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Abstract

The advent of copula distribution by Gumhel-Hougaard family spurred a
new direction of research in multi-state complex engineering systems and
is widely applied in various series-parallel systems. Considering this aspect,
in this paper we study various reliability measures of a complex system
consisting of eight identical computer labs as star topology working under
5-out-of-8: G policy, two different centralized data base servers working
under 1-out-of-2: G policy, and a switch in series configuration. Failure rates
of all the units are assumed to be constant and follow exponential distribu-
tion, while repair supports general distribution and copula distribution. The
objective of this paper is to evaluate availability of the system, reliability of
the system, mean time to failure and expected profit analysis by choosing
arbitrary values of the parameters in a way that numerical solutions can be
obtained systematically in a reasonable computational time. The problem
is modelled using supplementary variable technique, Laplace transform and

Journal of Reliability and Statistical Studies, Vol. 15, Issue 1 (2022), 105–128.
doi: 10.13052/jrss0974-8024.1515
© 2022 River Publishers



106 P. K. Poonia

copula repair. We highlight the use of copula repair, while identifying the
factors for improvement and future directions of work.

Keywords: Computer lab, k-out-of-n: G system, sensitivity, catastrophic
failure, Gumbel-Hougaard family copula distribution.

1 Introduction

Warm standby redundancy has a number of key uses in a variety of systems,
including power systems, computer networks, and telecommunications sys-
tems. Based on the failure characteristics of the components in the standby
state, standby redundancy is further classified as cold, warm, or hot. Inactive
(redundant) components in cold standby have a zero-failure rate, while same
failure rate as active components under hot standby. Inactive components with
a failure rate varying from cool to hot are referred as warm standby. As a
result, the active redundancy model can be considered as a special case of
the warm standby model. For example, consider a computing system with
two servers in which the data is mirrored in real time, ensuring that the data
on both servers is identical. When the primary server fails, the secondary
server, which is in hot standby mode, automatically takes over and replaces
it. A typical and successful technique to boost reliability and availability is
to set up a computer lab with multiple personal computers connected via a
network. Students practice their skills to tackle programming problems in
the computer lab and learn not only computer science, but also mathematics
and other subjects. Computer laboratories may be found in practically every
school/college, and they are used in almost every course. A network is
required to move files from one machine to another or to connect all the
computers to the instructor’s computer. As a result, computer-networking
laboratories are a valuable resource for academic and industrial organizations
seeking to give vital capabilities to their pupils. In today’s world, network
reliability is critical. The primary focus of network reliability research is on
connectivity. Recently, network performance has gotten a lot of attention,
and the concept of network performance reliability has been popularized.
Many researchers looked at the resilience of various computer lab networks
and proposed solutions to increase their reliability and availability. Many
studies have been published in the past about the reliability and availability of
computer lab networks, resulting in a massive amount of literature. Several
scholars spoke about evaluation of network reliability in their papers such
as k-terminal network reliability using ordinary binary decision diagram
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by Yeh et al. (2002), node failure under cost constraint of an information
network by Lin (2007), budget constraint by Lin (2010), network with
multiple sources by Lin and Yeng (2012), reliability characteristics of k-out-
of-n incorporating copula by Nautiyal et al. (2020), 1-out-of-n cold standby
system with imperfect switching by Niaki and Yaghoubi (2021), repair time
threshold by Qiu and Cui (2019) and many more. As we have already
discussed the techniques for determining network reliability, the effect of
combining computers in series and parallel should be discussed to make the
reliability better. Considering this aspect, many authors studied series-parallel
networks. In particular, Ding et al. (2019), Kızılaslan (2021), Nailwal and
Singh (2012), Munjal and Singh (2014), Negi and Singh (2015), Ismail et al.
(2022), and Renu et al. (2021) studied various forms of series and parallel
networks under the conditions of power failure, weighted subsystems, two
human operators and interval values universal generating function, while
Malik et al. (2010), Deswal and Malik (2015), Jibril et al. (2022), and Kadyan
et al. (2020) analyzed numerous complex networks with two or three units
in parallel under conditions like helping unit, inspection of units, weather
conditions and multi-failure threats. Furthermore, Kumar and Kumar (2020)
and Kumar and Singh (2016) modelled wireless communication network and
reboot relay type real engineering applications for series parallel systems and
evaluated reliability under different assumptions.

Every human-made system is random in the sense that it deteriorate with
time and with use; for example, all hardware degrades not only owing to the
passage of time, but also due to their continuous use. Furthermore, some fail-
ures are catastrophic in nature, resulting in enormous financial losses, human
casualties, and major environmental damage. We must make extraordinary
efforts to restore such broken systems, as authors have previously relied on
general repairs. Copula repair, which combines multivariate functions into 1-
d function, may be considered to increase repair facility. Many authors have
presented their work employing copula repair under catastrophic failure in the
last decade. Singh et al. (2016) developed a system having three subsystems
with three, two and one units respectively in series configuration. The authors
evaluated all the reliability features with constant failure rates and Goumbel-
Hougard copula repair. Ram and Goyal (2018) developed a legion stochastic
model for repairable systems in which researchers predicted the effect of the
coverage factor using copula approach of the designed system. Goyal et al.
(2017) studied sensitivity analysis of a three unit series system under k-out-
of-n type redundancy. Sharma and Kumar (2017), Yaghoubi et al. (2020),
Poonia et al. (2021), Singh and Poonia (2022), Nautiyal et al. (2020) and
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Tyagi et al. (2019) studied k-out-of-n: G type of subsystems in series config-
uration for various values of n and k under various conditions. All the authors
used copula repair for completely failed units with switching device in one
or in both the subsystems under catastrophic failure. They compared cost
analysis under copula and general repair and proved that system performance
is better if copula repair is being used for repairing. Poonia (2022) provided
exact reliability formula for a warm standby repairable k-out-of-n computer
lab network with similar computers and all the computers are connected in
parallel to a data server and a router. The author modelled the problem as
a finite series using supplementary variable technique, Laplace transform
and copula repair. Poonia (2021) analyzed a computer network system com-
prising of two load balancers, five web servers, and three database replica
servers as a series parallel system with four subsystems. In this model the
author developed the first order partial differential equations and solved using
supplementary variable techniques and copula modus-operandi. The analysis
of results indicates that copula repair is more effective in availability and
expected profit analysis. Sanusi and Yusuf (2021) studied various reliability
characteristics of a hybrid series cum parallel system having two subsystems
under the policy 2-out-of-4: G. They considered that both the systems having
exponential failure and repair. Lastly, Yusuf and Musa (2021) deals with a
hybrid system containing three subsystems. Subsystems I and III each has
two processors while subsystem II has two unit in active parallel system.
Subsystem I is linked to unit I while subsystem II is linked to unit II for the
smooth operation of the system. The results shown that availability can be
enhanced with minor failure and major repair.

2 Model Explanation and Notations

2.1 System Explanation

Several models with warm standby unit (s) have been extensively researched
in the above-mentioned literature. Furthermore, numerous scholars have
investigated the configuration of k-out-of-n: G/F, but due to the intricacy of
the configuration, investigators have not paid ample attention to the structure
of k-out-of-n: G type under series and parallel configurations. Moreover, the
clients also need greater level of reliability and availability and at the same
time the complexity of the models is growing. Also, the systems where switch
might fail, and a catastrophic failure may occur was less studied. Considering
this aspect, in this paper we study a system having eight computer labs
as a star topology connected in parallel configuration and working under
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5-out-of-8: G policy. Two non-identical data servers are there to store the
data that are working on 1-out-of-2: G policy. All the units are connected
via switch which may be unreliable at the time of need. Failure rates of all
the computer labs, servers and the switch are assumed to be constant and
follow exponential distribution, while the repair supports two distributions
namely general distribution and copula distribution. As we all know, in
today’s complicated world, we can’t be confident of software, hardware,
power supply, environmental conditions, fabricated disturbances, or any other
wild disruption that could jeopardize the system’s operation, so we use catas-
trophic failure in this model. The system becomes inoperable as a result of a
catastrophic failure. The system studied by supplementary variable technique,
Laplace transforms and copula methodology and discussed availability of the
system, reliability of the system, mean time to failure (MTTF), sensitivity,
and expected profit analysis.

The paper is designed in six sections as follows: Section-2 labels the
summary of system explanation together with assumptions and nomenclature.
Section 3 consists of state description, system configuration and transition
diagram. In Section 4 differential equations are developed with boundary
conditions and then find the solutions. The results of the system performance
like reliability, availability, MTTF, sensitivity and expected profit are given in
Section 5. Results and conclusion with explanations are offered in Section 6
with the help of graphs. All the solutions including inverse Laplace transfor-
mation are obtained with help of MAPLE software. System configuration of
the model is shown in Figure 1(a) and state transition diagram in Figure 1(b).

2.2 Assumptions

The following assumptions are made through this paper:

1. Initially the system is in state S0 and all the computer labs including two
servers and switch are working perfectly.

2. There are eight computer labs in the system that are working under the
policy 5-out-of-8: G, two non-identical data servers working under the
policy 1-out-of-2: G and a switch that may be imperfect at the time of
need.

3. The repairman is on-call around the clock and can be contacted as soon
as the system fails completely or partially.

4. The failure rate of all the computer labs is the same and the database
servers are different, but all the failure rates are constant in nature and
follow exponential distribution.
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5. Partially failed states can be repaired using a general repair policy,
whereas completely failed states must be repaired right away for that
the Goumbel-Hougard family copula repair policy can be implemented.

6. When a unit’s repair is finished, it becomes an active standby unit again
(almost new). During the repair, there appears to be no harm.

2.3 Nomenclature

s, t Laplace transform/Time scale variable.
α/β1/β2/λS/λC Failure rate of a computer lab/failure rate of server-1/

failure rate of server-2/failure rate of switch/failure
rate due to catastrophic failure.

φ1(x)/φ2(x)/φ3(x) Repair rate of a computer lab/repair rate of server-1/
repair rate of server-2 for supplementary variable x.

Pi(t) The state transition probabilities that the system is in
state Si for i = 0 to 9.

P̄ (s) Laplace transformation of the state transition proba-
bility P (t).

Pi(x, t) The probability that the system is in the state Si for
i = 1 ∼ 9 with elapsed repair time is x. x is repair
variable and t is time variable.

Ep(t) Expected profit in the interval [0, t).
K1,K2 Revenue generated and service cost per unit time,

respectively.
Sφ(x) Notation function Sφ(x) = φ(x)e−

∫ x
0 φ(x)dx with

repair distribution φ(x).
S̄φ(s) Laplace transform of Sφ(x) i.e. S̄φ(x) =∫∞

0 e−sxφ(x)e−
∫ x
0 φ(x)dx.

µ0(x) Repair rate for completely failed states for supple-
mentary variable x. It is joint probability function
by Goumbel-Hougard copula family from complete
failed state Si to S0.

3 System Configuration and State Transition Diagram

In transition diagram, S0 is perfect state, S1, S2, S3, S5 and S6 partial
failed/degraded and S4, S7, S8 and S9 are completely failed states. The system
approach to S1, S2 and S3 due to failure of one, two or three computer labs
respectively. The transitions approach to S5 or S6 after failing first or second
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Figure 1(a) System configuration of the model.

Figure 1(b) State transition diagram of the model.

server respectively. The state S4 and S7 are completely failed states due to
failure of more than 4 computer labs and both the servers respectively, while
S8 is completely failed state due to switch failure. The state S9 is completely
failed due to catastrophic failure.

