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Abstract

In this study, to estimate the process capability index Cpy when the process
follows different distributions (Lindley, Xgamma, and Akash distributions),
I have used five methods of estimation, namely, the maximum likelihood
method of estimation, the least and weighted least squares method of esti-
mation, the maximum product of spacings method of estimation, and the
Bayesian method of estimation. The Bayesian estimation is studied for
symmetric loss function with the help of the Metropolis-Hastings algo-
rithm method. The Metropolis-Hastings algorithm approach is used to study
Bayesian estimation for symmetric loss functions. Four bootstrap approaches
and Bayesian methods are used to create confidence intervals for the index
Cpy. Based on their respective MSEs/risks for point estimates of Cpy and aver-
age widths (AWs) for interval estimates, I have investigated the performance
of various estimators. To assess the accuracy of the various approaches,
Monte Carlo simulations are conducted. It is found that the Bayes estimates
performed better than the considered classical estimates in terms of their
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corresponding risks. To illustrate the performance of the proposed methods,
two real data sets are analyzed.

Keywords: Bootstrap confidence interval, process capability index, Lindley
distribution, Xgamma distribution, Akash distribution.

1 Introduction

Effective management and evaluation of output service quality is a prominent
topic in the manufacturing industry. The most generally used indices to
judge the processes appear to be process capability indices (PCIs), which
are particularly popular among industries for evaluating (manufacturing)
processes since they are dimensionless, easy to read, and comprehensible.
Despite their flaws, these indexes are frequently employed in a range of
industries, owing to the single-number summary’s simplicity and attraction to
engineers and management. The most commonly utilised PCIs are Cp,, Cpk,
Cpmk, and Cpm [see Juran (1974), Kane (1986), Chan et al. (1988), and Pearn
et al. (1992)]. They are predicated on the assumption that a given process
may be characterised by a normal probability model with a process mean
µ and standard deviation σ. Furthermore, in so many industrial and service
activities, the assumption of normalisation is basically a simplifying notion
that is frequently inaccurate [see, Gunter (1989)]. In their recent work, Maiti
et al. (2010) obtained a generalized process capability index (GPCI) Cpy in
their recent work. The index’s attractiveness is that it is closely linked to the
vast majority of PCIs defined in the literature. Furthermore, it includes both
normal and non-normal random variables, as well as continuous and discrete
random variables, and is described as follows:

Cpy =
F (U)− F (L)

F (UDL)− F (LDL)

=
p

p0
,

where F (t) = P (Z ≤ t) is the cumulative distribution function of the
quality characteristicZ. The lower and upper specification limits areL andU ,
respectively, whereas p is the process yield and p0 is the ideal yield. LDL and
UDL are the lower and higher acceptable thresholds, respectively.

To draw the inference about PCIs, quality control engineers generally use
the point and the interval estimation. The point estimator is employed to the
process performance but in the case of variability in estimation, researchers
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also on confidence interval (CI) (see, Chan et al. 1988, Smithson (2001)).
There are several techniques available in the literature to construct CIs
like the bootstrap technique. This technique is a re-sampling method and
free from distributional assumptions. Firstly, Efron (1979) introduced this
technique. Franklin and Wasserman (1991) employed this technique for the
construction of CIs of the PCI Cpk. Tong and Chen (1998) likewise utilized
bootstrap simulation methods to calculate lower confidence limits for the said
indices Cp, Cpk and Cpm when the process distributions were non-normal.
Many researchers have already used this approach for other PCIs [see, for
reference, Pearn et al. (2014, 2016); Rao et al. (2016); Dey et al. (2021);
Saha et al. (2018, 2020a, 2020b); Kumar (2021)].

PCIs are analyzed and studied from both the Bayesian and classical
perspectives. Nevertheless, many statisticians prefer the use of the Bayesian
approach over the classical approach. When the actual distribution is nor-
mally distributed, Saxena and Singh (2006) address the Bayesian estimation
of the PCI Cp. Credible intervals for several PCIs were determined by
Ouyang et al. (2002) and Lin et al. (2011). One can find the advantages and
justification of the Bayesian approach in the works of Chan et al. (1988),
Cheng and Spiring (1989), and Shiau et al. (1999a, 1999b). Besides, several
authors have discussed Bayesian estimation of the PCIs for many lifetime
distributions. Readers may refer to the works of Huiming et al. (2007),
Miao et al. (2011), Pearn et al. (2015), Seifi and Nezhad (2017), Saha
et al. (2019), Leiva et al. (2014), Perakis and Xekalaki (2002) among
others.

The following are the three goals of this paper: First, I have estimate Cpy
using four distinct classical and Bayesian estimation approaches for various
models. To estimate the parameter(s) of various distributions, I have selected
four traditional estimation methods: maximum likelihood estimation (MLE),
least square estimation (LSE), weighted least square estimation (WLSE), and
maximum product spacing estimation (MPSE). Performance is not simply
measured in terms of mean square error (MSE); another sort of risk is
also employed. The second goal is to compute four bootstrap confidence
intervals (BCI) of Cpy using the traditional techniques of estimation men-
tioned above: standard bootstrap (SB), percentile bootstrap (PB), student’s
t bootstrap (ST B), and bias-corrected percentile bootstrap (BCPB). The
estimated average widths (AWs) of the BCIs are used to highlight their
performance. The final goal is to derive Bayes estimates of the PCI Cpy
under a symmetric function using gamma priors for the model’s parameters.
The Metropolis-Hastings (M-H) method is used to calculate Bayes estimates.
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We then calculate Bayes credible intervals and compare them to the BCIs.
To the best of our knowledge, no research has been conducted to investigate
the PCIs Cpy employing four BCIs based on the aforementioned classical and
Bayesian estimation techniques for the considered distributions. The study’s
goal is to create a guideline for selecting the optimum way of estimating the
indices, which I believe would be of great relevance to applied statisticians
and quality control engineers in situations where the item/subgroup quality
characteristic follows studied distributions.

The following is how the rest of the article is organized: Section 2 defines
GPCI Cpy for the distributions under consideration. In addition, I have explain
various traditional estimation methods (MLE, LSE, WLSE, and MPSE) for
the index Cpy. Section 3 addresses BCIs such as SB, PB, ST B and BCPB
that are based on the aforementioned GPCI Cpy assessment procedures. In
section 4, I derive Bayesian estimates of the index Cpy using the squared
error loss function (SELF) and the highest posterior density (HPD) credible
interval. In Section 5, a Monte Carlo simulation experiment was undertaken
to evaluate the performances of the aforementioned classical and Bayes
estimators of the index Cpy in terms of their associated MSEs and risks.
Section 6 pointed out two real-life data sets for promotional purposes, and
Section 7 includes the study’s conclusion.

2 Estimation of Generalized Process Capability Index Cpy

Here, I have derived the MLE, LSE, WLSE, MPSE, and BCIs of GPCI Cpy for
some finite mixture distributions, viz., the LnD, XgD, and AkD, respectively.

2.1 Lindley Distribution

The LnD [See, Lindley (1958), Ghitany et al. (2008)] belongs to the expo-
nential family and it can be written as a mixture of exponential and gamma
distributions. Suppose Y is a random variable (RV) that follows the LnD(ψ).
Then, its probability density function (PDF) and cumulative density function
(CDF) are, respectively, given as

f(y;ψ) =
ψ2

ψ + 1
(1 + y)e−ψy; y > 0, ψ > 0 (1)

F (y;ψ) = 1−
[
1 +

ψy

1 + ψ

]
e−ψy. (2)



Classical and the Bayesian Estimation of Process Capability Index 157

Now, GPCI Cpy, where the quality characteristic follows the LnD, is
given as

Cpy =
[(1 + ψL

ψ+1)e−ψL]− [(1 + ψU
ψ+1)e−ψU ]

p0
(3)

Given a random sample (RS) Y1, Y2, . . . , Yn of size n, drawn from the
LnD(ψ) given in Equation (1), the corresponding log-likelihood function (` =
logL(ψ;Y )) is given as

` = 2n logψ − n log(ψ + 1) +

n∑
i=1

log(1 + yi)− ψ
n∑
i=1

yi (4)

By solving the ensuing equation, we will get the MLE of ψ, say, ψ̂mle

∂`

∂ψ
=

2n

ψ
− n

1 + ψ
−

n∑
i=1

yi = 0.

Thus, MLE of the parameter ψ is given by [see, Ghitany et al. (2008)]

ψ̂mle =
−(ȳ − 1) +

√
(ȳ − 1)2 − 8ȳ

2ȳ
(5)

The MLE of Cpy, denoted by Ĉmlepy (LnD), can be obtained by operating
the invariance property of MLE, which is given as

Ĉmlepy (LnD) =
(1 + Lψ̂mle

1+ψ̂mle
)e−Lψ̂mle − (1 + Uψ̂mle

1+ψ̂mle
)e−Uψ̂mle

p0
. (6)

LSE and WLSE
The LSE and WLSE were proposed by Swain et al. (1988) to estimate the
parameters of the Beta distribution. Suppose F (y(j:n)) denotes the CDF
of the ordered random variables y(1:n) < y(2:n) < · · · < y(n:n), where,
{y1:n, y2:n, . . . , yn:n} is a random sample of size n from a distribution
function F (·). As a result, the LSEs of (ψ), say, (ψ̂lse) can be found by
reducing

L(ψ) =

n∑
i=1

[
F (y;ψ)− i

n+ 1

]2
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with respect to ψ, where F (y;ψ) is the CDF of the distribution. Equivalently,
it can also be obtained by solving the following non-linear equation

n∑
i=1

[
1−

(
1 +

ψy

ψ + 1

)
e−ψy − i

n+ 1

]
∆1(y;ψ) = 0

where ∆1(y;ψ) is the first derivative of the respective distribution

∆1(y;ψ) =
ye−ψy

(ψ + 1)2
[ψ2(y + 1) + ψ(y + 2)] (7)

Thus, the LSE for GPCIs under LnD can be obtained by replacing ψ with
ψ̂lse in Equation (3) and can be given as

Ĉlsepy =
[(1 + Lψ̂lse

1+ψ̂lse
)e−Lψ̂lse ]− [(1 + Uψ̂lse

1+ψ̂lse
)e−Uψ̂lse ]

P0
(8)

Therefore, in this case, the WLSE of ψ say ψ̂wlse can be obtained by
minimizing

W (ψ) =
n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (y;ψ)− i

n+ 1

]2
to ψ. The estimators can be obtained by differentiating W (ψ) for ψ, and
equating to zero.

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[(
1−

(
1 +

ψy

ψ + 1

)
e−ψy − i

n+ 1

)]2
∆1(y;ψ) = 0

where, ∆1(y;ψ) is given in equation 7. Thus, the Process Capability Indices
of the above mentioned distribution for WLSE obtained by replacing ψ by
ψ̂wlse in Equation (3).

Ĉwlsepy =
[(1 + Lψ̂wlse

1+ψ̂wlse
)e−Lψ̂wlse ]− [(1 + Uψ̂wlse

1+ψ̂wlse
)e−Uψ̂wlse ]

P0
(9)

MPSE
Cheng and Amin (1979) proposed the maximum product spacing method as
an alternative to MLE for estimating unknown parameters of continuous uni-
variate distributions. Ranneby (1984) independently developed this method
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as an approximation to the Kullback-Leibler information measure. Cheng and
Amin (1983) demonstrated that this method is equally efficient as the MLE
and consistent under more broad settings, which influenced our decision. Let
us begin by defining

D(α;λ) = F (yi:n|α, λ)− F (yi−1:n|α, λ), i = 1, 2, . . . , n+ 1 (10)

where F (y0:n|ψ) = 0 and F (yn+1:n|ψ) = 1 − F (yn:n|ψ). Clearly,∑n+1
i=1 D(ψ) = 1. The MPSEs of the parameter (α,ψ), say, (α̂mpse, ψ̂mpse)

are obtained by the maximizing the geomatric mean of the spacings with
respect to ψ as

GM =

[
n+1∏
i=1

Di(ψ)

] 1
n+1

or equivalently, by maximizing the function

H = logGM =
1

n+ 1

n+1∑
i=1

logDi(ψ)

with respect to α and λ. The estimates of ψ is obtained by solving the non-
linear equations

δH

δψ
=

1

n+ 1

n+1∑
i=1

1

Di(ψ)

δDi(ψ)

ψ
= 0

where,
δH

δψ
=
F (yi:n)|ψ

ψ
− F (yi−1:n)|ψ

ψ

can be obtained.
Thus, the GPCI of the above mentioned distribution for MPSE obtained

by replacing ψ by ψ̂mpse in Equation (3).

Ĉmpsepy =
[(1 +

Lψ̂mpse

1+ψ̂mpse
)e−Lψ̂mpse ]− [(1 +

Uψ̂mpse

1+ψ̂mpse
)e−Uψ̂mpse ]

P0
(11)

2.2 Xgamma Distribution

The XgD is a new probability distribution derived from a particular finite
mixing of exponential and gamma distributions [see, sen et al. (2016)]. If the
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PDF and CDF of a continuous RV Y are of the form, it is said to follow an
XgD.

f(y;ψ) =
ψ2

1 + ψ
(1 +

ψ

2
y2)e−ψy; y > 0, ψ > 0 (12)

F (y;ψ) = 1−
(1 + ψ + ψy + ψ2y2

2 )e−ψy

1 + ψ
; y > 0, ψ > 0 (13)

Now GPCI Cpy, where the quality characteristic follows the XgD, is
given as

Cpy =

 [
(1+ψ+ψL+ψ2L2

2
)e−ψL

1+ψ ]− [
(1+ψ+ψU+ψ2U2

2
)e−ψU

1+ψ ]

p0

 (14)

Given a RS Y1, Y2, . . . , Yn of size n, drawn from the XgD(ψ) given in
Equation (12), the corresponding log-likelihood function is given as

` = 2n logψ − n log(1 + ψ) +
n∑
i=1

log(1 +
ψ

2
y2i )− ψ

n∑
i=1

yi (15)

By solving the ensuing equation, we will get the MLE of ψ, say, ψ̂mle

2n

ψ
− n

(1 + ψ)
+

n∑
i=1

y2i
2

(1 + ψ
2 y

2
i )

=

n∑
i=1

yi (16)

The MLE ψ̂mle of the unknown parameters ψ can be obtained by opti-
mizing the log-likelihood function concerning the involved parameters. In
this regard, one can use the packages like, nlm() and/or maxLik() packages
of the R software [see Dennis and Schnabel (1983), Henningsen and Toomet
(2010)]. Alternatively, the parameters can be obtained by solving the above
non-linear Equation (16) with the help of an iterative procedure like the Quasi
Newton-Raphson method. Hence, the MLE of the GPCI Cpy is obtained by
using the invariance property of MLE, of given as

Ĉmlepy (XgD) =



[
(1+ψ̂mle+Lψ̂mle+

L2 ˆ
ψ2
mle

2
)e−Lψ̂mle

1+ψ̂mle

]

−

[
(1+ψ̂mle+Uψ̂mle+

U2 ˆ
ψ2
mle

2
)e−Uψ̂mle

1+ψ̂mle

]
P0


(17)
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LSE and WLSE
Now using the theory of the LSE and WLSE has given in Subsection 2.1, we
can get the expressions for XgD as

L(ψ) =
n∑
i=1

[
1−

(1 + ψ + ψy + ψ2y2

2 )e−ψy

1 + ψ
− i

n+ 1

]2
∆2(y;ψ) = 0

where ∆2(y;ψ) is the first derivative of the respective distribution,

∆2(y;ψ) =
ye−ψx

2(1 + ψ)2
[2(2 + ψ) + ψy(1 + y + ψy)] (18)

Thus, the LSEs of GPCIs for the respective distribution can be obtained
by replacing ψ with ˆψlse in Equation (14).

Ĉlsepy =



[
(1+ψ̂lse+Lψ̂lse+

L2 ˆ
ψ2
lse

2
)e−Lψ̂lse

1+ψ̂lse

]

−

[
(1+ψ̂lse+Uψ̂lse+

U2 ˆ
ψ2
lse

2
)e−Uψ̂lse

1+ψ̂lse

]
P0


(19)

Similarly, for XgD the WLSE of ψ say ψ̂wlse can be obtained by solving
the following expression

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)[
1−

(1 + ψ + ψy + ψ2y2

2 )e−ψy

1 + ψ
− i

n+ 1

]2
∆2(y;ψ) = 0

where, ∆2(y;ψ) are given in Equation (18). Thus, the WLSEs of GPCIs for
the above-mentioned distribution can be obtained by replacing ψ with ψ̂wlse
in Equation (14).

Ĉwlsepy =



[
(1+ψ̂wlse+Lψ̂wlse+

L2 ˆ
ψ2
wlse

2
)e−Lψ̂wlse

1+ψ̂wlse

]

−

[
(1+ψ̂wlse+Uψ̂wlse+

U2 ˆ
ψ2
wlse

2
)e−Uψ̂wlse

1+ψ̂wlse

]
P0


(20)
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MPSE
Similarly, using the theory of the MPSE has given in Subsection 2.1,
The MPSEs of GPCIs for XgD can obtain by replacing ψ with ψ̂mpse in
Equation (14).

Ĉmpsepy =



[
(1+ψ̂mpse+Lψ̂mpse+

L2 ˆ
ψ2
mpse
2

)e−Lψ̂mpse

1+ψ̂mpse

]

−

[
(1+ψ̂mpse+Uψ̂mpse+

U2 ˆ
ψ2
mpse
2

)e−Uψ̂mpse

1+ψ̂mpse

]
P0


(21)

2.3 Akash distribution

The AkD [see Shanker (2015)] is a novel probability distribution derived from
a particular finite mixing of exponential and gamma distributions. The revised
one-parameter lifespan distribution’s PDF can be written as follows:

f(y;ψ) =
ψ3

ψ2 + 2
(1 + y2)e−ψy; y > 0, ψ > 0 (22)

and, the corresponding CDF is given by

F (y;ψ) = 1−
[
1 +

ψy(ψy + 2)

ψ2 + 2

]
e−ψy; y > 0, ψ > 0 (23)

Now GPCI Cpy, where the quality characteristic follows the AkD, is
given as

Cpy =
[1 + ψL(ψL+2)

ψ2+2
]e−ψL − [1 + ψU(ψU+2)

ψ2+2
]e−ψU

p0
(24)

Given a RS Y1, Y2, . . . , Yn of size n, drawn from the AkD(ψ) given in
Equation (22), the corresponding log-likelihood function is given as

` = 3n logψ − n log(ψ2 + 2) +
n∑
i=1

log(1 + y2i )− ψ
n∑
i=1

yi (25)

The MLE of ψ, say, ψ̂mle can be obtained as the solution of the following
equation

ψ3ȳ − ψ2 + 2ψȳ − 6 = 0
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Again to obtain the MLE ψ̂mle of the unknown parameter ψ, one can use
the techniques mentioned above. After obtaining the MLE of the parameter
ψ, the MLE of Cpy, denoted by Ĉmlepy (AkD) can be obtained by operating the
invariance property of MLE and which is given as

Ĉmlepy (AkD) =


[
1 + Lψ̂mle(Lψ̂mle+2)

2+ψ̂2
mle

]
e−Lψ̂mle

−
[
1 + Uψ̂mle(Uψ̂mle+2)

2+ψ̂2
mle

]
e−Uψ̂mle

P0

 (26)

LSE and WLSE
Similarly, using the theory of the LSE and WLSE has given in Subsection 2.1,
the LSE and WLSE of AkD can also be obtained by solving the following
non-linear equation

L(ψ) =
n∑
i=1

[
1− (1 +

ψy(ψy + 2)

ψ2 + 2
)e−ψy − i

n+ 1

]
∆3(y;ψ)

where ∆3(y;ψ) is the first derivative of the respective distribution,

∆3(y;ψ) =
e−ψy

(ψ2 + 2)
ψy[ψ3(1 + y2) + 2ψ(ψy + y2 + 3)] (27)

Thus, the LSE for GPCIs under AkD can obtain by replacing ψ with ψ̂lse
in Equation (24) and be given as

Ĉlsepy =
[1 + Lψ̂lse(Lψ̂lse+2)

2+ψ̂2
lse

]e−Lψ̂lse − [1 + Uψ̂lse(Uψ̂lse+2)

2+ψ̂2
lse

]e−Uψ̂lse

P0

(28)

Similarly, for XgD the WLSE of ψ say ψ̂wlse can be obtained by solving
the following expression

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)[
1−

[
1 +

ψy(ψy + 2)

ψ2 + 2

]
e−ψy − i

n+ 1

]2
∆2(y;ψ) = 0
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where, ∆2(y;ψ) s given in Equation (27). Thus, WLSEs of the GPCIs of the
AkD can obtain by replacing ψ by ψ̂wlse and can be given as

Ĉwlsepy =

[
1 + Lψ̂wlse(Lψ̂wlse+2)

2+ψ̂2
wlse

]
e−Lψ̂wlse

−
[
1 + Uψ̂wlse(Uψ̂wlse+2)

2+ψ̂2
wlse

]
e−Uψ̂wlse

P0
(29)

MPSE
Similarly from Subsection 2.1, the MPSEs of GPCIs for AkD can be obtained
by replacing ψ with ψ̂mpse in Equation (24).

Ĉmpsepy =

[
1 +

Lψ̂mpse(Lψ̂mpse+2)

2+ψ̂2
mpse

]
e−Lψ̂mpse

−
[
1 +

Uψ̂mpse(Uψ̂mpse+2)

2+ψ̂2
mpse

]
e−Uψ̂mpse

P0
(30)

3 Bootstrap Confidence Interval

Efron created the principle of bootstrap re-sampling approach (1979) [See
Efron (1979)]. We can create inferential statistics related to the underlying
distribution using a simple re-sampling procedure in this approach. Efron
(1982), Hall (2013), and Davison and Hinkley provide in-depth treatments
of the theoretical development of the bootstrap approach (1997). BCIs have
recently been utilised by numerous researchers to create confidence intervals
for various PCIs [see, for example, Chatterjee and Qiu (2009); Li et al. (2016),
Rao et al. (2016), Kumar et al. (2019; 2021), Kumar and Saha (2020)].

Here, I have obtained four BCIs, namely, SB, PB, ST B and BCPB for
calculating CIs of the GPCI Cpy. Let Y1, Y2, . . . , Yn be a random sample of
size n drawn from exponential distribution with parameter ψ.
ALGORITHM:

• Step 1: From the given random sample of size n, I compute the MLE ψ̂
of ψ. A bootstrap sample of size n is obtained from the original sample
by putting 1/n as mass at each point, denoted by Y ∗1 , Y

∗
2 , . . . , Y

∗
n .

• Step 2: We compute the MLE ψ̂∗ of ψ as well as Ĉ∗py of Cpy.

The m-th bootstrap estimator of Cpy is computed as Ĉ∗(m)
py = Ĉpy

(Y ∗1 , Y
∗
2 , . . . , Y

∗
n ).
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• Step 3: There are total number of nn re-samples and I have calculate B
values of Ĉ∗py from these re-samples. Each of these Ĉ∗py would be estima-

tor of Ĉpy. The arrangement of the entire collection in assending would

constitute an empirical bootstrap distribution {Ĉ∗(j)py ; j = 1, 2, . . . , B},
will be denoted as Ĉ∗(1)py ≤ Ĉ∗(2)py ≤ · · · ≤ Ĉ∗(B)

py .

Here, in this study we considered B = 1000 bootstrap samples.

Standard Bootstrap (SB) Confidence Interval

Let ¯̂C∗py and Se∗ be the sample mean and sample standard deviation of

{Ĉ∗(j)py ; j = 1, 2, . . . , B}, i.e.,

¯̂C∗py =
1

B

B∑
j=1

Ĉ∗(j)py

and

Se∗ =

√√√√ 1

(B − 1)

B∑
j=1

(
Ĉ∗(j)py − ¯̂C∗py

)2
,

respectively. A 100(1− α)% SB CI of the index Cpy is given by{
Ĉ∗py − z(α/2).Se∗, Ĉ∗py + z(α/2).Se

∗
}
.

Percentile Bootstrap (PB) Confidence Interval

Let Ĉ∗(τ)py be the τ percentile of {Ĉ∗(j)py ; j = 1, 2, . . . , B}, i.e., Ĉ∗(τ)py is such
that

1

B

B∑
j=1

I
(
Ĉ∗(j)py ≤ Ĉ∗(τ)py

)
= τ ; 0 < τ < 1,

where, I(·) is the indicator function. A 100(1−α)% PB CI of the index Cpy
is given by {

Ĉ∗(B.(α/2))py , Ĉ∗(B.(1−α/2))py

}
,

where, Ĉ∗(r)py is the r-th ordered value on the list of the B bootstrap estimators
of Cpy.
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Student’s t Bootstrap (ST B) Confidence Interval

Let S∗ be the sample standard deviation of {Ĉ∗(j)py ; j = 1, 2, . . . , B}, i.e.,

S∗ =

√√√√ 1

B

B∑
j=1

(
Ĉ∗(j)py − ¯̂C∗py

)2
,

where,

¯̂C∗py =
1

B

B∑
j=1

Ĉ∗(j)py .

Also, let t̂∗(τ) be the τ percentile of { Ĉ
∗(j)
py −Ĉpy
S∗ }; j = 1, 2, . . . , B, i.e.,

t̂∗(τ) is such that

1

B

B∑
j=1

I

(
Ĉ∗(j)py − Ĉpy

S∗
≤ t̂∗(τ)

)
= τ ; 0 < τ < 1,

where, I(·) is the indicator function. A 100(1 − α)% ST B CI of the index
Cpy is given by {

¯̂C∗py − t̂∗(α/2).S∗,
¯̂C∗py + t̂∗(α/2).S∗

}
.

Bias-corrected Percentile Bootstrap (BCPB) Confidence Interval

This approach has been introduced to correct for the potential bias. The first
step is to locate the observed Ĉpy in the bootstrap order statistics Ĉ∗(1)py ≤
Ĉ∗(2)py ≤ · · · ≤ Ĉ∗(B)

py . Firstly, using the ordered distributions of {Ĉ∗(j)py ; j =
1, 2, . . . , B}, compute the probability

P0 =
1

B

B∑
j=1

I
(
Ĉ∗(j)py ≤ Ĉpy

)
,

where I(·) is the indicator function. Then, I have calculate z0 = Φ−1(P0),
where, Φ(·) is the standard normal CDF and this value is used to calculate
the probabilities Pl and Pu, defined as

Pl = Φ
(
2z0 − z(α/2)

)
and Pu = Φ

(
2z0 + z(α/2)

)
.
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A 100(1− α)% BCPB CI of δ is given by(
Ĉ∗(B.Pl)py , Ĉ∗(B.Pu)py

)
.

where Ĉ∗(r)py is the r-th ordered value on the list of the B bootstrap estimators
of Cpy.

4 Bayesian Estimation

The Bayesian estimation of the index Cpy is presented in this section.
Bayesian analysis is a logical technique to mix observed and prior data.
Prior distributions are crucial in the development of the Bayes estimator(s).
There is no simple approach for selecting priors for a specific situation.
More information can be found in Arnold and Press (1983). We analyse
Bayesian estimation on the assumption that the random variables have inde-
pendent gamma priors in the premise of the foregoing arguments.Let ψ ∼
Gamma(a, b). