skewness Kurtosis W p-value
Symmetric Y1 0.9163 0.8932 0.1572 3.0197 0.9965 0.9395
Distribution X1 0.0383 0.0314 0.0653 3.0386 0.9918 0.3295
Asymmetric Y1 9.2395 8.1061 1.4103 5.7951 0.8983 1.986e-10
Distribution X1 4.9134 3.5108 1.9795 8.9297 0.8136 9.96e-15

Table 2 Parameter estimates of linear models for symmetric distribution

Model Model Equation a b F

TFEM Y = aebX 0.62∗ 0.10∗∗ 5.96∗∗

PWRM Y = aXb 0.41 0.73∗∗ 5.34∗∗

FDM Y = a+ bX 0.06∗ 0.06∗ 5.12∗∗

Table 3 Parameter estimates of linear models for asymmetric distribution

Model Model Equation a b F

TFEM Y = aebX 0.02 1.31∗ 6.01∗∗

PWRM Y = aXb 0.01 1.16∗∗ 5.04∗∗

FDM Y = a+ bX 0.11 5.52∗∗ 4.02∗

(FDM = First degree polynomial model, PWRM =
Power model, TFEM Type I Exponential Model).

Table 4 Parameter estimates of non-linear models for symmetric distribution
Model Model Equation a b c

HAM Y =

(
a

1 + b−1X−c

)
3.14∗ 1.16∗∗ 0.72∗

WNM Y = ae−be−cX

1.70∗∗ 1.35∗ 1.42∗∗

GSRM Y = ae

(
−b

X
+ c

)
1.34∗∗ 0.53∗∗ 1.44∗

Table 5 Parameter estimates of non-linear models for asymmetric distribution
Model Model Equation a b c

HAM Y =

(
a

1 + b−1X−c

)
5.14∗∗ 2.16∗ 0.72∗∗

WNM Y = ae−be−cX

2.21∗ 0.84∗∗ 2.70∗

GSRM Y = ae

(
−b

X
+ c

)
1.82∗ 0.16∗ 1.85∗∗

(WNM = Winsor model, GSRM = Grosenbaugh model, HAM
Haung model).
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Performance Criteria for Symmetric and Asymmetric Distribution

3.1 Linear Models

The performance of linear models across symmetric and asymmetric distribu-
tion utilizing various selection criteria like RMSE, MAE, BIAS, AIC & BIC
has been presented in Tables 6 and 7 revealed. Among linear models type first
exponential model (TFEM) was found out to be the best linear model across
both symmetric and asymmetric distribution with lower values of RMSE,
MAE, BIAS, AIC & BIC.

3.2 Non-linear Models

The performance of non-linear models across symmetric and asymmetric
distribution utilizing various selection criteria has been presented under
Tables 8 and 9. Among non-linear models, Haung was found out to be the

Table 6 Performance criteria for linear model utilizing symmetric distribution

Model Model Equation RMSE MAE BIAS AIC BIC

TFEM Y = aebX 4.23 3.22 0.82 594.01 603.90

PWRM Y = aXb 5.72 3.97 1.74 617.53 639.48

FDM Y = a+ bX 6.96 3.99 1.95 1150.63 1161.58

Table 7 Performance criteria for linear model utilizing asymmetric distribution

Model Model Equation RMSE MAE BIAS AIC BIC

TFEM Y = aebX 0.96 0.79 0.30 162.93 178.92

PWRM Y = aXb 1.07 0.88 0.56 557.83 563.78

FDM Y = a+ bX 1.13 0.92 0.74 605.12 625.27

(FDM = First degree polynomial model, PWRM = Power Model,
TFEM = Type I Exponential model).

