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Abstract

The addition of an extra parameter to standard distributions is a common
technique in statistical theory. This study introduces a new generalization
of the Exponentiated Fréchet distribution named alpha power exponentiated
Fréchet distribution (APEF). The APEF allows for a significant amount of
versatility in modeling various data forms as it accommodates upside-down
bathtubs, decreasing, and reversed-J shapes for hazard rate function. Some
of the APEF’s mathematical properties are derived in close forms. The maxi-
mum likelihood technique is used to estimate the new distribution parameters.
Numerical results are calculated to demonstrate the estimators’ performance.
Five well-known real-life applications show the flexibility and potentiality of
the APEF empirically. The APEF outperforms other competing distributions
based on model selection criteria.
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1 Introduction

In recent years, many statistical studies have developed different methods
and techniques to introduce more flexible distributions for various types of
applications by combining standard distributions or adding parameter(s) to
the existing distributions; see for example [5, 6, 10, 13, 18, 38].

Recent works by [26] introduced a new useful technique that incorpo-
rates the skewness to any distribution called alpha power transformation
(APT). This technique adds an extra parameter, α, to base distribution,
making the resulting distribution more flexible in real-life modeling data
with different failure rates. Several authors employed APT to propose
new distributions such as the APT-Weibull by [32], APT-inverse Lindley
by [14], APT-Pareto by [20], APT-Marshall–Olkin by [33], APT-Fréchet
(APF) by [31], APT-Weibull Fréchet by [15], APT-inverse Lomax by [42],
APT-Gompertz by [16], APT-exponentiated Weibull-exponential by [22] and
APT-Weibull—exponential by [7], among others. The cumulative distribu-
tion function (CDF) and probability density function (PDF) of an APT are
defined as:

FAPT (x) =

{
αR(x)−1
α−1 if α > 0, α 6= 1,

R(x) if α = 1,
(1)

fAPT (x) =

{
logα
α−1 r(x)αR(x) if α > 0, α 6= 1,

r(x) if α = 1,
(2)

where R(x) and r(x) are the CDF and PDF of any base distribution.
The Fréchet distribution is a well-known distribution in extreme value

theory due to its many applications in different spheres [12, 23]. Sev-
eral researchers proposed different extension of the Fréchet distribution
in order to model different types of real life applications in all fields
of study. Among these, the exponentiated Fréchet (EF) [28, 29], the
beta Fréchet [9], the gamma extended Fréchet [37], the Marshall-Olkin
Fréchet (MO-F) [24], the transmuted exponentiated Fréchet (TEF) [17],
the Kumaraswamy Fréchet [27], the Wiebull Fréchet [1], the odd Fréchet-
G [19], the extended odd Fréchet-G [30], the Fréchet Topp Leone-G [34], the
generalized transmuted Fréchet [36], the exponential transmuted Fréchet [35]
and recently the exponentiated Fréchet-Lomax distributions [8].

The exponentiated Fréchet distribution (EF) is motivated by its attractive
physical interpretation and the Fréchet’s multitude of applications, see [17,
29]. The CDF and PDF of EF distribution with shape parameters θ, c > 0,
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and scale parameter b > 0 are as follows:

G(x; b, θ, c) = 1−

[
1− exp

{
−
(
b

x

)θ}]c
, x > 0, (3)

g(x; b, θ, c) = bθθ cx−(θ+1) exp

{
−
(
b

x

)θ}[
1− exp

{
−
(
b

x

)θ}]c−1
.

(4)

This research aims to introduce and study a more flexible and simpler
extended model of the EF called the Alpha power exponentiated Fréchet
(APEF) distribution. That is, the following are the primary motives for
proposing APEF in practice:

• Increase the flexibility of EF using the APT technique.
• Introduce an extended version of EF with simple and attractive expres-

sions for a number of desirable features like moments, order statistics,
and entropy.

• Provide a more suitable fit for modeling various data in many areas
compared to modified competitive models.

This article is structured as follows: Section 2 presents the APEF distribu-
tion with some graphical representations. Important Expansion of the APEF
density is obtained in Section 3. Section 4 investigates some of the APEF
structural properties. Sections 5 and 6 provide maximum likelihood (ML)
estimation of APEF parameters in addition to numerical studies. In Section 7,
five applications in a variety of fields are analyzed to examine the potentiality
and efficiency of the APEF distribution. Finally, conclusions are reported in
Section 8.

2 The APEF Distribution

In this section, we introduce the APEF distribution. The APEF’s PDF
and CDF are obtained by substituting Equation (3) and Equation (4) in
Equation (1) and Equation (2) as follows:

F (x) =


α
1−

[
1−exp

{
−( bx)

θ
}]c
−1

α−1 , α 6= 1,

1−
[
1− exp

{
−
(
b
x

)θ}]c
, α = 1,

(5)
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and

f(x) =



logα
α−1αb

θθ cx−(θ+1) exp
{
−
(
b
x

)θ}
[
1− exp

{
−
(
b
x

)θ}]c−1
α
−
[
1−exp

{
−( bx)

θ
}]c
, α 6= 1,

bθθ cx−(θ+1) exp
{
−
(
b
x

)θ}[
1− exp

{
−
(
b
x

)θ}]c−1
, α = 1,

(6)
where α, b, c, θ > 0, x ≥ 0.

The APEF’s Survival function, S(x), is expressed as

S(x) =


α
α−1

(
1− α−

[
1−exp

{
−( bx)

θ
}]c)

, α 6= 1,

[
1− exp

{
−
(
b
x

)θ}]c
, α = 1.

(7)

The hazard rate function, HRF, of the APEF is expressed as

HRF (x) =



bθθc exp
{
−
(
b
x

)θ}
[
1−exp

{
−( bx)

θ
}]c−1

α
−
[
1−exp

{
−( bx)

θ
}]c

x(θ+1)

1−α
−
[
1−exp

{
−( bx)

θ
}]c logα, α 6= 1,

bθθ cx−(θ+1) exp
{
−
(
b
x

)θ}
[
1− exp

{
−
(
b
x

)θ}]−1
, α = 1.

(8)

Plots of the APEF density in Equation (6) and hazard rate in Equation (8)
are displayed, respectively, in Figures 1 and 2. It is observed from Figure 1 the
various shapes of APEF density function as it takes decreasing, increasing,
and right-skewed shapes. Additionally, as demonstrated in Figure 2, the HRF
of APEF can take several shapes, including monotonically decreasing, uni-
modal, and reversed j-shape. Therefore, this illustrates APEF’s considerable
versatility, making it ideal for a wide range of real-world applications.



A New Generalization of the Exponentiated Fréchet Distribution 133

Figure 1 Plots of the APEF densities.

Figure 2 Plots of the APEF hazard rates.

2.1 Special Sub-Models

The APEF approaches several distributions such as the Fréchet, EF, inverse
exponential (IE) [21], APT-Fréchet and APT-IE [11]. Table 1 shows the
essential sub-models of APEF.
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Table 1 Special sub-models of the APEF
α b c θ Resulting Distribution
− b − θ Fréchet
− b c θ EF
− b − − IE
α b − θ APF
α b − − AP-IE

3 Important Expansion of the APEF Density

This section presents essential expansion of the APEF density to sim-
plify the derivation of APEF structural properties. The exponential series
representation for α−z is expressed as

α−z =
∞∑
ν1=0

(− logα)ν1

ν1!
(z)ν1 . (9)

Therefore, employing Equation (9) to Equation (6) for α 6= 1, the PDF of
APEF will be

f(x) =
logα

α− 1
αbθθ cx−(θ+1) exp

{
−
(
b

x

)θ} ∞∑
ν1=0

(− logα)ν1

ν1!

×

[
1− exp

{
−
(
b

x

)θ}]cν1+(c−1)

.

Then, by employing the following binomial series expansion

(1− z)a−1 =

∞∑
ν2=0

(−1)ν2
(
a− 1

ν2

)
(z)ν2 , (10)

the PDF will be

f(x) =
αbθθ c

α− 1
x−(θ+1)

∞∑
ν1,ν2=0

(logα)ν1+1

ν1!
(−1)ν1+ν2

×
(
c(ν1 + 1)− 1

ν2

)[
exp

{
−
(
b

x

)θ}]ν2+1

.
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Then, the PDF of APEF can be reduced to

f(x) = bθθ
∞∑
ν2=0

ην2x
−(θ+1) exp

{
−(ν2 + 1)

(
b

x

)θ}
, (11)

where

ην2 =
αc

α− 1

∞∑
ν1

(−1)ν1+ν2(logα)ν1+1

ν1!

(
c(ν1 + 1)− 1

ν2

)
. (12)

4 Mathematical Properties

The following mathematical features of the APEF are investigated:

4.1 Quantile and Median

The pth quantile of the APEF could be expressed in the following form

Qp =
b[

−log
(

1−
(

1− log(p(α−1)+1)
logα

) 1
c

)] 1
θ

. (13)

Then setting p = 0.5 in Equation (13), the median of the APEF is

Med = Q0.5 =
b[

−log
(

1−
(

1− log(0.5(α+1))
logα

) 1
c

)] 1
θ

. (14)

4.2 Moments, Moment Generating and Characteristics
Functions

The rth moment is obtained from Equation (11) as

µr = E (xr) =

∫ ∞
0

xrfAPEF (x)dx

= bθθ

∞∑
ν2=0

ην2

∫ ∞
0

xr x−(θ+1) exp

{
−(ν2 + 1)

(
b

x

)θ}
dx.
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Taking g = (ν2 + 1)
(
b
x

)θ
, dx = x(θ+1)dg

−bθθ(ν2+1)
, limits will change from∞

to 0, then after some simplification, we have

E(xr) =

∞∑
ν2=0

ην2
br

(ν2 + 1)(1−
r
θ
)

∫ ∞
0

g−
r
θ exp (−g) dg.

The rth moment of the APEF is expressed as

µr =
∞∑
ν2=0

ην1
brΓ

(
(1− r

θ

)
(ν2 + 1)(1−

r
θ
)
, r < θ, (15)

where ην2 is defined in Equation (12). Subsequently, the mean and variance
can be obtained by substituting r = 1 and r = 2 in Equation (15),
respectively.

Therefore, based on the rth moment in Equation (15) of APEF, the
moment generating function (mgf) is expressed as

Mx(t) = E(etx) =
∞∑
r=0

tr

r!
µr. (16)

Substituting Equation (15) in Equation (16), will have

Mx(t) =
∞∑
r=0

∞∑
ν2=0

ην2
tr

r!

brΓ
(
(1− r

θ

)
(ν2 + 1)(1−

r
θ
)
, r < θ, (17)

where ην2 is defined in Equation (12).
Similarly, the characteristics function of APEF is easily obtained as

φx(t) = E(etx) =
∞∑
r=0

∞∑
ν2=0

ην2
(it)r

r!

brΓ
(
(1− r

θ

)
(ν2 + 1)(1−

r
θ
)
, r < θ, (18)

where ην2 is defined in Equation (12).

4.3 Incomplete Moment

The incomplete moment is considered important for many applications in
various fields. Therefore, the rth incomplete moment of APEF is derived
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using Equation (11) as

ξr =

∫ t

0
xrfAPEF (x) dx

= bθθ
∞∑
ν2=0

ην2

∫ t

0
x−(θ+1)+r exp

{
−(ν2 + 1)

(
b

x

)θ}
dx

Then after some simplification and using the incomplete gamma function
given by

Γ∗(s, x) =

∫ ∞
x

ws−1e−wdw,

the APEF’s incomplete moment is expressed as

ξr =
∞∑
ν2=0

ην2

brΓ∗
(

1− r
θ , (ν2 + 1)

(
b
x

)θ)
(ν2 + 1)(1−

r
θ
)

, r < θ. (19)

4.4 Mean Residual Life Function and Mean Waiting Time

If X ∼ APEF , then the mean residual life function of X , µ(t), is defined as

µ(t) =
1

S(t)

(
E(t)−

∫ t

0
xf(x)dx

)
− t, (20)

where∫ t

0
xf(x) dx =

∫ t

0
xbθθ

∞∑
ν2=0

ην2x
−(θ+1) exp

{
−(ν2 + 1)

(
b

x

)θ}
dx.

=
∞∑
ν2=0

ην2

bΓ∗
(

1− 1
θ , (ν2 + 1)

(
b
t

)θ)
(ν2 + 1)(1−

1
θ
)

.

(21)

Substituting Equation (7), Equation (15), and Equation (21) in Equa-
tion (20), then

µ(t)=

(α− 1)(
∑∞

ν2=0
ην2 b

(ν2+1)(1−
1
θ
)
[Γ(1− 1

θ )−Γ∗(1− 1
θ , (ν2 + 1)( bt )

θ)])

α(1− α−[1−exp{−(
b
t
)θ}]a)

− t.

(22)
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Similarly, the mean waiting time is

µ̄(t) = t− 1

F (t)

∫ t

0
xf(x) dx

= t−
(α− 1)

(∑∞
ν2=0

ην2 b

(ν2+1)(1−
1
θ
)

[
Γ∗
(

1− 1
θ , (ν2 + 1)

(
b
t

)θ)])
α
1−

[
1−exp

{
−( bt )

θ
}]a .

(23)

4.5 Rényi Entropy

The Rényi entropy for a random variable X denoted by REx presents a
variation measure of uncertainty and is takes the following form

REx(δ) =
1

1− δ
log

(∫ ∞
−∞

[
f(x)

]δ
dx

)
; δ > 0, ν 6= 0.

Then from Equation (6), will have[
f(x)

]δ
=

[
logα

α− 1

]δ

×

(
αbθθc

)δ
x−δ(θ+1) exp

{
−δ
(
b
x

)θ}[
1− exp

{
−
(
b
x

)θ}]δ(c−1)
α
δ
[
1−exp

{
−( bx)

θ
}]c .

Applying Equation (9) to expand α
−δ

[
1−exp

{
−( bx)

θ
}]a

, then[
f(x)

]δ
=

[
αbθθc logα

α− 1

]δ
x−δ(θ+1) exp

{
−δ
(
b

x

)θ}

×
∞∑
ν1=0

(− logα)ν1

ν1!

[
1− exp

{
−
(
b

x

)θ}]c(ν1+δ)−δ
.

Additionally, using Equation (10)[
f(x)

]δ
=

(
αbθθc

)δ
x−δ(θ+1)

(α− 1)δ

∞∑
ν1,ν2=0

(−1)ν1+ν2

ν1!
(logα)ν1+δ

×
(
c(ν1 + δ)− δ

ν2

)[
exp

{
−(ν2 + δ)

(
b

x

)θ}]
.
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Therefore,

REx(δ) =
1

1− δ
log

×

{
(bθθ)δ

∞∑
ν2=0

η∗ν2

∫ ∞
0

x−δ(θ+1) exp

{
−(ν2 + δ)

(
b

x

)θ}
dx

}
,

where

η∗ν2 =
(αc)δ

(α− 1)δ

∞∑
ν1

(−1)ν1+ν2

ν1!

(
c(ν1 + δ)− δ

ν2

)
(logα)ν1+δ. (24)

By assuming u = (ν2 + δ)
(
b
x

)θ
, REx for the APEF can be expressed as

REx(δ) =
1

1− δ
log

b1−δθδ−1
∞∑
ν2=0

η∗ν2

Γ

(
δ(θ+1)−1

θ

)
(ν2 + δ)

δ(θ+1)−1
θ

 . (25)

4.6 Order Statistics

If a random sample X1, . . . , Xn is obtained from APEF in Equation (11),
then Xk:n denotes the kth order statistics with the following PDF

fk:n(x) =
n!

(k − 1)!(n− k)!
f(x)F (x)k−1[1− F (x)]n−k. (26)

Inserting Equations (6) and (5) into Equation (26), will have

fk:n(x) =
n!(−1)k−1 f(x)

(k − 1)!(n− k)!(α− 1)n−1

(
1− α1−

[
1−exp

{
−( bx)

θ
}]c)k−1

×
(
α− α1−

[
1−exp

{
−( bx)

θ
}]c)n−k

.

Applying the binomial theorem

(x− z)m =

m∑
y=0

(−1)y
(
m

y

)
xm−yzy.
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Then, fk:n(x) can be expressed as

fk:n(x) =
n! bθθ c logα

(k − 1)!(n− k)!(α− 1)n
x−(θ+1)

× exp

{
−
(
b

x

)θ}[
1− exp

{
−
(
b

x

)θ}]c−1

×
k−1∑
λ1=0

n−k∑
λ=0

(
k − 1

λ1

)(
n− k
λ2

)
(−1)k+λ1+λ2−1αn−k+λ1+1

α
(λ1+λ2+1)

[
1−exp

{
−( bx)

θ
}]c .

