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Abstract

In this paper we have suggested a generalized class of estimators for estimat-
ing the finite population mean Ȳ of the study variable y using information
on two auxiliary variables x and z. We have studied the properties of the
proposed generalized class of estimators in simple random sampling without
replacement scheme and in stratified random sampling up to the first order
of approximation. It is shown that the suggested class of estimators is more
efficient than the conventional unbiased estimator, ratio estimator, prod-
uct estimator, traditional difference estimator, Srivastava (1967) estimator,
Ray et al. (1979) estimator, Vos (1980) estimator, Upadhyaya et al. (1985)
estimator, Rao (1991) estimator and Gupta and Shabbir (2008) estimator.
Theoretical results are well supported through an empirical study.
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1 Introduction

In sample surveys, the use of auxiliary variable(s) at the estimation stage
played a prominent role in improving the precision of an estimate of the
population mean. Various authors have paid their attention towards the esti-
mation of population mean Ȳ of the study variable y using information on a
single auxiliary variable x and suggested a large number of estimators along
with their properties in simple random sampling without (or with) replace-
ment schemes for instance, see Murthy (1967), Singh (1986, 2003) and the
references cited therein. In many survey situations of practical importance,
adequate information on more than one of auxiliary variables is available.
In such a situation Olkin (1958) was first to introduce multivariate ratio
estimator for population mean Ȳ of the study variable y using information
on p(>1) auxiliary variables. Later many authors including Raj (1965), Rao
and Mudholkar (1967), Singh (1967, 1969), Shukla (1966), Srivastava (1965,
1967, 1971), Singh and Tailor (2005), Gupta and Shabbir (2008), Singh
et al. (2009), Swain (2013) and Sharma and Singh (2014, 2015) etc. have
developed estimators which utilize data from p(>1) auxiliary variables. The
properties of the estimators studied under simple random sampling with (or
without) replacement i.e. SRSWR (or SRSWOR) scheme.

It is well established fact that the simple random sampling (SRS) proce-
dure is employed when the population is homogeneous. However in practice,
the populations encountered are not homogeneous (i.e. populations are het-
erogeneous). Thus in such a situation SRS procedure does not provide a
sample which is good representative of the entire population. Hence we
can say that when the population is heterogeneous, SRS procedure does not
provide better estimate of the population mean Ȳ . To cope up with this
situation, we use stratified random sampling for selecting a good sample
from the target population. Thus when the population is heterogeneous
stratified random sampling is more appropriate and gives better estimate
of the population mean. In a stratified random sampling design, we divide
the population into groups known as strata and samples are selected from
each group with pre-determined sample size. Several authors including Diana
(1993), Kadilar and Cingi (2003), Shabbir and Gupta (2005), Singh and
Vishwakarma (2008), Singh et al. (2008), Koyuncu and Kadilar (2009, 2010),
Koyuncu (2013), Yadav et al. (2015a, 2015b) and Koyuncu (2016) etc. have
suggested estimators for population mean Ȳ of y using information on single
auxiliary variable x in stratified random sampling. It is further noticed that
various authors including Koyuncu and Kadilar (2009), Tailor et al. (2012),
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Singh and Kumar (2012), Olufadi (2013), Tailor and Chouhan (2014), Verma
et al. (2015), Shabbir and Gupta (2015, 2016), Muneer et al. (2016), Malik
and Singh (2017), Mishra et al. (2017) and Shabbir (2018) etc. have suggested
several estimators for population mean Ȳ of y using two auxiliary variables x
and z in stratified random sampling.

In this paper we have made an effort to develop a generalized class of
estimators for population mean Ȳ of y using information on two auxiliary
variables x and z. The properties of the suggested class of estimators are
studied up to the first order of approximation in SRSWOR scheme as well
as in stratified random sampling. Numerical examples are given in support of
the present study.

2 Some Existing Estimators of SRS

Consider a finite population Ω = {Ω1,Ω2, . . .ΩN} of N units. Let y and (x,
z) be study variable and auxiliary variables respectively. Let yi and (xi, zi) be
the values of study variable y and auxiliary variables (x, z) on the ith unit Ωi

of the population Ω. Suppose a sample of size n is drawn by using SRSWOR
scheme from the population Ω for estimating the population mean Ȳ of the
study variable y. Let ȳ = 1

n

∑n
i=1 yi and (x̄ = 1

n

∑n
i=1 xi, z̄ = 1

n

∑n
i=1 zi)

be the unbiased estimators of the population means Ȳ = 1
N

∑N
i=1 yi and

(X̄ = 1
N

∑N
i=1 xi, Z̄ = 1

N

∑N
i=1 zi) respectively.

It is assumed that the population means (X̄, Z̄) of (x, z) are known.
Further we denote

Cy =
Sy

Ȳ
: the population coefficient of variation of y,

Cx = Sx

X̄
: the population coefficient of variation of x,

Cz = Sz

Z̄
: the population coefficient of variation of z,

ρyx =
Syx

SySx
: the population correlation coefficient between y and x,

ρyz =
Syz

SySz
: the population correlation coefficient between y and z,

ρxz = Sxz
SxSz

: the population correlation coefficient between x and z,

Syx = 1
N−1

∑N
i=1(yi− Ȳ )(xi− X̄): the population covariance between

y and x,
Syz = 1

N−1

∑N
i=1(yi − Ȳ )(zi − Z̄): the population covariance between

y and z,
Sxz = 1

N−1

∑N
i=1(xi− X̄)(zi− Z̄): the population covariance between

x and z,
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S2
y = 1

N−1

∑N
i=1(yi − Ȳ )2: the population mean square of y,

S2
x = 1

N−1

∑N
i=1(xi − X̄)2: the population mean square of x,

S2
z = 1

N−1

∑N
i=1(zi − Z̄)2: the population mean square of z.

Kyx =
ρyxCy

Cx
, Kyz =

ρyzCy

Cz
, Kxz = ρxzCx

Cz
, Kzx = ρzxCz

Cx
and f = n

N :
is the sampling fraction.

Now we review some existing estimators.
The usual unbiased estimator for population mean Ȳ is given by

ˆ̄Y0 = ȳ =
1

n

n∑
i=1

yi (1)

The variance/mean squared error (MSE) under SRSWOR is given by

Var( ˆ̄Y0) = MSE( ˆ̄Y0) =

(
1− f
n

)
Ȳ 2C2

y =

(
1− f
n

)
S2
y (2)

The usual ratio and product estimators for population mean Ȳ are
respectively defined by

ˆ̄YR = ȳ

(
X̄

x̄

)
(3)

and
ˆ̄YP = ȳ

( x̄
X̄

)
(4)

To the first degree of approximation (fda), the MSEs of the estimators ˆ̄YR
and ˆ̄YP are respectively given by

MSE( ˆ̄YR) =

(
1− f
n

)
Ȳ 2[C2

y + C2
x(1− 2Kyx)] (5)

MSE( ˆ̄YP ) =

(
1− f
n

)
Ȳ 2[C2

y + C2
x(1 + 2Kyx)] (6)

The generalized version of the estimators ˆ̄Y0, ˆ̄YR and ˆ̄YP due to Srivastava
(1967) is given by

ˆ̄Yα1 = ȳ
( x̄
X̄

)α1

(7)

where α1 is a suitably chosen constant.
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To the fda, the MSE( ˆ̄Yα1) is given by

MSE( ˆ̄Yα1) =
(1− f)

n
Ȳ 2[C2

y + α1C
2
x(α1 + 2Kyx)] (8)

which is minimum when

α1 = −Kyxα1(opt), say (9)

Substitution of (9) in (8) yields the minimum MSE of ˆ̄Yα1 as

MSEmin( ˆ̄Yα1) =
(1− f)

n
Ȳ 2[C2

y −K2
yxC

2
x]

=
(1− f)

n
Ȳ 2C2

y [1− ρ2
yx] =

(1− f)

n
S2
y [1− ρ2

yx] (10)

The traditional difference estimator for Ȳ is defined by

ˆ̄YD1 = ȳ + d0(X̄ − x̄), (11)

where d0 is a suitably chosen constant to be determined such that the MSE of
ˆ̄YD1 is minimum.

The minimum MSE of ˆ̄YD1 is given by

MSEmin( ˆ̄YD1) =

(
1− f
n

)
Ȳ 2C2

y (1− ρ2
yx) =

(
1− f
n

)
S2
y(1− ρ2

yx)

(12)

Upadhyaya et al. (1985) suggested a class of estimators for population
mean Ȳ as

ˆ̄YUSV = w0ȳ + w1ȳ
( x̄
X̄

)α1

(13)

where w0 and w1 are suitably chosen weights whose sum need not be ‘unity’
and α1 is a design parameter.

The MSE of ˆ̄YUSV to the fda is given by

MSE( ˆ̄YUSV ) = Ȳ 2[1 + w2
0A0(srs) + w2

1A1(srs)

+ 2w0w1A3(srs) − 2w0 − 2w1A6(srs)] (14)
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where

A0(srs) =

[
1 +

(
1− f
n

)
C2
y

]
A1(srs) =

[
1 +

(
1− f
n

)
{C2

y + 4α1ρyxCyCx + α1(2α1 − 1)C2
x}
]

A3(srs) =

[
1 +

(
1− f
n

)
{C2

y + 2α1ρyxCyCx +
α1(α1 − 1)

2
C2
x}
]

A6(srs) =

[
1 +

(
1− f
n

)
{α1ρyxCyCx +

α1(α1 − 1)

2
C2
x}
]

The best values of (w0, w1) for which the MSE of ˆ̄YUSV is minimized,
are given by

w0 =
∆∗0
∆∗

, w1 =
∆∗1
∆∗

(15)

where

∆∗ =

∣∣∣∣∣A0(srs) A3(srs)

A3(srs) A1(srs)

∣∣∣∣∣ = (A0(srs)A1(srs) −A2
3(srs))

∆∗0 =

∣∣∣∣1 A3(srs)

A6(srs) A1(srs)

∣∣∣∣ = (A1(srs) −A3(srs)A6(srs))

∆∗1 =

∣∣∣∣A0(srs) 1
A3(srs) A6(srs)

∣∣∣∣ = (A0(srs)A6(srs) −A3(srs))

Thus the minimum MSE of ˆ̄YUSV is given by

MSEmin( ˆ̄YUSV ) = Ȳ 2

[
1−
{A1(srs) − 2A3(srs)A6(srs) +A0(srs)A

2
6(srs)}

(A0(srs)A1(srs) −A2
3(srs))

]
(16)

If we set w0 + w1 = 1⇒ w1 = (1− w0) in (13) we get an estimator for
population mean Ȳ of y as

ˆ̄Y ∗ = w0ȳ + (1− w0)ȳ
( x̄
X̄

)α1

(17)

which includes the estimators due to Srivastava (1967), Ray et al. (1979) and
Vos (1980).
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Putting w1 = (1− w0) in (14) we get the MSE of ˆ̄Y ∗ to the fda as

MSE( ˆ̄Y ∗) = Ȳ 2[1 +A1(srs) − 2A6(srs) + w2
0(A0(srs) +A1(srs)

− 2A3(srs))− 2w0(1 +A1(srs) −A3(srs) −A6(srs))]

(18)

which is minimized for

w0 =
(1 +A1(srs) −A3(srs) −A6(srs))

(A0(srs) +A1(srs) − 2A3(srs))
=

(
1 +

Kyx

α1

)
= w0(opt), say

(19)

Thus the minimum MSE of ˆ̄Y ∗ is given by

MSEmin( ˆ̄Y ∗)

= Ȳ 2

[
1 +A1(srs) − 2A6(srs) −

(1 +A1(srs) −A3(srs) −A6(srs))
2

(A0(srs) +A1(srs) − 2A3(srs))

]

=

(
1− f
n

)
Ȳ 2C2

y

(
1− ρ2

yx

)
=

(
1− f
n

)
S2
y(1− ρ2

yx) (20)

Rao (1991) suggested difference-type estimator for population mean Ȳ as

ˆ̄YRao = α1ȳ + α2(X̄ − x̄), (21)

where α1 and α2 are constants to be determined such that MSE of ˆ̄YRao is
minimum.

The bias and MSE of ˆ̄YRao are respectively given by

B( ˆ̄YRao) = Ȳ (α1 − 1), (22)

MSE( ˆ̄YRao) = Ȳ 2

[
1 + α2

1

{
1 +

(
1− f
n

)
C2
y

}
+ α2

2

(
1− f
n

)
C2
x

R2

−2α1α2

(
1− f
n

)
KyxC

2
x

R
− 2α1

]
(23)

where R = Ȳ
X̄

.
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The MSE( ˆ̄YRao) at (23) is minimized for

α1 =

{
1 +

(
1− f
n

)
(C2

y −K2
yxC

2
x)

}−1

= α1(opt), say

α2 = −RKyx

{
1 +

(
1− f
n

)(
C2
y −K2

yxC
2
x

)}−1

= α2(opt), say

Thus the minimum MSE of ˆ̄YRao is given by

MSEmin( ˆ̄YRao) =

(
1−f
n

)
Ȳ 2
(
C2
y −K2

yxC
2
x

)
1 +

(
1−f
n

) (
C2
y −K2

yxC
2
x

) (24)

Gupta and Shabbir (2008) proposed the following class of estimators for
population mean Ȳ as

ˆ̄YGS = [α3ȳ + α4(X̄ − x̄)]

(
X̄

x̄

)
(25)

where (α3, α4) are suitably chosen constants such that the MSE of ˆ̄YGS is
minimum.

To the fda, the bias and MSE of ˆ̄YGS are respectively given by

B( ˆ̄YGS) = Ȳ

[
α3

{
1 +

(
1− f
n

)
C2
x (1−Kyx)

}
+
α4

R
C2
x − 1

]
(26)

MSE( ˆ̄YGS) = Ȳ 2



1 + α2
3

{
1 +

(1− f)

n

[
C2
y + C2

x(3− 4Kyx)
]}

+α2
4

(1− f)

n

C2
x

R2
+

2α3α4

R

(1− f)

n
C2
x (2−Kyx)

−2α3

{
1 +

(1− f)

n
C2
x (1−Kyx)

−2α4
(1− f)

n

C2
x

R

}


(27)
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The MSE( ˆ̄YGS) at (27) is minimum when

α3 =
(a2a4 − a3a5)(
a1a2 − a2

3

) = α3(opt), say

α4 =
(a1a5 − a3a4)(
a1a2 − a2

3

) = α4(opt), say

where

a1 =

[
1 +

(
1− f
n

){
C2
y + C2

x (3− 4Kyx)
}]

a2 =

(
1− f
n

)
C2
x

R2

a3 =

(
1− f
n

)
C2
x

R
(2−Kyx)

a4 =

[
1 +

(
1− f
n

)
C2
x (1−Kyx)

]
a5 =

(
1− f
n

)
C2
x

R

Thus the minimum MSE of ˆ̄YGS is given by

MSEmin

(
ˆ̄YGS

)
= Ȳ 2

{
1−

(
a2a

2
4 − 2a3a4a5 + a1a

2
5

)(
a1a2 − a2

3

) }
(28)

The traditional difference estimator for population mean Ȳ using two
auxiliary variables x and z is defined by

ˆ̄YD2 =
{
ȳ + k1

(
X̄ − x̄

)
+ k2

(
Z̄ − z̄

)}
(29)

where k1 and k2 are constants to be determined such that MSE( ˆ̄YD2) is
minimum.

It is obvious from (29) that the difference estimator ˆ̄YD2 is unbiased for
population mean Ȳ .
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The variance/MSE of the estimator ˆ̄YD2 is given by

Var( ˆ̄YD2) = MSE( ˆ̄YD2)

=

(
1− f
n

)
Ȳ 2

[
C2
y + k2

1

C2
x

R2
+ k2

2

C2
z

R2
+ 2k1k2

KxzC
2
z

RR∗

−2k1
KyxC

2
x

R
− 2k2

KyzC
2
z

R∗

]
(30)

where R∗ = Ȳ
Z̄

.

The MSE( ˆ̄YD2) at (30) is minimized for

k1 =
RCy (ρyx − ρyzρxz)

Cx (1− ρ2
xz)

= k1(opt), say

k2 =
R∗Cy (ρyz − ρyxρxz)

Cz (1− ρ2
xz)

= k2(opt), say

Thus the minimum MSE of ˆ̄YD2 is given by

MSEmin( ˆ̄YD2) =

(
1− f
n

)
Ȳ 2C2

y (1−R2
y.xz) =

(
1− f
n

)
S2
y(1−R2

y.xz)

(31)

where R2
y.xz =

ρ2yx+ρ2yz−2ρyxρyzρxz
1−ρ2xz

is the multiple correlation coefficient.

3 Suggested Generalized Class of Estimators in Simple
Random Sampling

Motivated by Upadhyaya et al. (1985) we propose a generalized class of
estimators based on two auxiliary variables x and z for population mean Ȳ
of y as

t = w0ȳ + w1ȳ
( x̄
X̄

)α1

+ w2ȳ
( z̄
Z̄

)α2

(32)

where (w0, w1, w2) are weights whose sum need not be ‘unity’ and (α1, α2)
are design parameters. The constants (α1, α2) may take positive (+,+)
or negative (−,−) or positive-negative (+,−) or negative-positive (−,+)
values to form product-type or ratio-type or product-cum-ratio-type or ratio-
cum-product-type estimator.
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To obtain the bias and MSE of the propounded estimator t, we write

ȳ = Ȳ (1 + e0), x̄ = X̄(1 + e1) and z̄ = Z̄(1 + e2)

such that E(e0) = E(e1) = E(e2) = 0

E(e2
0) =

(
1− f
n

)
C2
y , E

(
e2

1

)
=

(
1− f
n

)
C2
x,

E
(
e2

2

)
=

(
1− f
n

)
C2
z

E(e0e1) =

(
1− f
n

)
ρyxCyCx =

(
1− f
n

)
KyxC

2
x,

E(e0e2) =

(
1− f
n

)
ρyzCyCz =

(
1− f
n

)
KyzC

2
z

E(e1e2) =

(
1− f
n

)
ρxzCxCz =

(
1− f
n

)
KxzC

2
x =

(
1− f
n

)
KzxC

2
z .

Expressing (32) in terms of e’s we have

t = Ȳ [w0(1 + e0) + w1(1 + e0)(1 + e1)α1 + w2(1 + e0)(1 + e2)α2 ]

(33)

We suppose that |ei| � 1 so that (1 + ei)
αi , i = 1, 2 are expandable.