Table 8 Performance criteria for non-linear models utilizing symmetric data
Model Model Equation RMSE MAE BIAS AIC BIC

HAM Y =

(
a

1 + b−1X−c

)
2.99 2.35 0.98 276.56 288.63

WNM Y = ae−be−cX

5.17 4.12 2.39 359.03 377.16

GSRM Y = ae

(
−b

X
+ c

)
5.23 4.31 2.63 384.11 397.05
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Table 9 Performance criteria for non-linear models utilizing asymmetric data
Model Model Equation RMSE MAE BIAS AIC BIC

HAM Y =

(
a

1 + b−1X−c

)
4.18 3.17 0.00033 1141.67 1153.87

WNM Y = ae−be−cX

4.24 3.25 0.00045 1154.39 1168.55

GSRM Y = ae

(
−b

X
+ c

)
4.27 3.28 0.00069 1179.90 1185.72

(WNM = Winsor model, GSRM = Grosenbaugh model, HAM Haung model).

Table 10 Performance criteria of linear models utilizing different validation techniques

Models Validation RMSE MAE BIAS AIC BIC PER

FDM 50:50 0.90 0.54 0.26 144.91 163.52 1.49

LOOCV 0.88 0.42 0.18 144.15 160.09 1.30

5-FOLDED 0.61 0.33 0.08 102.95 116.33 0.55

PWRM 50:50 0.99 0.72 0.29 435.85 464.03 1.11

LOOCV 0.91 0.50 0.20 433.91 440.78 1.08

5-FOLDED 0.76 0.39 0.14 360.58 400.75 0.66

TFEM 50:50 1.03 0.79 0.094 468.69 477.92 0.82

LOOCV 0.97 0.58 0.06 453.51 469.17 0.77

5-FOLDED 0.79 0.41 0.03 365.11 379.54 0.42

(FDM = First degree polynomial model, PWRM = Power Model,
TFEM = Type I Exponential model).

best non-linear model across both distributions as reflected from the values
of RMSE, MAE etc.

Evaluation of Validation Techniques

Symmetric Distribution

3.3 Linear Models

Different validation techniques like half splitting, LOOCV & 5-folded cross
validation were used in this study. Table 10 reveals the performance criteria
of FDM, PWRM and TFEM under various validation techniques in case of
symmetric distribution. A perusal of the table revealed that 5-folded cross
validation performs better in comparison to half splitting and LOOCV across
all the three linear models in case of symmetric distribution as it revealed
lower prediction error rate (PER).
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Table 11 Performance criteria of non-linear models utilizing different validation techniques
Models Validation RMSE MAE BIAS AIC BIC PER
HAM 50:50 4.09 3.64 2.91 228.59 373.49 1.27

LOOCV 4.001 2.93 1.56 180.01 334.65 1.16
5-FOLDED 3.84 2.64 0.77 140.91 299.33 0.96

WNM 50:50 4.77 3.66 2.28 397.54 310.36 1.82
LOOCV 4.52 3.33 1.71 365.27 297.11 1.51

5-FOLDED 2.69 2.53 0.81 314.53 254.99 0.87
GSRM 50:50 3.52 2.97 1.98 144.91 291.33 1.98

LOOCV 2.91 2.08 1.637 144.15 221.23 1.75
5-FOLDED 2.46 1.67 1.29 102.95 183.27 1.06

(WNM = Winsor model, GSRM = Grosenbaugh model, HAM = Haung model).

Table 12 Performance criteria of linear models utilizing different validation techniques
Models Validation RMSE MAE BIAS AIC BIC PER

FDM 50:50 5.52 3.97 1.35 180.77 291.33 1.85

LOOCV 3.91 3.08 1.02 195.72 221.23 1.51

5-FOLDED 3.46 2.67 0.76 165.15 183.27 0.79

PWRM 50:50 5.50 3.92 0.75 924.98 937.21 2.75

LOOCV 3.86 2.81 0.26 670.89 685.49 2.67

5-FOLDED 3.26 2.39 0.19 410.55 423.69 1.29

TFEM 50:50 4.03 3.18 0.35 577.01 595.29 2.92

LOOCV 3.52 2.73 0.22 560.58 583.69 2.91

5-FOLDED 3.001 2.16 0.16 414.88 428.71 1.86

(FDM = First degree polynomial model, PWRM = Power Model,
TFEM = Type I Exponential model).