(27)

5 Estimation

We assume that x1, x2, . . . , xn is a random sample from the APEF. Then, the
log-likelihood (`) for Θ = (α, b, θ, c) is

` = n log

(
log (α)

α− 1

)
+ n log

(
αbθθc

)
− (θ + 1)

n∑
i=1

log(xi)−
n∑
i=1

(
b

xi

)θ

+ (c− 1)

n∑
i=1

log

(
1− exp

{
−
(
b

xi

)θ})

− logα

n∑
i=1

(
1− exp

{
−
(
b

xi

)θ})c
.

(28)

Then, the likelihood equations are as follows:

∂`

∂α
=
n
(
α−1
α − logα

)
(α− 1) logα

+
n

α
−

∑n
i=1

(
1− exp

{
−
(
b
xi

)θ})c
α

,

∂`

∂b
=
nθ

b
−

n∑
i=1

θ
(
b
xi

)θ−1
xi

+ (c− 1) θ

n∑
i=1

(
b
xi

)θ−1
exp

{
−
(
b
xi

)θ}
x

(
1− exp

{
−
(
b
xi

)θ})

− θc
n∑
i=1

(
b
xi

)θ−1
exp

{
−
(
b
xi

)θ}(
1− exp

{
−
(
b
xi

)θ})c−1
xi

logα,
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∂`

∂θ
=
n
(
θbθ log (b) + bθ

)
θbθ

−
n∑
i=1

(
b

xi

)θ
log

(
b

xi

)
−

n∑
i=1

log (xi)

+ (c− 1)
n∑
i=1

(
b

xi

)θ
log

(
b

xi

) exp

{
−
(
b
xi

)θ}
(

1− exp

{
−
(
b
xi

)θ})

− c
n∑
i=1

(
b

xi

)θ
log

(
b

xi

)(
1− exp

{
−
(
b

xi

)θ})c−1

× exp

{
−
(
b

xi

)θ}
logα,

and

∂`

∂c
=
n

c
+

n∑
i=1

log

(
1− exp

{
−
(
b

xi

)θ})

−
n∑
i=1

(
1− exp

{
−
(
b

xi

)θ})c

× log

(
1− exp

{
−
(
b

xi

)θ})
logα.

The ML estimates of α, b, θ and c is obtained by solving the above equa-
tions simultaneously or by directly maximizing Equation (28) by non-linear
optimization approach.

6 Numerical Studies

In this numerical study, 1000 samples with size 25, 50, 100, 200 and 500
are randomly generated from the APEF for two combinations of parameter
values as follows:

• Combination1: α = 0.7, b = 1.9, θ = 5.5, c = 1.2),

• Combination2: α = 1.5, b = 3.9, θ = 6, c = 0.2).
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Table 2 ML estimates and MSE for two combinations of parameter’ values

First Combination Second Combination

Sample size Par. Estimate MSE Estimate MSE

n = 25

α 0.8855 0.7785 1.5512 0.9403
b 1.3698 0.7105 4.0663 0.4758
θ 5.5369 0.7197 6.1416 0.7804
c 1.3698 0.7105 0.2170 0.1958

n = 50

α 0.8098 0.6104 1.5198 0.6157
b 1.9175 0.0745 3.9867 0.2666
θ 5.5100 0.5641 6.0638 0.4366
c 1.2557 0.4910 0.2049 0.0491

n = 100

α 0.7514 0.4504 1.5577 0.4427
b 1.9146 0.0535 3.9334 0.1737
θ 5.4751 0.3622 6.0300 0.3126
c 1.2221 0.3288 0.2034 0.0314

n = 200

α 0.7528 0.3984 1.4538 0.1859
b 1.2031 0.1489 3.8653 0.0792
θ 5.4804 0.1802 6.1625 0.2228
c 1.2031 0.1489 0.1881 0.0199

n = 500

α 0.7101 0.2521 1.4603 0.0450
b 1.9066 0.0496 3.8268 0.0764
θ 5.5063 0.3433 6.1761 0.2017
c 1.2082 0.2393 0.1824 0.0182

The ML estimates and mean square errors (MSEs),

ˆMSEb =
1

n

n∑
i=1

(Θ̂i −Θ)2,

are calculated to assess the performance of ML estimators.
Table 2 reports the simulation results. The results revealed that the ML

technique performs effectively as the parameter estimates get closer to their
true values. Additionally, the MSEs decrease as the sample size increases for
both parameter combinations.

7 Applications

In this section, the APEF is utilized to statistically assess six well-known data
sets. In particular, the fit of APEF for each of the five data sets is compared
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with the fits of some of its sub-models and other competitive generalization
of the EF and Fréchet distributions. The CDFs of these distributions are,
respectively, as follows:

• APF:

F (x; b, θ) =
α
exp

{
−( bx)

θ
}
− 1

α− 1
, α 6= 1;

• TEF:

F (x;λ, b, θ, c) =

[
1−

(
1− exp

{
−
(
b

x

)θ})c]

×

[
1 + λ

(
1− exp

{
−
(
b

x

)θ})c]
;

• Marshall-Olkin exponentiated Fréchet (MO-EF):

F (x; δ, b, θ) = 1−
δ
[
1− exp

{
−
(
b
x

)θ}][
1− (1− δ)

(
1− exp

{
−
(
b
x

)θ})] ;

• MO-EF:

F (x; δ, b, θ, c) = 1−
δ
[
1− exp

{
−
(
b
x

)θ}]c[
1− (1− δ)

(
1− exp

{
−
(
b
x

)θ})c] ;

for x > 0;α, b, θ, c, δ > 0 and |λ| ≤ 1.
The following goodness-of-fit (GOF) statistics are used to evaluate

APEF’s performance compared to other models: Akaike Information Cri-
terion (AIC), corrected AIC (CAIC), Kramér-von Mises (W*), Anderson-
Darling (A*), Kolmogorov-Smirnov (KS) and P-value statistics. The model
with the shortest values of these statistics, as well as the highest P-value for
the KS test, is the best. The calculations are carried out using the package
fitdistrplus in the R software [40]. In addition, the fitted CDFs and PDFs of
APEF and other competitive models are plotted and compared.

First data set: The first data set were taken from [39], which report the
highest annual flood flows of the North Saskachevan River near Edmonton
in units of 1000 cubic feet per second for a 48-year period. The data are
illustrated Table 8 in the Appendix.
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Second data set: The data was studied by [25] and illustrate the Mathe-
matics grades for 48 slow-pace students in the year 2013, see Table 9 in the
Appendix.

Third data set: This data present drought mortality rate and are recently
studied by [3,4]. The data report Canada COVID-19 data from 10 April to 15
May 2020 for 36 days, The data are illustrated Table 10 in the Appendix.

Fourth data set: This data corresponds to the remission months of 128
patients suffering from bladder cancer, see [2], see Table 11 in the Appendix.

Fifth data set: This data obtained from [41] which report the survival
times of 121 breast cancer patients in the period between 1929 to 1938, see
Table 12 in the Appendix.

Tables 3–7 report the ML estimation and associated GOF statistics for
each model. It can be observed that the GOF statistics are lower for APEF

Table 3 ML estimation and associated GOF statistics for data 1
Distribution APEF APF EF TEF MO-F MO-EF

Estimates α̂ = 16.132 α̂ = 122.295 ĉ = 0.099 λ̂ = 0.521 δ̂ = 16.671 δ̂ = 13.789

θ̂ = 15.444 θ̂ = 4.633 b̂ = 21.673 θ̂ = 0.836 θ̂ = 3.407 ĉ = 0.164

ĉ = 0.142 b̂ = 26.750 θ̂ = 13.906 ĉ = 8.109 b̂ = 18.797 b̂ = 10.795

b̂ = 20.447 b̂ = 154.094 θ̂ = 13.155

AIC 437.416 466.474 443.753 441.738 440.474 455.488

CAIC 441.159 469.281 446.560 445.480 442.878 459.2305

W* 0.0243 0.4947 0.2970 0.0581 0.0774 0.4056

AD* 0.1652 5.6861 1.5364 0.3924 0.5075 2.4708

KS 0.0647 0.2018 0.1450 0.0860 0.0918 0.1856

P-value 0.9878 0.0401 0.2644 0.8693 0.9075 0.0731

Table 4 ML estimation and associated GOF statistics for data 2
Distribution APEF APF EF TEF MO-F MO-EF