Expanding the right hand side of (33), multiplying out and ignoring terms
of e’s having power greater than two, we have

t ∼= Ȳ

[
w0(1 + e0) + w1

{
1 + e0 + α1e1 + α1e0e1 +

α1 (α1 − 1)

2
e2

1

}
+w2

{
1 + e0 + α2e2 + α2e0e2 +

α2 (α2 − 1)

2
e2

2

}]
or

(
t− Ȳ

) ∼= Ȳ


w0 (1 + e0)

+w1

{
1 + e0 + α1e1 + α1e0e1 +

α1 (α1 − 1)

2
e2

1

}
+w2

{
1 + e0 + α2e2 + α2e0e2 +

α2 (α2 − 1)

2
e2

2

}
− 1


(34)
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Taking expectation of both sides of (34) we get the bias of t to the fda as

B(t) = Ȳ

[
w0 + w1

{
1 +

(
1− f
n

)
α1

2
(α1 + 2Kyx − 1)C2

x

}
+w2

{
1 +

(
1− f
n

)
α2

2
(α2 + 2Kyz − 1)C2

z

}
− 1

]
= Ȳ

[
w0 + w2A6(srs) + w3A7(srs) − 1

]
(35)

where

A6(srs) =

[
1 +

(
1− f
n

)
α1

2
(α1 + 2Kyx − 1)C2

x

]
A7(srs) =

[
1 +

(
1− f
n

)
α2

2
(α2 + 2Kyz − 1)C2

z

]
Squaring both sides of (34) and ignoring terms of e’s having power greater

than two we have

(
t− Ȳ

)2
= Ȳ 2



1 + w2
0

(
1 + 2e0 + e2

0

)
+w2

1

 1 + 2e0 + 2α1e1

+ e2
0 + 4α1e0e1

+α1(2α1 − 1)e2
1


+w2

2

 1 + 2e0 + 2α2e2

+ e2
0 + 4α2e0e2

+α2(2α2 − 1)e2
2


+2w0w1

{
1 + 2e0 + α1e1 + e2

0

+2α1e0e1 +
α1 (α1 − 1)

2
e2

1

}

+2w0w2


1 + 2e0 + α2e2 + e2

0 + 2α2e0e2

+
α2 (α2 − 1)

2
e2

2



+2w1w2



1 + 2e0 + α1e1 + α2e2

+e2
0 + 2α1e0e1

+2α2e0e2 + α1α1e1e0

+
α1 (α1 − 1)

2
e2

1

+
α2 (α2 − 1)

2
e2

2


− 2w0

−2w1

{
1 + e0 + α1e1 + α1e0e1 +

α1 (α1 − 1)

2
e2

1

}
−2w2

{
1 + e0 + α2e2 + α2e0e2 +

α2 (α2 − 1)

2
e2

2

}


(36)
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Taking expectation of both sides of (36) we get the MSE of t to the fda as

MSE (t) = Ȳ 2

 1 + w2
0A0(srs) + w2

1A1(srs) + w2
2A2(srs)

+2w0w1A3(srs) + 2w0w2A4(srs) + 2w1w2A5(srs)

−2w0 − 2w1A6(srs) − 2w2A7(srs)


(37)

where

A2(srs) =

[
1 +

(
1− f
n

){
C2
y + 4α2ρyzCyCz + α2 (2α2 − 1)C2

z

}]
A4(srs) =

[
1 +

(
1− f
n

){
C2
y + 2α2ρyzCyCz +

α2 (α2 − 1)

2
C2
z

}]

A5(srs) =

1 +

(
1− f
n

)
C2
y + 2α1ρyxCyCx + 2α2ρyzCyCz

+α1α2ρxzCxCz

+
α1 (α1 − 1)

2
C2
x +

α2 (α2 − 1)

2
C2
z




(A0(srs), A1(srs), A3(srs), A6(srs)andA7(srs)) are same as defined earlier.
Minimization of MSE(t) at (37) with respect to (w0, w1, w2) yieldsA0(srs) A3(srs) A4(srs)

A3(srs) A1(srs) A5(srs)

A4(srs) A5(srs) A2(srs)

w0

w1

w2

 =

 1
A6(srs)

A7(srs)

 (38)

After simplification of (38), we get the optimum values of (w0, w1, w2)
respectively as

w00 =
∆0

∆
, w10 =

∆1

∆
, w20 =

∆2

∆
; (39)

where

∆ =

∣∣∣∣∣∣
A0(srs) A3(srs) A4(srs)

A3(srs) A1(srs) A5(srs)

A4(srs) A5(srs) A2(srs)

∣∣∣∣∣∣
= A0(srs)(A1(srs)A2(srs) −A2

5(srs))−A3(srs)(A2(srs)A3(srs)

−A4(srs)A5(srs)) +A4(srs)(A3(srs)A5(srs) −A1(srs)A4(srs))
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∆0 =

∣∣∣∣∣∣
1 A3(srs) A4(srs)

A6(srs) A1(srs) A5(srs)

A7(srs) A5(srs) A2(srs)

∣∣∣∣∣∣
= (A1(srs)A2(srs) −A2

5(srs))−A3(srs)(A2(srs)A6(srs)

−A5(srs)A7(srs)) +A4(srs)(A5(srs)A6(srs) −A1(srs)A7(srs))

∆1 =

∣∣∣∣∣∣
A0(srs) 1 A4(srs)

A3(srs) A6(srs) A5(srs)

A4(srs) A7(srs) A2(srs)

∣∣∣∣∣∣
= A0(srs)(A2(srs)A6(srs) −A5(srs)A7(srs))− (A2(srs)A3(srs)

−A4(srs)A5(srs)) +A4(srs)(A3(srs)A7(srs) −A4(srs)A6(srs))

∆2 =

∣∣∣∣∣∣
A0(srs) A3(srs) 1
A3(srs) A1(srs) A6(srs)

A4(srs) A5(srs) A7(srs)

∣∣∣∣∣∣
= A0(srs)(A1(srs)A7(srs) −A5(srs)A6(srs))−A3(srs)(A3(srs)A7(srs)

−A4(srs)A6(srs)) + (A3(srs)A5(srs) −A1(srs)A4(srs))

Substitution of (39) in (37) yields the minimum MSE of t as

MSEmin(t) = Ȳ 2

[
1− ∆0

∆
−
A6(srs)∆1

∆
−
A7(srs)∆2

∆

]
(40)

Now we state the following theorem.

Theorem-3.1 – The minimum MSE of t is greater than or equal to MSE(t) i.e.

MSE(t) ≥ MSEmin(t) = Ȳ 2

[
1−

(
∆0 +A6(srs)∆1 +A7(srs)∆2

)
∆

]
(41)

with equality holding if

w0i =
∆i

∆
, i = 0, 1, 2.

Remark-3.1 – It is to be mentioned that the class of estimators ‘t’ at
(32) will attained its minimum MSE at (40) only when the optimum
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values (w00, w10, w20) at (39) of the weights (w0, w1, w2) are known
exactly, but in practice the exact values of the population parameters
(Cy, Cx, Cz, ρyx, ρyz, ρxz) are rarely available. However in repeated sur-
veys or studies based on multiphase sampling, where information regard-
ing the same variates is gathered on several occasions, it is possible to
guess quite precisely the values of certain population parameters such as
(Cy, Cx, Cz, ρyx, ρyz, ρxz). Further we mention that the good guess values
of these population parameters can also be obtained from the past data or
the experience gathered in due course of time or through a pilot sample
survey. This problem has been discussed among others by Murthy (1967,
pp. 96–99), Searls (1964), Srivastava (1966), Gleser and Healy (1976), Das
and Tripathi (1978), Reddy (1978), Tripathi et al. (1983) and Srivenkatara-
mana and Tracy (1984). Thus the values of such population parameters
(Cy, Cx, Cz, ρyx, ρyz, ρxz) can be known exactly. We recall that the scalars
(α1, α2) are real. The values of the scalars (α1, α2) are known (or can be
known by the experimental practitioner) as the values of (α1, α2) yield the
form of the estimator. Thus the optimum values (w00, w10, w20) of the cor-
responding constants (w0, w1, w2) can be obtained quite accurately. Hence
we conclude that in practice, an operational estimator can be derived from
the suggested class of estimators ‘t’ with mean squared error smaller than the
conventional estimators.

On the other hand if the values of the population parameters such as
(Cy, Cx, Cz, ρyx, ρyz, ρxz) are not known (or cannot be made known) at all.
In such situations, the practical utility of such estimators is limited. So in
such circumstances one can estimate the value of these population parameters
by their corresponding sample statistics. Hence the estimates (ŵ00, ŵ10, ŵ20)
say, of the corresponding optimum values (w00, w10, w20) can be obtained.
Thus this also suggests that one can also obtain the operational (feasible)
estimator from the proposed class of estimators ‘t’ having mean squared error
fewer than the usual estimators.

4 Efficiency Comparison

It is observed from (10), (12) and (20) that the common minimum MSEs of
the estimators ˆ̄Yα1 ,

ˆ̄YD1 and ˆ̄Y ∗ is same, i.e.

MSEmin

(
ˆ̄Yα1

)
= MSEmin

(
ˆ̄YD1

)
= MSEmin

(
ˆ̄Y ∗
)

=

(
1− f
n

)
Ȳ 2
(
C2
y −K2

yxC
2
x

)
(42)
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Now we compare the efficiency of traditional difference estimator with
usual unbiased estimator ˆ̄Y0 = ȳ, ratio estimator ˆ̄YR and product estima-
tor ˆ̄YP .

From (2), (5), (6) and (12), we have,

MSE
(

ˆ̄Y0 = ȳ
)
−MSEmin

(
ˆ̄YD1

)
=

(
1− f
n

)
Ȳ 2K2

yxC
2
x ≥ 0 (43)

MSE
(

ˆ̄YR

)
−MSEmin

(
ˆ̄YD1

)
=

(
1− f
n

)
Ȳ 2C2

x (1−Kyx)2 ≥ 0 (44)

MSE
(

ˆ̄YP

)
−MSEmin

(
ˆ̄YD1

)
=

(
1− f
n

)
Ȳ 2C2

x (1 +Kyx)2 ≥ 0 (45)

It follows from (42), (43), (44) and (45) that the estimators ˆ̄Yα1 ,
ˆ̄YD1 and

ˆ̄Y ∗ are more efficient than usual unbiased estimator ȳ, ratio estimator ˆ̄YR and
product estimator ˆ̄YP .

From (23) and (42), we have,[
MSEmin

(
ˆ̄Yα1

)
= MSEmin

(
ˆ̄YD1

)
= MSEmin

(
ˆ̄Y ∗
)]
−MSEmin

(
ˆ̄YRao

)
=

(
1− f
n

)2

Ȳ 2

(
C2
y −K2

yxC
2
x

)2{
1 +

(
1−f
n

) (
C2
y −K2

yxC
2
x

)}
≥ 0 (46)

It follows from (42), (43), (44), (45) and (46) that the estimator ˆ̄YRao due
to Rao (1991) is more efficient than ȳ, ˆ̄YR,

ˆ̄YP ,
ˆ̄Yα1 ,

ˆ̄YD1,
ˆ̄Yα1 and ˆ̄Y ∗.

The minimum MSE of the difference estimator ˆ̄YD1 given by (12) can be
expressed as

MSEmin

(
ˆ̄YD1

)
= Ȳ 2

[
1 +A1(srs) − 2A1(srs) −

(
1 +A1(srs) −A3(srs) −A6(srs)

)2(
A0(srs) +A1(srs) − 2A3(srs)

) ]
(47)
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From (16) and (47), we have

MSEmin

(
ˆ̄YD1

)
−MSEmin

(
ˆ̄YUSV

)

= Ȳ 2

[
A1(srs)

(
1−A0(srs)

)
+A3(srs)

(
A3(srs) − 1

)
+A6(srs)

(
A0(srs) −A3(srs)

) ]2

(
A0(srs)A1(srs) −A2

3(srs)

) (
A0(srs) +A1(srs) − 2A3(srs)

) ≥ 0

(48)

From (12) and (31) we have

MSEmin

(
ˆ̄YD1

)
−MSEmin

(
ˆ̄YD2

)
=

(
1− f
n

)
Ȳ 2C2

y

(ρyz − ρyxρxz)2

(1− ρ2
xz)

(49)
which shows that the traditional estimator ˆ̄YD2 is better than ˆ̄YD1.

From (16) and (40) we have

MSEmin

(
ˆ̄YUSV

)
−MSEmin (t)

=
Ȳ 2

∆∆1

 A7(srs)

(
A0(srs)A1(srs) −A2

3(srs)

)
+
(
A3(srs)A5(srs) −A1(srs)A4(srs)

)
+A6(srs)

(
A3(srs)A4(srs) −A0(srs)A5(srs)

)


2

≥ 0

(50)

It shows that the proposed class of estimators t is more efficient than the
Upadhyaya et al. (1985) estimator ˆ̄YUSV .

Hence from (42), (43), (44), (45), (46), (48) and (49) it is observed that
the suggested generalized class of estimators t is better than the estimators ȳ,
ˆ̄YR, ˆ̄YP , ˆ̄Yα1 , ˆ̄YD1, ˆ̄Y ∗ and ˆ̄YUSV .

From (24) and (40) we have that MSEmin(t) < MSEmin( ˆ̄YRao) if[
1−

(
∆0 +A6(srs)∆1 +A7(srs)∆2

)
∆

]
<

(
1−f
n

) (
C2
y −K2

yxC
2
x

){
1 +

(
1−f
n

) (
C2
y −K2

yxC
2
x

)}
(51)

From (28) and (40) it is observed that MSEmin(t) < MSEmin

(
ˆ̄YGS

)
if

a2a
2
4 − 2a3a4a5 + a1a

2
5(

a1a2 − a2
3

) <

(
∆0 +A6(srs)∆1 +A7(srs)∆2

)
∆

(52)
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Further from (31) and (40) we note that MSEmin(t) < MSEmin( ˆ̄YD2) if[
1−

(
∆0 +A6(srs)∆1 +A7(srs)∆2

)
∆

]
<

(
1− f
n

)
C2
y (1−R2

y.xz)

(53)

Thus from (51), (52) and (53) it is observed that the proposed generalized
class of estimators t is more efficient than ˆ̄YRao,

ˆ̄YGS and ˆ̄YD2 as long as the
conditions (51), (52) and (53) are satisfied respectively.

5 Empirical Study

For numerical comparisons of different estimators, we use the following data
sets.

Data I: [Source: Singh and Chaudhary (1986), page 177]
Data II: [Source: Abu-Dayyeh et al. (2003)]
Data III: [Source: Steel and Torrie (1960)]
Data IV: [Source: Cochran (1977)]
Data V: [Source: Ahmed (1997)]
Data VI: [Source: PCR (1998)]

Data I II III IV V VI
N 34 332 30 34 376 424
N 20 80 6 15 159 169
Ȳ 856.41 1093.1 0.6860 4.92 316.65 646.215
X̄ 208.88 181.57 4.6537 2.59 141.13 4533.981
Z̄ 199.44 143.37 0.8077 2.91 1075.31 325.0325
Cy 0.86 0.7626 0.4803 1.01232 0.7721 1.509
Cx 0.72 0.7684 0.2295 1.23187 0.845 1.342
Cz 0.75 0.7616 0.7493 1.05351 0.7746 1.335
ρyx 0.45 0.973 0.7194 0.7326 0.9106 0.623
ρyz 0.45 0.862 0.04996 0.643 0.9094 0.907
ρxz 0.98 0.842 0.4074 0.6837 0.8614 0.682

Table 1 gives the PRE’s of ˆ̄YR,
ˆ̄YP ,

ˆ̄YD1,
ˆ̄YRao,

ˆ̄YGS and ˆ̄YD2 estimators
with respect to ȳ for six data sets respectively.

Table 2 gives the PRE of ˆ̄YUSV with respect to ȳ for α1 = (−1, 1), for
six data sets.



A Generalized Class of Estimators for Finite Population Mean 79

Table 1 PRE’s of different estimators of population mean Ȳ with respect to ȳ
Estimator Data I Data II Data III Data IV Data V Data VI
ˆ̄YR 105.55 1835.92 94.62 143.30 488.77 146.46
ˆ̄YP 40.74 25.15 71.44 23.45 23.86 34.49
ˆ̄YD1 125.39 1877.19 103.33 215.84 585.45 163.43
ˆ̄YRao 126.92 1877.75 106.40 219.66 585.67 164.24
ˆ̄YGs 126.93 1877.75 106.42 219.89 585.67 164.25
ˆ̄YD2 125.71 2127.83 174.04 235.09 907.16 563.97

Table 2 PRE’s of ˆ̄YUSV with respect to ȳ
Data I Data II Data III Data IV Data V Data VI

α1 PRE α1 PRE α1 PRE α1 PRE α1 PRE α1 PRE

−1 127.66 −1 1878.66 −1 106.76 −1 227.99 −1 586.30 −1 164.74

1 126.24 1 2049.28 1 106.20 1 215.95 1 588.70 1 163.54

Table 3(a) depicts the PREs of proposed class of estimators t with respect
to ȳ at different values of (α1, α2) for data sets I, II, III.