4 Formulation of Mathematical Model

By probability of considerations and continuity arguments, we can obtain the
following set of difference-differential equations associated with the present
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mathematical model.[
∂

∂t
+ 8α+ β1 + β2 + λS + λC

]
P0(t)

=

∫ ∞
0

φ1(x)P1(x, t)dx+

∫ ∞
0

φ2(x)P5(x, t)dx

+

∫ ∞
0

φ3(x)P6(x, t)dx+

∫ ∞
0

µ0(x)Pi(x, t)dx; i = 4, 7, c, s[
∂

∂t
+

∂

∂x
+ 7α+ β1 + β2 + λS + λC + φ1(x)

]
P1(x, t) = 0[

∂

∂t
+

∂

∂x
+ 6α+ β1 + β2 + λS + λC + φ1(x)

]
P2(x, t) = 0[

∂

∂t
+

∂

∂x
+ 5α+ β1 + β2 + λS + λC + φ1(x)

]
P3(x, t) = 0[

∂

∂t
+

∂

∂x
+ β2 + λS + λC + φ2(x)

]
P5(x, t) = 0[

∂

∂t
+

∂

∂x
+ β1 + λS + λC + φ3(x)

]
P6(x, t) = 0[

∂

∂t
+

∂

∂x
+ exp

[
xθ + {log φ(x)}θ

]1/θ]
Pj(x, t) = 0; j = 4, 7, c, s

Boundary conditions

P1(0, t) = 8αP0(t)

P2(0, t) = 7αP1(0, t) = 56α2P0(t)

P3(0, t) = 6αP2(0, t) = 336α3P0(t)

P4(0, t) = 5αP3(0, t) = 1680α4P0(t)

P5(0, t) = β1[P0(t) + P1(0, t) + P2(0, t) + P3(0, t)]

P6(0, t) = β2[P0(t) + P1(0, t) + P2(0, t) + P3(0, t)]

P7(0, t) = β1P6(0, t) + β2P5(0, t)
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PS(0, t) = λS [P0(t) + P1(0, t) + P2(0, t)

+ P3(0, t) + P5(0, t) + P6(0, t)]

PC(0, t) = λC [P0(t) + P1(0, t) + P2(0, t)

+ P3(0, t) + P5(0, t) + P6(0, t)]

Initial conditions

P0(0) = 1, and other state probabilities are zero at t = 0 (1)

Solution of the model.
Taking Laplace transformation of all the above equations using Equa-

tion (1), we obtain

[s+ 8α+ β1 + β2 + λS + λC ]P̄0(s)

= 1 +

∫ ∞
0

φ1(x)P̄1(x, s)dx+

∫ ∞
0

φ2(x)P̄5(x, s)dx

+

∫ ∞
0

φ3(x)P̄6(x, s)dx+

∫ ∞
0

µ0(x)P̄i(x, s)dx; i = 4, 7, c, s[
s+

∂

∂x
+ 7α+ β1 + β2 + λS + λC + φ1(x)

]
P̄1(x, s) = 0

[
s+

∂

∂x
+ 6α+ β1 + β2 + λS + λC + φ1(x)

]
P̄2(x, s) = 0

[
s+

∂

∂x
+ 5α+ β1 + β2 + λS + λC + φ1(x)

]
P̄3(x, s) = 0

[
s+

∂

∂x
+ β2 + λS + λC + φ2(x)

]
P̄5(x, s) = 0

[
s+

∂

∂x
+ β1 + λS + λC + φ3(x)

]
P̄6(x, s) = 0

[
s+

∂

∂x
+ exp

[
xθ + {log φ(x)}θ

]1/θ]
P̄j(x, s) = 0; j = 4, 7, c, s
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Boundary conditions

P̄1(0, s) = 8αP̄0(s)

P̄2(0, s) = 7αP̄1(0, s) = 56α2P̄0(s)

P̄3(0, s) = 6αP̄2(0, s) = 336α3P̄0(s)

P̄4(0, s) = 5αP̄3(0, s) = 1680α4P̄0(s)

P̄5(0, s) = β1
(
1 + 8α+ 56α2 + 336α3

)
P̄0(s)

P̄6(0, s) = β2
(
1 + 8α+ 56α2 + 336α3

)
P̄0(s)

P̄7(0, s) = β1P̄6(0, s) + β2P̄5(0, s)

= 2β1β2
(
1 + 8α+ 56α2 + 336α3

)
P̄0(s)

P̄S(0, s) = λS (1 + β1 + β2)
(
1 + 8α+ 56α2 + 336α3

)
P̄0(s)

P̄C(0, s) = λC (1 + β1 + β2)
(
1 + 8α+ 56α2 + 336α3

)
P̄0(s)

Laplace transformation of boundary conditions after repair

P̄1(0, s) =
8α

1− 7αS̄φ1 (s+ 6α+ β1 + β2 + λS + λC)
P̄0(s)

=
8α

1− 7αP
P̄0(s)

P̄2(0, s) =
56α2

1− 6αS̄φ1 (s+ 5α+ β1 + β2 + λS + λC)
P̄0(s)

=
56α2

1− 6αQ
P̄0(s)

Solving all the above equations with the implications of boundary con-
ditions and P̄i(s) =

∫∞
0 P̄i(x, s)dx we may get Laplace transform of state

transition probabilities as:

P̄0(s) =
1

D(s)
(2)

P̄1(s) =
8α

D(s)

1−R
(s+ 7α+ β1 + β2 + λS + λC) (1− 7αP )

(3)
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P̄2(s) =
56α2

D(s)

1− P
(s+ 6α+ β1 + β2 + λS + λC) (1− 6αQ)

(4)

P̄3(s) =
336α3

D(s)

1−Q
(s+ 5α+ β1 + β2 + λS + λC)

(5)

P̄4(s) =
1680α4

D(s)

1− U
s

(6)

P̄5(s) =
β1
(
1 + 8α+ 56α2 + 336α3

)
D(s)

1− S
(s+ β2 + λS + λC)

(7)

P̄6(s) =
β2
(
1 + 8α+ 56α2 + 336α3

)
D(s)

1− T
(s+ β1 + λS + λC)

(8)

P̄7(s) =
2β1β2

(
1 + 8α+ 56α2 + 336α3

)
D(s)

1− U
s

(9)

P̄S(s) =
λS (1 + β1 + β2)

(
1 + 8α+ 56α2 + 336α3

)
D(s)

1− U
s

(10)

P̄C(s) =
λC (1 + β1 + β2)

(
1 + 8α+ 56α2 + 336α3

)
D(s)

1− U
s

(11)

Where

D(s) = s+ 8α+ β1 + β2 + λS + λC −
8αR

1− 7αP

− (1 + 8α+ 56α2 + 336α3)(β1S + β2T )

− U{1680α4 + (1 + 8α+ 56α2 + 336α3)

(2β1β2 + (λS + λC)(1 + β1 + β2))}

P = S̄φ1 (s+ 6α+ β1 + β2 + λS + λC)

=
φ1

s+ 6α+ β1 + β2 + λS + λC + φ1

Q = S̄φ1(s+ 5α+ β1 + β2 + λS + λC)

=
φ1

s+ 5α+ β1 + β2 + λS + λC + φ1
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R = S̄φ1(s+ 7α+ β1 + β2 + λS + λC)

=
φ1

s+ 7α+ β1 + β2 + λS + λC + φ1

S = S̄φ2(s+ β2 + λS + λC) =
φ2

s+ β2 + λS + λC + φ2

T = S̄φ3(s+ β1 + λS + λC) =
φ3

s+ β1 + λS + λC + φ3

and U = S̄µ0(s) =
µ0

s+ µ0

Sum of Laplace transformations of the state transitions, where the system
is in operational mode, is as follows

P̄up(s) = P̄0(s) + P̄1(s) + P̄2(s) + P̄3(s) + P̄5(s) + P̄6(s) (12)

5 Analytical Study

5.1 Availability Analysis

To evaluate availability, let us consider two different cases for repair of the
computer labs (i) general repair and (ii) Gumbel-Hougaard family copula
repair. Let us fix the Laplace transforms as

S̄µ0(s) = S̄exp[xθ+{log φ(x)}θ]1/θ(s) =
exp[xθ + {log φ(x)}θ]1/θ

s+ exp[xθ + {log φ(x)}θ]1/θ
and

S̄αi(s) =
αi

s+ αi
, i = 1, 2, 3.

Taking the values of different parameters of failure rates as α = 0.02,
β1 = 0.03, β2 = 0.031, λS = 0.025, λC = 0.1 and x = 1.

Case-I: Taking repair rates as φi(x) = 1(i = 1 ∼ 3) and µ0 = 2.718 in
Equation (12). After taking inverse Laplace transformation, one may get the
expression for availability under copula repair as

Pup(t) = 0.3548e−1.2860t + 0.0598e−2.8996t − 0.0402e−1.3814t

− 0.3617e−1.2862t + 0.0003e−1.1589t

+ 6.0759 10−6e−1.1554t + 0.9912e−0.0151t − 0.0042e−1.3060t

(13)
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Figure 2 Comparison in availabilities w.r.t time under different repair policies.

Case-II: Taking repair rates as φi(x) = 1(i = 1 ∼ 3) and µ0 = 1 in
Equation (12). After taking inverse Laplace transformation, one may get the
expression for availability under general repair as

Pup(t) = 0.0283e−1.4859t − 0.0377e−1.3070t − 0.0005e−1.1591t

− 0.0477e−1.0574t + 0.9136e−0.0139t

+ 1.0513 10−5e−1.1554t + 0.0031e−1.2860t − 0.0444e−1.3060t

(14)

Fixing values of time variable as t = 0,5,10,15,20,25,30,35,40,45 and 50
units of time in Equations (13) and (14). The comparison between the two
cases for availability Pup(t) is presented in Figure 2.

5.2 Reliability of the System

Reliability is the probability that the system will perform its intended function
for a given period. It is obtained by putting all repair rates to zero and
then obtain inverse Laplace transform of Equation (12). An expression for
the reliability of the system after fixing the failure rates as α = 0.02,
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Figure 3 Variation in reliability with respect to time.

β1 = 0.03, β2 = 0.031, λS = 0.025, λC = 0.1 may be obtain as –

Ri(t) = 0.1871e−0.0560t + 0.0448e−0.1860t − 0.5600e−0.2060t

− 8.0000e−0.2260t + 7.9842e−0.2460t + 0.1923e−0.0550t (15)

Fixing values of time variable as t = 0,5,10,15,20,25,30,35,40,45 and 50
units of time in Equation (15), we can get different values of Ri(t) with the
help of (15) as shown in Figure 3.

5.3 Mean Time to Failure (MTTF)

The mean time to failure indicates how long an item is expected to function
before failing and it can be obtained by taking all repair rates to zero i.e.
φ1 = φ2 = φ3 = µ0 = 0 and the limit as s tends to zero in Equation (12) for
the exponential distribution, we can obtain the MTTF as:

MTTF =
1

A

[
1 +

8α

(A− α)
+

56α2

(A− 2α)
+

336α3

(A− 3α)

+
β1B

(β2 + λS + λC)
+

β2B

(β1 + λS + λC)

]
(16)
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Figure 4 MTTF as a function of failure rates.

where A = 8α+ β1 + β2 + λS + λC and B = 1 + 8α+ 56α2 + 336α3.
By taking the different values of parameters as α = 0.02, β1 =

0.03, β2 = 0.031, λS = 0.025, λC = 0.1 and varying α, β1, β2, λS and λC
one by one by fixing values as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09 and 0.10 in Equation (16). The variation in MTTF w.r.t. failure rate can
be obtained in Figure 4.

5.4 Sensitivity Variation of the System

The effect of modeling parameters on a system’s expected dependability is
measured through sensitivity analysis. The partial differentiation of the mean
time to failure regarding the system’s failure rates can be used to determine
sensitivity. Setting the parameters as α = 0.02, β1 = 0.03, β2 = 0.031,
λS = 0.025, and λC = 0.1 in the partial differentiation of Equation (16)
obtained using Maple, we get the sensitivity of the system as shown in
Figure 5.

5.5 Cost Analysis

Let the failure rates are α = 0.02, β1 = 0.03, β2 = 0.031, λS = 0.025,
λC = 0.1 and x = 1 and the service facility be constantly available, then the
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Figure 5 Variation in sensitivity in MTTF corresponding to failure rates.

expected profit during the interval [0, t) is

Ep(t) = K1

∫ t

0
Pup(t)dt−K2t

Where K1 and K2 are service and revenue costs per unit of time.
Then the expected profit incurred during [0, t) under copula repair is –

Ri(t) = K1{65.37− 0.0206e−2.8996t + 0.2812e−1.2862t

− 5.2584 10−6e−1.1554t + 0.0291e−1.3814t

− 0.0002e−1.1589t − 65.39e−0.0151t + 0.0032e−1.3060t

− 0.2759e−1.2860t} −K2t (17)

and profit incurred under general repair is –

Ri(t) = K1{65.37− 0.0190e−1.4859t + 0.0289e−1.3070t

− 9.0988 10−6e−1.1555t − 0.0004e−1.1591t

− 0.0452e−1.0573t − 65.31e−0.0139t − 0.0340e−1.3060t

− 0.0024e−1.2860t} −K2t (18)
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Figure 6 Expected profit Ep(t) under copula repair w.r.t time t.
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Figure 7 Expected profit Ep(t) under general repair w.r.t time t.
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Figure 8 Comparison in expected profit for copula Vs general repair for K2 = 0.1.

Fixing revenue cost K1 at 1 and varying service cost K2 as 0.1, 0.2, 0.3,
0.4 and 0.5 and changing the time as t = 0,5,10,15,20,25,30,35,40,45 and 50
in Equations (17) and (18), one can see the expected profit under copula repair
in Figure 6 and expected profit under general repair in Figure 7. A comparison
in expected profit for copula and general repair for K2 = 0.1 can be seen in
Figure 8. Similar comparisons can be made for other values of K2.

6 Results and Conclusion

This paper studies the reliability characteristics of a computer lab network
system consisting of eight computer labs working on 5-out-of-8: G policy,
two non-identical data servers working on 1-out-of-2: G policy and a switch.
The system may experience catastrophic failure due to unwanted circum-
stances like software failure, power failure, hardware failure etc. The authors
utterances the following important observations:

1. Figure 2 provides information on availability under copula repair Vs
general repair with respect to time when we fixed failure parameters at
α = 0.02, β1 = 0.03, β2 = 0.031, λS = 0.025 and λC = 0.1. It can
be revealed from the graph that availability decreases as time increases.
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Moreover, the availability is better in case of copula repair as compared
to general repair, which shows that the decision managers may opt for
copula repair as it gives better performance.

2. The reliability of the system can be revealed from Figure 3 for the same
set of parameters except all type of repairs are zero. One can easily
conclude that reliability is decreasing sharply for higher values of t and
with the passage of time, ultimately it becomes zero. Undoubtedly, the
availability is far better than reliability for various values of t, which
indicates the requirement for repairing of the system.

3. Figure 4 shows the graph of MTTF Vs failure rates α, β1, β2, λS and λC .
Observation revealed that MTTF is same for β1 and β2, lower for α and
higher for λC . However, in all the five cases it decreases as the failure
rate increases and stabilizes for higher values of α, β1, β2, λS and λC .

4. The sensitivities of the system reliability with respect to α, β1, β2, λS
and λC can be depicted in Figure 5 while varying all from 0.01 to 0.10.
We perceive that sensitivity is almost same for β1 and β2 as compared
to λC . Furthermore, the influence of α and λC on the system reliability
increases more as α and λC increases. We observe that system reliability
is more sensitive with respect to α.

5. The variation in expected profit under copula repair for various t is
presented in Figure 6 and with respect to general repair in Figure 7.
A comparison in expected profit for copula and general repair for service
cost K2 = 0.1 can be seen in Figure 8. By observations from the figure,
one can see that expected profit reduces as the service cost increases
from 0.1 to 0.6 with respect to time. Besides this, the expected profit is
higher if we repair the system via copula repair.

In comparison to some previous publications, the results are more thor-
ough and improved. The use of an additional security server is anticipated
for future work, as data servers are focused on gathering, storing, processing,
allocating, or granting access to massive amounts of data.
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