Estimates α̂ = 4.5076 α̂ = 64.798 ĉ = 2.044 λ̂ = -0.723 δ̂ = 2.530 δ̂ = 64.798

θ̂ = 0.628 θ̂ = 1.727 b̂ = 22.760 θ̂ = 1.591 θ̂ = 1.739 ĉ = 0.367

ĉ = 7.501 b̂ = 8.078 θ̂ = 1.049 ĉ = 0.945 b̂ = 10.862 b̂ = 3.474

b̂ = 60.877 b̂ = 10.942 θ̂ = 6.412

AIC 401.1407 403.2002 403.2120 408.3653 404.8800 401.4828

CAIC 404.8831 406.007 406.0188 412.1077 407.6868 405.2252

W* 0.0348 0.0639 0.1197 0.0748 0.0683 0.0361

AD* 0.2537 0.5360 0.7189 0.8012 0.7112 0.2805

KS 0.0620 0.0911 0.1195 0.0795 0.0753 0.0637

P-value 0.9926 0.8201 0.4988 0.9214 0.9003 0.9899



A New Generalization of the Exponentiated Fréchet Distribution 145

Table 5 ML estimation and associated GOF statistics for data 3
Distribution APEF APF EF TEF MO-F MO-EF

Estimates α̂ = 25.4200 α̂ = 22.100 ĉ = 1.964 λ̂ = 0.643 δ̂ = 8.612 δ̂ = 5.699

θ̂ = 1.315 θ̂ = 3.970 b̂ = 3.303 θ̂ = 1.166 θ̂ = 6.915 ĉ = 6.915

ĉ = 9.729 b̂ = 2.142 θ̂ = 2.446 ĉ = 15.757 b̂ = 1.938 b̂ = 3.914
b̂ = 5.146 b̂ = 7.542 θ̂ = 1.625

AIC 102.524 106.0610 107.1282 103.2653 103.8935 102.6079
CAIC 105.691 108.4363 109.5034 106.4324 106.2688 105.775

W* 0.0589 0.1661 0.1925 0.0719 0.1715 0.0715
AD* 0.3665 1.0178 1.1300 0.4381 0.9423 0.4211
KS 0.0985 0.1412 0.1560 0.1029 0.1503 0.1121
P-value 0.8757 0.4689 0.3448 0.8401 0.3901 0.7553

Table 6 ML estimation and associated GOF statistics for data 4
Distribution APEF APF EF TEF MO-F MO-EF

Estimates α̂ = 60.757 α̂ = 18.940 ĉ = 4.320 λ̂ = -0.826 δ̂ = 17.497 δ̂ = 12.227

θ̂ = 0.245 θ̂ = 0.939 b̂ = 18.748 θ̂ = 0.451 θ̂ = 1.233 ĉ = 5.715

ĉ = 24.644 b̂ = 1.204 θ̂ = 0.487 ĉ = 4.726 b̂ = 0.516 b̂ = 6.319
b̂ = 328.959 b̂ = 14.554 θ̂ = 0.456

AIC 827.8689 871.4901 851.3876 842.6851 855.0750 829.7104
CAIC 833.5729 875.7681 855.6656 848.3892 859.3531 835.4145

W* 0.0145 0.6410 0.5596 0.1750 0.4918 0.0315
AD* 0.1312 4.1151 2.9321 1.1764 3.0411 0.2402
KS 0.0351 0.1153 0.1185 0.0718 0.1116 0.0451
P-value 0.9974 0.0665 0.0550 0.5232 0.0821 0.9563

Table 7 ML estimation and associated GOF statistics for data 5
Distribution APEF APF EF TEF MO-F MO-EF

Estimates α̂ = 658.747 α̂ = 20.417 ĉ = 2.855 λ̂ = -0.906 δ̂ = 22.815 δ̂ = 25.439

θ̂ = 0.253 θ̂ = 0.833 b̂ = 59.676 θ̂ = 0.611 θ̂ = 1.155 ĉ =4.640
ĉ = 19.119 b̂ = 5.127 θ̂ = 0.521 ĉ = 1.808 b̂ = 1.904 b̂ = 15.629
b̂ = 764.733 b̂ = 17.141 θ̂ = 0.502

AIC 1181.749 1252.361 1235.402 1234.778 1227.987 1183.347
CAIC 1187.34 1256.554 1239.596 1240.37 1232.181 1188.939

W* 0.1672 1.3575 1.2226 0.9502 1.0044 0.1930
AD* 1.1800 8.2502 6.7873 5.7262 6.2280 1.2830
KS 0.1086 0.1724 0.1748 0.1506 0.1446 0.1111
P-value 0.1147 0.0014 0.0012 0.0082 0.0126 0.1007

compared to other competitive models, and hence it provides a better fit for all
five data sets. Moreover, the promising performance of APEF can be visually
seen in Figures 3–7 as its estimated fits for the five data sets are closer to their
empirical CDFs and PDFs.
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Figure 3 Estimated PDFs and CDFs of APEF, APF, EF, TEF, MO-F, and MO-EF distribu-
tions for data 1.