Table 3(a) PRE’s of proposed class of estimators t for population mean Ȳ with respect to ȳ
(for data sets I, II, III)

Data I Data II Data III

α1 α2 PRE α1 α2 PRE α1 α2 PRE

−16.56 −16.56 17654.39 −6.5 −6.9 772384 −4 −4 1286.97
−16.55 −16.55 11434.21 −6.5 −6.8 234504.2 −3 −3 240.98
−16.54 −16.54 8469.43 −6.5 −6.7 139357.5 −2 −2 194.41
−16.53 −16.53 6734.46 −6.5 −6.6 99699.33 −1 −1 180.01
−16.52 −16.52 5595.56 −6.5 −6.5 77951.88 1 1 174.25
−16.51 −16.51 4790.57 −6.4 −6.4 34176.73 2 2 177.14
−16.5 −16.5 4191.43 −6.3 −6.3 22046.63 3 3 183.83
−16 −16 657.28 −6.2 −6.2 16359.33 4 4 196.20
−10 −10 153.84 −6.1 −6.1 13060.19 5 5 219.66
−5 −5 133.88 −6 −6 10906.9 6 6 273.01
−4 −4 131.95 −5 −5 4435.19 7 7 484.92
−3 −3 130.37 −4 −4 3039.74 −4 6 9201.75
−2 −2 129.08 −3 −3 2477.50 −3 5 341.57
−1 −1 128.03 −2 −2 2220.59 −2 4 230.89
1 1 126.56 −1 −1 2130.16 −1 3 195.37
2 2 126.10 1 1 2358.74 1 2 178.42
3 3 125.82 2 2 2796.94 2 1 174.06
4 4 125.72 3 3 3848.96 −4 5 386.31
5 5 125.81 4 4 7795.28 −4 4 253.76
8 8 127.58 4.5 4.5 20478.73 −4 3 209.95

(Continued)
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Table 3(a) Continued
Data I Data II Data III

α1 α2 PRE α1 α2 PRE α1 α2 PRE

10 10 130.80 4.6 4.6 31462.35 −4 2 189.32
12 12 137.87 4.7 4.7 69729.23 −4 1 178.73
15 15 187.23 1 2 2404.66 −3 6 1354.17
16 16 328.47 2 3 2902.67 −3 5 341.57
16.1 16.1 378.07 4 5 9706.82 −3 4 241.09
16.2 16.2 456.93 −1 −2 2135.10 −3 3 204.27
16.3 16.3 601.84 −3 −4 2539.23 −3 2 186.40
16.4 16.4 955.32 −4 −5 3182.99 −2 6 788.06
16.5 16.5 3122.77 −5 −6 4877.70 −2 5 310.28
* * * −6 −7 15453.26 −2 4 230.89

Table 3(b) indicates the PREs of proposed class of estimators t with
respect to ȳ at different values of (α1, α2) for data sets IV, V, VI.

Table 3(b) PRE’s of proposed class of estimators t with respect to ȳ (for data sets IV, V, VI)
Data IV Data V Data VI

α1 α2 PRE α1 α2 PRE α1 α2 PRE

−5.5 −5.6 18686.57 −13.8 −13.8 146480.3 −11.3 −11.3 56544.35
−5.5 −5.5 9127.82 −13.5 −13.5 16447.9 −11 −11 7475.86
−5 −5 1011.91 −13 −13 6808.17 −10 −10 2084.82
−4 −4 443.93 −12 −12 3275.97 −8 −8 986.33
−3 −3 323.39 −10 −10 1749.71 −5 −5 659.03
−2 −2 273.50 −8 −8 1285.83 −4 −4 616.64
−1 −1 248.82 −5 −5 1012.38 −3 −3 588.91
1 1 235.59 −4 −4 967.68 −2 −2 572.19
2 2 244.97 −3 −3 936.87 −1 −1 564.63
3 3 274.84 −2 −2 917.52 1 1 575.12
4 4 372.70 −1 −1 908.24 2 2 594.85
5 5 2084.42 1 1 918.17 3 3 627.61
5.1 5.1 8806.16 2 2 938.25 4 4 679.08
−5.5 −5.4 6136.23 3 3 970.32 5 5 760.58
−5.5 −5.2 3812.23 4 4 1017.20 6 6 897.22
−5.5 −5.1 3242.17 5 5 1083.64 7 7 1156.67
−5.5 −5 2838.5 6 6 1177.62 8 8 1802.22
−5.5 −4.5 1851.49 7 7 1313.39 9 9 5816.34
−5.5 −4 1470.75 8 8 1518.41 9.3 9.3 24933.39
−5.5 −3 1210.17 10 10 2479.08 9 9.4 100422
−5.5 −2 1286.14 12 12 13846.51 * * *
−5.5 −1 2344.68 12.1 12.1 18724.25 * * *
−5.4 −5.6 5179.15 12.2 12.2 29101.79 * * *
−5.3 −5.6 3067.52 12.3 12.3 66293.65 * * *
−5.2 −5.6 2208.87 * * * * * *
−5.1 −5.6 1743.17 * * * * * *
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We measured Percent Relative Efficiencies (PREs) of various estimators
along with our proposed generalized class of estimators t with respect toȳ.
It is observed that from the entries of the Tables 1, 2, 3(a) and 3(b) that the
suggested generalized class of estimators t gives the largest PRE (17654.39%,
772384.00%, 9201.75%, 18686.57%, 146480.30%, and 100422.00%) for
data set I to IV respectively. Using the proposed generalized class of estima-
tors t over other existing estimators, there is considerable gain in efficiency.
Thus there is ample room to pick up the scalars (α1, α2) in order to obtain
estimators better than the existing estimators. Finally our recommendation
is in favor of the proposed generalized class of estimators t for its use in
practice.

6 Estimation of Population Mean Under Stratified Random
Sampling

We consider a finite population Ω = {Ω1,Ω2, . . . ,ΩN} of N units divided
into L strata with the hth stratum (h = 1, 2, . . . , L) having Nh units such
that

∑L
i=1Nh = N . Let yhi and (xhi, zhi)(i = 1, 2, . . . , Nh) respectively

be the observations of study variable y and auxiliary variables (x, z) for the
ith population unit in the hth stratum. A simple random sample of size nh is
drawn without replacement from the hth stratum such that

∑L
i=1 nh = n.

Let ȳ(st) =
∑L

h=1Whȳh, x̄(st) =
∑L

h=1Whx̄h and z̄(st) =
∑L

h=1Whz̄h
be the sample means corresponding to the population means Ȳ =∑L

h=1WhȲh, X̄ =
∑L

h=1WhX̄h and Z̄ =
∑L

h=1WhZ̄h of the variables
y, x and z respectively, where ȳh = 1

nh

∑nh
i=1 yhi, x̄h = 1

nh

∑nh
i=1 xhi and

z̄h = 1
nh

∑nh
i=1 zhi be the sample means corresponding to the population

means Ȳh =
∑Nh

i=1
yhi
Nh

, X̄h =
∑Nh

i=1
xhi
Nh

and Z̄h =
∑Nh

i=1
zhi
Nh

in the hth

stratum respectively with known stratum weight Wh = Nh
N .

Further we denote

Cyh =
Syh
Ȳh

, Cxh =
Sxh
X̄h

, Czh =
Szh
Z̄h

, ρyxh =
Syxh
SyhSxh

,

ρyzh =
Syzh
SyhSzh

, ρxzh =
Sxzh
SxhSzh

,
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S2
yh =

1

Nh − 1

Nh∑
i=1

(
yhi − Ȳh

)2
, S2

xh =
1

Nh − 1

Nh∑
i=1

(
xhi − X̄h

)2
,

S2
zh =

1

Nh − 1

Nh∑
i=1

(
zih − Z̄h

)2
,

Syxh =
1

Nh − 1

Nh∑
i=1

(
yhi − Ȳh

) (
xhi − X̄h

)
,

Syzh =
1

Nh − 1

Nh∑
i=1

(
yhi − Ȳh

) (
zhi − Z̄h

)
,

Sxzh =
1

Nh − 1

Nh∑
i=1

(
xhi − X̄h

) (
zhi − Z̄h

)
, V200 =

L∑
h=1

γhW
2
hS

2
yh,

V020 =
L∑
h=1

γhW
2
hS

2
xh, V002 =

L∑
h=1

γhW
2
hS

2
zh,

V110 =
L∑
h=1

γhW
2
hSyxh, V101 =

L∑
h=1

γhW
2
hSyzh,

V011 =
L∑
h=1

γhW
2
hSxzh, γh =

(
1− fh
nh

)
.

In the following section we have presented review of some existing
estimators with their properties.

7 Reviewing Some Existing Estimators in Stratified
Random Sampling

The conventional stratified sample mean estimator for population mean Ȳ of
y is defined by

ˆ̄Y0(st) = ȳ(st) =

L∑
h=1

Whȳh (54)
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whose variance/MSE is given by

V ar
(

ˆ̄Y0(st)

)
= MSE

(
ˆ̄Y0(st)

)
= V200 =

L∑
h=1

γhW
2
hS

2
yh (55)

The combined ratio estimator for Ȳ is given by

ˆ̄YR(st) = ȳ(st)

(
X̄

x̄(st)

)
(56)

To the fda, the MSE of ˆ̄YR(st) is given by

MSE
(

ˆ̄YR(st)

)
=
(
V200 +R2

1V020 − 2R1V110

)
(57)

The combined product estimator for Ȳ is defined by

ˆ̄YP (st) = ȳ(st)

(
x̄(st)

X̄

)
(58)

The MSE of ˆ̄YP (st) to the fda is given by

MSE
(

ˆ̄YP (st)

)
=
(
V200 +R2

1V020 + 2R1V110

)
(59)

Following the approach adopted by Srivastava (1967), we define a class
of estimators for population mean Ȳ as

ˆ̄YS(st) = ȳ(st)

(
x̄(st)

X̄

)α1

(60)

We mention that for α1 = −1, ˆ̄YS(st) reduces to ˆ̄YR(st) while for α1 = 1 it

reduces to the product estimator ˆ̄YP (st). If we set α1 = 0, then ˆ̄YS(st) reduces
to usual unbiased estimator ȳ(st).

The MSE of ˆ̄YS(st) to the fda is given by

MSE
(

ˆ̄YS(st)

)
=
(
V200 + α2

1R
2
1V020 + 2α1R1V110

)
(61)

which is minimum when

α1 = − V110

R1V020
= α1(opt), say (62)
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Thus the corresponding minimum MSE of ˆ̄YS(st) is given by

MSEmin

(
ˆ̄YS(st))

)
=

(
V200 −

V 2
110

V020

)
(63)

which is same as the minimum MSE of the difference estimator

ˆ̄YD1(st) = ȳ(st) + d
(
X̄ − x̄(st)

)
(64)

i.e.

MSEmin

(
ˆ̄YS(st)

)
= MSEmin

(
ˆ̄YD1(st)

)
=

(
V200 −

V 2
110

V020

)
(65)

The stratified version of Upadhyaya et al. (1985) estimator is given by

ˆ̄YUSV (st) = w0ȳ(st) + w1ȳ(st)

(
x̄(st)

X̄

)α1

(66)

The MSE of ˆ̄YUSV (st) to the fda is given by

MSE
(

ˆ̄YUSV (st)

)
= [Ȳ 2 + w2

0A0(st) + w2
1A1(st)

+ 2w0w1A3(st) − 2w0Ȳ
2 − 2w1A6(st)] (67)

where

A0(st) =
(
Ȳ 2 + V200

)
A1(st) =

[
Ȳ 2 + V200 + 4α1R1V110 + α1(2α1 − 1)R2

1V020

]
A3(st) =

[
Ȳ 2 + V200 + 2α1R1V110 + α1

(α1 − 1)

2
R2

1V020

]
A6(st) =

[
Ȳ 2 + α1R1V110 + α1

(α1 − 1)

2
R2

1V020

]
The MSE( ˆ̄YUSV (st)) is minimized for

w0 =
∆∗0(st)

∆∗(st)
, w1 =

∆∗1(st)

∆∗(st)
(68)
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Thus the corresponding minimum MSE of ˆ̄YUSV (st) is given by

MSEmin

(
ˆ̄YUSV (st)

)

=

Ȳ 2 −

{
A1(st)Ȳ

4 − 2A3(st)A6(st)Ȳ
2 +A0(st)A

2
6(st)

}
(
A0(st)A1(st) −A2

3(st)

)
 (69)

where

∆∗(st) =
(
A0(st)A1(st) −A2

3(st)

)
∆∗0(st) =

(
A1(st) −A3(st)A6(st)

)
∆∗1(st) =

(
A0(st)A6(st) −A3(st)

)
For w0 + w1 = 1 ⇒ w1 = (1 − w0) in (66), the class of estimators

ˆ̄YUSV (st) reduces to the estimator

ˆ̄Y ∗USV (st) = w0ȳst + (1− w0)ȳst

( x̄st
X̄

)α1

(70)

To the fda, the MSE of ˆ̄Y ∗USV (st) is given by

MSE
(

ˆ̄Y ∗USV (st)

)
=

V100 +A1(st) − 2A6(st)

+w2
0

(
A0(st) +A1(st) − 2A3(st)

)
−2w0

(
Ȳ 2 +A1(st) −A3(st) −A6(st)

)
 (71)

which is minimized for

w0(opt) =

(
Ȳ 2 +A1(st) −A3(st) −A6(st)

)(
A0(st) +A1(st) − 2A3(st)

) =
(V110 + α1R1V020)

α1R1V020
(72)

Thus the corresponding minimum MSE of ˆ̄Y ∗USV (st) is given by

MSEmin( ˆ̄Y ∗USV (st))

=

[
Ȳ 2 +A1(st) − 2A6(st) −

(
Ȳ 2 +A1(st) −A3(st) −A6(st)

)2(
A0(st) +A1(st) − 2A3(st)

) ]

=

(
V200 −

V 2
110

V020

)
= MSEmin

(
ˆ̄Y ∗D1(st)

)
(73)
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Stratified version of Rao (1991) estimator for population mean Ȳ is
given by

ˆ̄YRao(st) = α1ȳst + α2(X̄ − x̄st) (74)

where (α1, α2) are suitably chosen constants such that MSE( ˆ̄YRao(st)) is
minimum.

The optimum values of (α1, α2) along with minimum MSE of ˆ̄YRao(st)
are respectively given by

α1(opt) =

{
Ȳ 2V020

V020

(
Ȳ 2 + V200

)
− V 2

110

}

α2(opt) = −

{
Ȳ 2V110

V020

(
Ȳ 2 + V200

)
− V 2

110

}


(75)

and

MSEmin

(
ˆ̄YRao(st)

)
=

Ȳ 2
{
V020V200 − V 2

110

}{
V020

(
Ȳ 2 + V200

)
− V 2

110

} (76)

Gupta and Shabbir (2008) suggested the following estimator for Ȳ as,

ˆ̄YGS(st) =
{
α3ȳst + α4

(
X̄ − x̄st

)} ( X̄

x̄st

)
(77)

The MSE of ˆ̄YGS(st) to the fda is given by

MSE( ˆ̄YGS(st)) = [Ȳ 2 + α2
3a1(st) + α2

4a2(st) + 2α3α4a3(st)

− 2α3a4(st) − 2α4a5(st)] (78)

where

a1(st) =
[
Ȳ 2 + V200 + 3R2

1V020 − 4R1V110

]
a2(st) = V020

a3(st) = (2R1V020 − V110)

a4(st) =
(
R2

1V020 −R1V110 + Ȳ 2
)

a5(st) = R1V020
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The MSE of ˆ̄YGS(st) is minimum when

α3(opt) =
(a2(st)a4(st) − a3(st)a5(st))

(a1(st)a2(st) − a2
3(st))

α4(opt) =
(a1(st)a5(st) − a3(st)a4(st))

(a1(st)a2(st) − a2
3(st))

 (79)

Thus the minimum MSE of ˆ̄YGS(st) is given by

MSEmin

(
ˆ̄YGS(st)

)

=

Ȳ 2 −

(
a2(st)a

2
4(st) − 2a3(st)a4(st)a5(st) + a4(st)a

2
5(st)

)
(
a1(st)a2(st) − a2

3(st)

)
 (80)

The usual difference estimator using two auxiliary variables in stratified
random sampling is defined by

ˆ̄YD2(st) = ȳst + k1

(
X̄ − x̄st

)
+ k2

(
Z̄ − z̄st

)
(81)

where k1 and k2 are constants whose values are to be obtained.
The MSE of ˆ̄YD2(st) is given by

MSE
(

ˆ̄YD2(st)

)
=

[
V200 + k2

1V020 + k2
2V002

+2k1k2V011 − 2k1V110 − 2k2V101

]
(82)

which is minimized for

k1(opt) =
(V002V110 − V011V101)(
V020V002 − V 2

011

)
k2(opt) =

(V020V101 − V011V110)(
V020V002 − V 2

011

)
 (83)

Thus the corresponding minimum MSE of ˆ̄YD2(st) is given by

MSEmin

(
ˆ̄YD2(st)

)
=

[
V200 −

(
V 2

110V002 − 2V011V101V110 + V020V
2

101

)(
V020V002 − V 2

011

) ]
(84)
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8 Suggested Class of Estimators for Population Mean in
Stratified Random Sampling

Motivated by Upadhyaya et al. (1985), we propose a generalized class of
estimators based on two auxiliary variables (x, z) for population mean Ȳ in
stratified random sampling as

t(st) = w0ȳst + w1ȳst

( x̄st
X̄

)α1

+ w2ȳst

( z̄st
Z̄

)α2

(85)

where (w0, w1, w2) are appropriately elected weights whose sum need not be
unity and (α1, α2) are design parameters. The constants (α1, α2) may take
positive (+,+) or negative (−,−) or positive-negative (+,−) or negative-
positive (−,+) values to form product-type or ratio-type or product-cum-
ratio-type or ratio-cum-product-type estimator.

To obtain the bias and MSE of the proposed estimator t(st), we write,
ȳst = Ȳ (1 + e0(st)), x̄st = X̄(1 + e1(st)) and z̄st = Z̄(1 + e2(st)) such that
E(e0(st)) = E(e1(st)) = E(e2(st)) = 0,

E(e2
0(st)) =

1

Ȳ 2

L∑
h=1

W 2
hγhS

2
yh, E

(
e2

1(st)

)
=

1

X̄2

L∑
h=1

W 2
hγhS

2
xh,

E
(
e2

2(st)

)
=

1

Z̄2

L∑
h=1

W 2
hγhS

2
zh,

E(e0(st)e1(st)) =
1

Ȳ X̄

L∑
h=1

W 2
hγhSyxh,

E(e0(st)e2(st)) =
1

Ȳ Z̄

L∑
h=1

W 2
hγhSyzh and

E(e1(st)e2(st)) =
1

X̄Z̄

L∑
h=1

W 2
hγhSxzh.

Expressing (85) in terms of e’s we have

t(st) = Ȳ

[
w0

(
1 + e0(st)

)
+ w1

(
1 + e0(st)

) (
1 + e1(st)

)α1

+w2

(
1 + e0(st)

) (
1 + e1(st)

)α2

]
(86)
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We assume that |ei(st)| � 1, i = 1, 2 so that (1 + ei(st))
αi , i = 1, 2

are expandable. Expanding the right hand side of (85), multiplying out and
ignoring terms of e’s having power greater than two, we have

t(st) ∼= Ȳ



w0

(
1 + e0(st)

)
+w1

{
1 + e0(st) + α1e1(st) + α1e0(st)e1(st)

+
α1(α1 − 1)

2
e2

1(st)

}
+w2

{
1 + e0(st) + α2e2(st) + α2e0(st)e2(st)

+
α2(α2 − 1)

2
e2

2(st)

}


or

(
t(st) − Ȳ

) ∼= Ȳ



w0

(
1 + e0(st)

)
+w1

{
1 + e0(st) + α1e1(st) + α1e0(st)e1(st)

+
α1 (α1 − 1)

2
e2

1(st)

}
+w2

{
1 + e0(st) + α2e2(st) + α2e0(st)e2(st)

+
α2 (α2 − 1)

2
e2

2(st)

}
− 1


(87)

Taking expectation of both sides of (87), we get the bias of t(st) to the
fda as

B
(
t(st)

)
=

[
Ȳ (w0 − 1) + w1

{
Ȳ +

α1 (α1 − 1)

2
R1
V020

X̄
+ α1

V110

X̄

}
+ w2

{
Ȳ +

α2 (α2 − 1)

2
R2
V002

Z̄
+ α2

V101

Z̄

}]
(88)

Squaring both sides of (87), ignoring terms of e’s having power greater
than two and then taking expectation of both sides we get the MSE of t(st) to
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the fda as

MSE
(
t(st)

)
=

 Ȳ 2 + w2
0A0(st) + w2

1A1(st) + w2
2A2(st) + 2w0w1A3(st)

+2w0w2A4(st) + 2w1w2A5(st) − 2w0Ȳ
2

−2w1A6(st) − 2w2A7(st)


(89)

where

A2(st) =
[
Ȳ 2 + V200 + 4α2R2V101 + α2 (2α2 − 1)R2

2V002

]
A4(st) =

[
Ȳ 2 + V200 + 2α2R2V101 + α2

(α2 − 1)

2
R2

2V002

]
A5(st) =

[
Ȳ 2 + V200 + 2α1R1V110 + 2α2R2V101 + α1α2R1R2V011

+ α1
(α1 − 1)

2
R2

1V020 + α2
(α2 − 1)

2
R2

2V002

]
A7(st) =

[
Ȳ 2 + α2R2V101 + α2

(α2 − 1)

2
R2

2V002

]
(A0(st), A1(st), A3(st) and A6(st)) are same as defined earlier.

Minimization of MSE(t(st)) at (89) with respect to (w0, w1, w2) yieldsA0(st) A3(st) A4(st)

A3(st) A1(st) A5(st)

A4(st) A5(st) A2(st)

w0

w1

w2

 =

Ȳ 2

A6(st)

A7(st)

 (90)

Solving (90), we get the optimum values of (w0, w1, w2) respectively as

w00 =
∆0(st)

∆(st)
, w10 =

∆1(st)

∆(st)
, w20 =

∆2(st)

∆(st)
. (91)

where

∆(st) =

∣∣∣∣∣∣
A0(st) A3(st) A4(st)

A3(st) A1(st) A5(st)

A4(st) A5(st) A2(st)

∣∣∣∣∣∣
= A0(st)

(
A1(st)A2(st) −A2

5(st)

)
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−A3(st)

(
A2(st)A3(st) −A4(st)A5(st)

)
+A4(st)

(
A3(st)A5(st) −A1(st)A4(st)

)
∆0(st) =

∣∣∣∣∣∣
Ȳ 2 A3(st) A4(st)

A6(st) A1(st) A5(st)

A7(st) A5(st) A2(st)

∣∣∣∣∣∣
= Ȳ 2

(
A1(st)A2(st) −A2

5(st)

)
−A3(st)

(
A2(st)A6(st) −A5(st)A7(st)

)
+A4(st)

(
A5(st)A6(st) −A1(st)A7(st)

)
∆1(st) =

∣∣∣∣∣∣
A0(st) Ȳ 2 A4(st)

A3(st) A6(st) A5(st)

A4(st) A7(st) A2(st)

∣∣∣∣∣∣
= A0(st)

(
A2(st)A6(st) −A5(st)A7(st)

)
− Ȳ 2

(
A2(st)A3(st) −A4(st)A5(st)

)
+A4(st)

(
A3(st)A7(st) −A4(st)A6(st)

)
∆2(st) =

∣∣∣∣∣∣
A0(st) A3(st) Ȳ 2

A3(st) A1(st) A6(st)

A4(st) A5(st) A7(st)

∣∣∣∣∣∣
= A0(st)

(
A1(st)A7(st) −A5(st)A6(st)

)
−A3(st)

(
A3(st)A7(st) −A4(st)A6(st)

)
+ Ȳ 2

(
A3(st)A5(st) −A1(st)A4(st)

)
Thus the corresponding minimum MSE of t(st) is given by

MSEmin(t(st)) =

[
Ȳ 2 −

∆0(st)Ȳ
2

∆(st)
−
A6(st)∆1(st)

∆(st)
−
A7(st)∆2(st)

∆(st)

]
(92)

Thus we state the following theorem.
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Theorem-8.1 – The MSE of tst is always greater than equal to the minimum
MSE of t(st) i.e.

MSE(t(st)) ≥ MSEmin(t(st)

=

[
Ȳ 2 −

∆0(st)Ȳ
2

∆(st)
−
A6(st)∆1(st)

∆(st)
−
A7(st)∆2(st)

∆(st)

]
with equality holding if

w0i =
∆i

∆
, i = 0, 1, 2.

*A remark similar to Remark 3.1 follows here.

9 Comparison of the Proposed Class of Estimator with
Some Existing Estimators in Stratified Random
Sampling

From (55), (57), (59) and (65), we have

MSE
(
ȳ(st)

)
−
[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)]
=
V 2

110

V020
≥ 0 (93)

MSE
(
ȳR(st)

)
−
[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)]
=

(R1V020 − V110)2

V020
≥ 0 (94)

MSE
(
ȳP (st)

)
−
[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)]
=

(R1V020 + V110)2

V020
≥ 0 (95)

Expressions (93), (94) and (95) clearly indicates that the usual difference
estimator ˆ̄YD1(st) and Srivastava (1967) estimator ˆ̄YS(st) are better than the

estimators ȳst, ˆ̄YR(st) and ˆ̄YP (st).
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From (65) and (76), we have[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)]
−MSEmin

(
ˆ̄YRao(st)

)
=

(
V200V020 − V 2

110

)2(
Ȳ 2V020 + V020V200 − V 2

110

) ≥ 0 (96)

From (93)–(96), we have the following inequalities:

MSEmin

(
ˆ̄YRao(st)

)
≤
[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)]
≤ MSE (ȳst) (97)

MSEmin

(
ˆ̄YRao(st)

)
≤
[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)]
≤ MSE

(
ˆ̄YR(st)

)
(98)

MSEmin

(
ˆ̄YRao(st)

)
≤
[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)]
≤ MSE

(
ˆ̄YP (st)

)
(99)

It follows from (97), (98) and (99) that the Rao (1991) estimator ˆ̄YRao(st)

is more precise than ȳst,
ˆ̄YR(st),

ˆ̄YP (st),
ˆ̄YD1(st) and Srivastava’s (1967)

estimator ˆ̄YS(st).
From (65) and (69), we have[
MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)
= MSEmin

(
ˆ̄Y ∗USV (st)

)]
−MSEmin

(
ˆ̄YUSV (st)

)

=

Ȳ 2

[
A1(st)

(
Ȳ 2 −A0(st)

)
+A3(st)

(
A3(st) − Ȳ 2

)
+A6(st)

(
A0(st) −A3(st)

) ]2

(
A0(st)A1(st) −A2

3(st)

) (
A0(st) +A1(st) − 2A3(st)

) ≥ 0

(100)

It follows that the Upadhyaya et al. (1985) estimator ˆ̄YUSV (st) is more

efficient than ˆ̄YD1(st),
ˆ̄YS(st) and ˆ̄Y ∗USV (st).
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From (69) and (92), we have

MSEmin

(
ˆ̄YUSV (st)

)
−MSEmin

(
t(st)

)

=
Ȳ 2

∆(st)∆1(st)

 A7(st)

(
A0(st)A1(st) −A2

3(st)

)
+
(
A3(st)A5(st) −A1(st)A4(st)

)
+A6(st)

(
A3(st)A4(st) −A0(st)A5(st)

)


2

≥ 0 (101)

which shows that the proposed generalized class of estimators t(st) is more

efficient than Upadhyaya et al. (1985) estimator ˆ̄YUSV (st). Hence the estima-

tor t(st) is more precise than the estimators ȳst, ˆ̄YR(st),
ˆ̄YP (st),

ˆ̄YD1(st),
ˆ̄YS(st)

and ˆ̄Y ∗USV (st).
From (73) and (84) we have[

MSEmin

(
ˆ̄YD1(st)

)
= MSEmin

(
ˆ̄YS(st)

)
= MSEmin

(
ˆ̄Y ∗USV (st)

)]
−MSEmin

(
ˆ̄YD2(st)

)
=

(V020V101 − V110V011)

V020

(
V020V002 − V 2

011

) ≥ 0 (102)

which shows that the difference estimator ˆ̄YD2(st) is more efficient than the

estimator ˆ̄YD1(st).
From (76), (80), (84) and (92),we have

• MSEmin(t(st)) < MSEmin( ˆ̄YRao(st)) if

Ȳ 4V020[
V020

(
Ȳ 2 + V200

)
− V 2

110

]
<

[(
∆0(st)Ȳ

2 +A6(st)∆1(st) +A7(st)∆2(st)

)
∆(st)

]
(103)

• MSEmin(t(st)) < MSEmin( ˆ̄YGS(st)) if
(
a2(st)a

2
4(st) − 2a3(st)a4(st)a5(st) + a4(st)a

2
5(st)

)
(
a1(st)a2(st) − a2

3(st)

)


<

[(
∆0(st)Ȳ

2 +A6(st)∆1(st) +A7(st)∆2(st)

)
∆(st)

]
(104)
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• MSEmin(t(st)) < MSEmin( ˆ̄YD2(st)) if[
Ȳ 2 +

(
V 2

110V002 − 2V011V101V110 + V020V
2

101

)(
V020V002 − V 2

011

) ]

<

[
V200 +

(
∆0(st)Ȳ

2 +A6(st)∆1(st) +A7(st)∆2(st)

)
∆(st)

]
(105)

It is observed from (103), (104) and (105) that the proposed generalized
class of estimators t(st) is more efficient than the estimators ˆ̄YRao(st),

ˆ̄YGS(st)

and ˆ̄YD2(st) as long as the conditions (103), (104) and (105) are satisfied
respectively.

10 Numerical Illustration

To examine the performance of the proposed generalized class of estimators
t(st) over existing estimators, we use the data sets given below

Data I: Source: [Murthy (1967), P. 228]

N = 80, n = 22

N1 = 19 N2 = 32 N3 = 29 n1 = 5 n2 = 9 n3 = 8

Ȳ1 = 2967.95 Ȳ2 = 4657.63 Ȳ3 = 7212.97 X̄1 = 65.16 X̄2 = 139.97 X̄3 = 589.41

Z̄1 = 349.68 Z̄2 = 706.59 Z̄3 = 2098.69 Cy1 = 0.25509 Cy2 = 0.14366 Cy3 = 0.11848

Cx1 = 0.17158 Cx2 = 0.31693 Cx3 = 0.38415 Cz1 = 0.3130 Cz2 = 0.15457 Cz3 = 0.30386

ρyx1 = 0.81 ρyx2 = 0.89 ρyx3 = 0.98 ρyz1 = 0.94 ρyz2 = 0.93 ρyz3 = 0.98

ρxz1 = 0.90 ρxz2 = 0.85 ρxz3 = 0.97

Data II: [Source: Koyuncu and Kadilar (2009)]

N = 923, n =180

N1 = 127 N2 = 117 N3 = 103 N4 = 170 N5 = 205 N6 = 201

n1 = 31 n2 = 21 n3 = 29 n4 = 38 n5 = 22 n6 = 39

Ȳ1 = 703.74 Ȳ2 = 413.0 Ȳ3 = 513.17 Ȳ4 = 424.66 Ȳ5 = 267.03 Ȳ6 = 393.84

X̄1 = 20804.59 X̄2 = 9211.79 X̄3 = 14309.30 X̄4 = 9478.85 X̄5 = 5569.95 X̄6 = 12997.59

Z̄1 = 498.28 Z̄2 = 318.33 Z̄3 = 413.36 Z̄4 = 311.32 Z̄5 = 227.20 Z̄6 = 313.71

Sy1 = 883.84 Sy2 = 644.92 Sy3 = 1033.46 Sy4 = 810.58 Sy5 = 403.65 Sy6 = 711.72

Sx1 = 30486.7 Sx2 = 15180.77 Sx3 = 27549.78 Sx4 = 18218.93 Sx5 = 8497.77 Sx6 = 2394.14

Sz1 = 555.58 Sz2 = 365.46 Sz3 = 612.95 Sz4 = 458.03 Sz5 = 260.85 Sz6 = 397.05

ρyx1 = 0.936 ρyx2 = 0.996 ρyx3 = 0.994 ρyx4 = 0.983 ρyx5 = 0.989 ρyx6 = 0.965

ρyz1 = 0.979 ρyz2 = 0.976 ρyz3 = 0.984 ρyz4 = 0.983 ρyz5 = 0.964 ρyz6 = 0.983

ρxz1 = 0.9396 ρxz2 = 0.9696 ρxz3 = 0.977 ρxz4 = 0.964 ρxz5 = 0.9676 ρxz6 = 0.996
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Table 4 PRE’s of different estimators of population mean Ȳ with respect to ȳst
Estimator Data I Data II
ˆ̄YR(st) 14.42 1025.10
ˆ̄YP (st) 5.89 24.22
ˆ̄YD1(st) 235.83 1141.85
ˆ̄YRao(st) 235.91 1143.02
ˆ̄YGS(st) 183.44 1109.11
ˆ̄YD2(st) 273.99 2621.61

Table 5 PRE’s of the estimator ˆ̄YUSV (st) with respect to ȳst
Data I Data II

α1 PRE α1 PRE
−1 238.07 −1 1146.96
1 235.84 1 1260.08

Table 4 presents the PRE’s of ˆ̄YR(st),
ˆ̄YP (st),

ˆ̄YD1(st),
ˆ̄YRao(st),

ˆ̄YGS(st)

and ˆ̄YD2(st) estimators with respect to ȳ(st) for two data sets respectively.

Table 5 shows the PRE of ˆ̄YUSV (st) with respect to ȳ(st) for α1 = −1, 1,
for two data sets.

Table 6 depicts the PRE of proposed estimator t(st) wrt ȳ(st) at different
values of α1 and α2, for two data sets.

Table 6 PRE’s of the proposed estimator t(st) with respect to ȳst for different values of
(α1, α2)

Data I Data II
α1 α2 PRE α1 α2 PRE
−1 −1 275.29 −1 −1 2626.83
−2 −2 277.33 −2 −2 2720.91
−3 −3 280.47 −3 −3 3216.10
−4 −4 284.92 −4 −4 4826.13
−5 −5 291.07 −5 −5 20279.5
−8 −8 327.57 −5.2 −5.2 96957.81
−10 −10 391.89 1 1 3590.02
−12 −12 642.36 2 2 6380.74
−13 −13 1645.27 2.1 2.1 7060.90
−13.1 −13.1 2078.85 2.2 2.2 7938.96
−13.2 −13.2 2887.43 2.5 2.5 13252.63
−13.3 −13.3 4928.01 2.8 2.8 51458.14
−13.4 −13.4 20017.07 −1 1 3067.82

(Continued)
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Table 6 Continued
Data I Data II

α1 α2 PRE α1 α2 PRE
1 1 274.03 2 −1 2923.05
2 2 274.74 −1 2 1002.942
3 3 276.39 3 −1 2734.047
4 4 279.07 4 −1 2871.735
5 5 282.99 * * *
8 8 306.25 * * *
10 10 342.15 * * *
12 12 434.69 * * *
14 14 1047.46 * * *
14.1 14.1 1180.86 * * *
14.3 14.3 1634.81 * * *
14.5 14.5 2885.63 * * *
14.6 14.6 4977.54 * * *
14.7 14.7 22036.36 * * *
−1 1 274.16 * * *
−1 2 275.62 * * *
3 −1 277.21 * * *
4 −1 279.03 * * *
−5 5 259.76 * * *

It is observed from Tables 4, 5 and 6 that for various values of (α1, α2) the
proposed generalized class of estimators t(st) is more efficient than the esti-

mators ȳ(st)
ˆ̄YR(st),

ˆ̄YP (st),
ˆ̄YD1(st),

ˆ̄YRao(st),
ˆ̄YGS(st),

ˆ̄YD2(st) and ˆ̄YUSV (st),
with considerable gain in efficiency. The proposed generalized class of esti-
mators t(st) yields the largest percent relative efficiency 22036.60% for data
set I while it is 96957.81% for data set II. It is further observed from Table 6
that there is enough scope of selecting the scalars (α1, α2) in acquiring effi-
cient estimators (from the suggested generalized class of estimators t(st)) than
the existing estimators. Thus we conclude that the proposed generalized class
of estimators t(st) can be used in practice just by selecting the appropriate
values of (α1, α2).

11 Discussion and Conclusion

This article considers the problem of estimating the population mean Ȳ of the
study variable y using information on two auxiliary variables x and z. We have
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proposed a generalized class of estimators for the population mean Ȳ using
information on two supplementary variables x and z. Expressions of bias and
mean square error up to the fda have been obtained in SRSWOR as well as
in stratified random sampling. It is interesting to mention that the envisaged
class of estimators includes several existing estimators. Thus the properties
of the proposed generalized class of estimators unify results at one place. We
have proved theoretically that the proposed generalized class of estimators is
more efficient than the several existing estimators in both sampling designs
SRSWOR and stratified random sampling.

Empirical studies are carried out to throw light on the merits of the
envisaged generalized class of estimators over some existing competitors.
Larger gain in efficiency is observed by using the proposed generalized class
of estimators over some existing estimators in both the sampling designs:
SRSWOR and stratified random sampling. Results incorporated in this study
are very sound and quite illuminating. Thus it is recommended that the
proposed study is useful in practice.
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