3.4 Non-linear Models for

The performance criteria of HAM, WNM and GRSM under various vali-
dation techniques in case of symmetric distribution has been reveled under
Table 11 and it again reveals that 5 folded cross validation performs better in
comparison to its counter parts.

Asymmetric Distribution

3.5 Linear Models

The performance criteria of TFEM, PWRM &FDM under various validation
techniques in case of asymmetric distribution is presented in Table 12 and
again with respect to the validation techniques same results was found in this
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Table 13 Performance criteria of non-linear models utilizing different validation techniques
Models Validation RMSE MAE BIAS AIC BIC PER

HAM 50:50 2.50 1.78 0.09 196.51 217.89 0.96

LOOCV 2.39 1.54 0.06 161.32 198.51 0.79

5-FOLDED 1.77 1.01 0.001 102.27 117.29 0.33

WNM 50:50 3.92 3.01 0.09 263.01 281.27 0.93

LOOCV 3.66 2.59 0.05 260.11 273.09 0.63

5-FOLDED 2.12 2.21 0.01 198.06 205.33 0.42

GSRM 50:50 0.90 0.54 0.26 90.77 163.52 1.39

LOOCV 0.89 0.42 0.18 67.72 140.09 1.12

5-FOLDED 0.61 0.33 0.07 56.15 116.33 0.59

(WNM = Winsor model, GSRM = Grosenbaugh model, HAM = Haung model).

case, where 5-folded cross validation has an edge in comparison to rest of the
validation techniques used in this study.

3.6 Non-linear Models

The performance criteria of WNM, GRSM and HAM under various val-
idation techniques in case of asymmetric distribution has been presented
in Table 13. It reveals that 5-folded cross validation performs better in
comparison to half splitting and LOOCV.

Graphical Evaluation

The evaluation of validation techniques with respect to symmetric and asym-
metric distribution were also accessed graphically with the help of library
(ggplot2) in R studio. Different functions were developed to draw various
multiplots, which are given in (Figures 1–6). Validation techniques in these
multiplots are represented by three different colors (red color = 5-folded,
blue color = LOOCV, green color = HSP). The R codes developed for first
degree polynomial model for plotting the multiplots on single window are
given below.

Jackknife Technique

Apart from this, jackknife technique was also used for evaluation purpose,
a perusal of jackknife method w.r.t other validation techniques across sym-
metric and asymmetric distribution is given in Table 14 only single selection
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Figure 1 Evaluation of validation techniques for first degree polynomial model on the basis
of different selection criteria and prediction error rate.
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Figure 2 Evaluation of validation techniques for power model on the basis of different
selection criteria and prediction error rate.
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Figure 3 Evaluation of validation techniques for type first exponential model on the basis of
different selection criteria and prediction error rate.
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Figure 4 Evaluation of validation techniques for winsor model on the basis of different
selection criteria and prediction error rate.
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Figure 5 Evaluation of validation techniques for grosenbaugh model on the basis of different
selection criteria and prediction error rate.
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Figure 6 Evaluation of validation techniques for haung model on the basis of different
selection criteria and prediction error rate.
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Table 14 Evaluation of validation techniques based on bias across symmetric and asymmet-
ric distribution

Models Validation Symmetric Asymmetric
FDM 50:50 0.26 1.35

LOOCV 0.18 1.02
JACKKNIFING 0.15 0.97

5-FOLDED 0.08 0.73
PWRM 50:50 0.29 0.75

LOOCV 0.20 0.26
JACKKNIFING 0.17 0.23

5-FOLDED 0.14 0.19
TFEM 50:50 0.094 0.35

LOOCV 0.04 0.22
JACKKNIFING 0.04 0.20

5-FOLDED 0.03 0.16
HAM 50:50 2.91 0.09

LOOCV 1.56 0.06
JACKKNIFING 1.43 0.04

5-FOLDED 0.77 0.02
WNM 50:50 2.28 0.09

LOOCV 1.71 0.05
JACKKNIFING 1.53 0.04

5-FOLDED 0.81 0.03
GSRM 50:50 1.98 0.26

LOOCV 1.64 0.18
JACKKNIFING 1.51 0.15

5-FOLDED 1.29 0.07

criteria i.e. BIAS is used in this case, since the objective of jackknife is to
estimate bias of statistics.

4 Discussion

The present investigation was conducted on simulation data and various linear
and non-linear statistical models were used in this study. Simulated data of
2000 observations were generated in R studio with respect to symmetric and
asymmetric distribution.

4.1 Data Generation & Fitting of Models

At first stage simulated data of 2000 observations were generated in R studio
with respect to symmetric and asymmetric distribution. Utilizing as matrix
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procedure of R various functions of R were developed to generate simu-
lated data sets. Different models were fitted for symmetric and asymmetric
distributions. Further, several selection criteria’s were used to assess the
performance of the fitted models.

4.2 Linear Models

For symmetric and asymmetric distributions RMSE ranged from 4.23 to 6.96
and 0.96 to 1.13 respectively. Similar, for symmetrical distributions range
for MAE, BIAS, AIC and BIC were 3.22 to 3.99, 0.82 to 1.95, 594.01 to
1150.63 and 603.90 to 1161.58, and 0.79 to 0.92, 0.30 to 0.74, 162.93 to
605.12 and 178.92 to 625.27 respectively. It can be concluded that the type
first exponential model performed well in both symmetric and asymmetric
distributions in case of linear models.

The classical approach having appropriate probability distributions in
order to execute the model on the basis of observed data enforces us to
switch towards the alternative methods due to such strict assumptions. For
instance, an approach named as generalized estimating equations, (GEE)
(Kowalski, 2007 and Tang, 2012) helps us to tackle such obstacles while
doing a predictive modeling.Keeping the mixed effect model structure on
the latent variable Chen et al. (1999) developed a skewed class of link
models.

4.3 Non-linear Models

In case of symmetrical distribution RMSE, MAE, BIAS, AIC and BIC ranged
from 2.99 to 5.23, 2.35 to 4.31, 0.98 to 2.63, 276.56 to 384.11 and 1141.67 to
1179.90 respectively. Similarly, the range for RMSE, MAE, BIAS, AIC and
BIC were 4.18 to 4.27, 3.17 to 3.28, 0.00033 to 0.00069, 288.63 to 397.05
and 1153.87 to 1185.72 in case of asymmetric data. Thus, it demonstrates
that Haung model (HAM) performed well in both symmetric and asymmetric
distributions in case of nonlinear models.

The links for dichotomous regression models has been reviewed in case of
asymmetrical distributions (Bazán et al. 2010). Further, there could be have
increasing trend in mathematical errors and the wrong interpretation of the
results while using the log transformation [Feng et al., 2014 and Hussaini
et al., 2020].

For predictive ability we fitted several validation techniques and evaluated
with reference to symmetry of the distribution. For the first degree polynomial
model (FDM) prediction error rate varied from 1.49 to 0.55 and 1.85 to
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0.79 in symmetric distribution and asymmetric distribution, with respectively
having lowest prediction error rate in 5-folded cross validation as against
to its counter parts and similar trend was found in case of power model
(PWRM). The prediction error rate varied from 0.82 to 0.42 and 2.92 to 1.86
in symmetric distribution and asymmetric distribution for the case of type
first exponential model (TFEM) respectively, and 5-folded cross validation
resulted in lowest prediction error rate in comparison to other validation
techniques. Similarly, 5-folded cross validation performed better in case of
nonlinear models.

Applying 10-fold cross-validation for Grid-search on regularization esti-
mates of the model (Hsu et al., 2010). In case of Haung model (HAM)
prediction error rate varied from 1.27 to 0.95 and 0.96 to 0.33 in symmetric
distribution and asymmetric distribution respectively, with lowest predic-
tion error rate in 5-folded cross validation than other validation techniques.
Further the estimates of prediction error rate in Winsor model (WNM)
and Grosenbaugh model (GRSM) were also found lower in 5-folded cross
validation.

The prediction error rate ranged from 0.42 to 1.49 and 0.87 to 1.98
among linear and non linear models with lowest prediction error rate in
case of 5-folded cross validation respectively, under symmetric distribution,
and 0.79 to 2.92 and 0.33 to 1.39 for asymmetric distribution. Based on the
results of BIAS while considering Jackknife technique w.r.t other validation
methods the results were again in favour of 5-folded cross validation, where
BIAS varied from 0.03 to 0.29 and 0.16 to 1.35 in linear models in case of
symmetric distribution asymmetric distribution respectively. As far as non-
linear models are concerned the BIAS varied from 0.77 to 2.91 and 0.02 to
0.26 under symmetric distribution and asymmetric distribution respectively.
Despite availability of several literature on asymmetric distributions like
Bennett, 2003 and Kato et al., 2002 but cumbersome material is available
to directly model class noise. Graphical evaluation of validation techniques
on the basis of various selection criteria like RMSE, MAE, BIAS. etc were
plotted in graphs. The validation techniques in these plots were represented
red color represented five-folded cross validation, blue for LOOCV and green
for half splitting.

The graphical evaluation of validation techniques used in the present
study are given in Figures 1 to 6, where each figure is representative of six
graphs depicting selection criteria and prediction error rate used in the present
study. From the graphs we concluded 5-folded cross validation performs



Predictive Modelling: An Assessment Through Validation Techniques 55

better than half splitting, leave on out cross validation (LOOCV), by giving
lower prediction error rates for all statistical models.

5 Conclusion

In this study, all the estimates of models used were significant, which means
all the models were well fitted and total of 2000 observations were simu-
lated with respect to symmetric and asymmetric distributions. Among linear
models, based on selection criteria Type first exponential model was found
to be best linear model in both symmetric as well as asymmetric datasets as
it has the lowest values of RMSE, MAE, BIAS, AIC & BIC. Amid non-
linear models, based on selection criteria Haung model was found to be
best non-linear model in both symmetric as well as asymmetric datasets.
Under validation methods, in case symmetric distribution type first exponen-
tial model and first degree polynomial were found to be best linear model
in symmetric and asymmetric distribution. As per the prediction error rate,
Winsor model and Haung model were found to be best linear models for
symmetric and asymmetric distribution. As far as evaluation of validation
techniques are concerned 5-folded validation was found to be best in com-
parison to its counter parts as it has lower prediction error rates.In case
of asymmetric distribution prediction error rate speckled from 0.79 to 2.92
in case of linear models and the lowest prediction error rate was found
in 5-folded cross validation. Underneath asymmetric distribution prediction
error rate mottled from 0.33 to 1.39 in case of non-linear models and again the
results of prediction error rate were in favour of 5-folded cross validation in
case of non-linear models. Hence it is concluded 5-folded cross validation
should be preferred whenever we have choice and it evaluates the model
performance on different subsets, of the training data. In contrast to LOOCV
and jackknife, where model performance is tested at each iteration, which
results in higher prediction error rates in former and higher values of BIAS
in later, especially when data points are outliers, 5-folded cross validation
provides solution under such circumstances by taking a good ratio of testing
data points. The prediction error in 5-folded cross validation in comparison
to half splitting is that every subset of data is used as training as well as
testing data. Thus we can conclude that the study can be a benchmark for
policy makers, as formulation and initiation of economic policy and planning
becomes easy if data sets are analysed in advance which requires fitting and
validation of various statistical models.
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