Figure 4 Estimated PDFs and CDFs of APEF, APF, EF, TEF, MO-F, and MO-EF distribu-
tions for data 2.

Figure 5 Estimated PDFs and CDFs of APEF, APF, EF, TEF, MO-F, and MO-EF distribu-
tions for data 3.
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Figure 6 Estimated PDFs and CDFs of APEF, APF, EF, TEF, MO-F, and MO-EF distribu-
tions for data 4.

Figure 7 Estimated PDFs and CDFs of APEF, APF, EF, TEF, MO-F, and MO-EF distribu-
tions for data 5.

8 Concluding Remarks

This article proposed a new generalization of EF distribution using APT
named Alpha power exponentiated Fréchet distribution. The APEF provides
high flexibility, especially for modeling skewed data in different fields.
Explicit expressions of various mathematical properties of APEF such as
quantile, median, moments, incomplete moments, mean residual life, order
statistics, and entropy are derived. The performance of APEF is examined via
simulation and Five real-life applications in different fields, which demon-
strate its usefulness and great flexibility. Application results indicate that
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the APEF distribution consistently provides appropriate fit and outperformed
other extended forms of the exponentiated Fréchet and Fréchet distributions.
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Appendix

Table 8 List of Data set I
19.885 20.940 21.820 23.700 24.888 25.460 25.760 26.720 27.500 28.100
28.600 30.200 30.380 31.500 32.600 32.680 34.400 35.347 35.700 38.100
39.020 39.200 40.000 40.400 40.400 42.250 44.020 44.730 44.900 46.300
50.330 51.442 57.220 58.700 58.800 61.200 61.740 65.440 65.597 66.000
74.100 75.800 84.100 106.600 109.700 121.970 121.970 185.560

Table 9 List of Data set II
29 25 50 15 13 27 15 18 7 7 8 19 12 18 5 21 15
86 21 15 14 39 15 14 70 44 6 23 58 19 50 23 11 6
34 18 28 34 12 37 4 60 20 23 40 65 19 31

Table 10 List of Data set III
3.1091 3.3825 3.1444 3.2135 2.4946 3.5146 4.9274 3.3769 6.8686 3.0914 4.9378
3.1091 3.2823 3.8594 4.0480 4.1685 3.6426 3.2110 2.8636 3.2218 2.9078 3.6346
2.7957 4.2781 4.2202 1.5157 2.6029 3.3592 2.8349 3.1348 2.5261 1.5806 2.7704
2.1901 2.4141 1.9048

Table 11 List of Data set IV
0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52 4.98 6.97
9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50 2.46 3.64
5.09 7.26 9.47 14.24 25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31
0.81 2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34
14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23
5.41 7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26
2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13
1.76 3.25 4.50 6.25 8.37 12.02 2.02 3.31 4.51 6.54 8.53 12.03 20.28
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69
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Table 12 List of Data set V
0.3 0.3 4.0 5.0 5.6 6.2 6.3 6.6 6.8 7.4 7.5 8.4 8.4

10.3 11.0 11.8 12.2 12.3 13.5 14.4 14.4 14.8 15.5 15.7 16.2 16.3
16.5 16.8 17.2 17.3 17.5 17.9 19.8 20.4 20.9 21.0 21.0 21.1 23.0
23.4 23.6 24.0 24.0 27.9 28.2 29.1 30.0 31.0 31.0 32.0 35.0 35.0
37.0 37.0 37.0 38.0 38.0 38.0 39.0 39.0 40.0 40.0 40.0 41.0 41.0
41.0 42.0 43.0 43.0 43.0 44.0 45.0 45.0 46.0 46.0 47.0 48.0 49.0
51.0 51.0 51.0 52.0 54.0 55.0 56.0 57.0 58.0 59.0 60.0 60.0 60.0
61.0 62.0 65.0 65.0 67.0 67.0 68.0 69.0 78.0 80.0 83.0 88.0 89.0
90.0 93.0 96.0 103.0 105.0 109.0 109.0 111.0 115.0 117.0 125.0 126.0 127.0
129.0 129.0 139.0 154.0
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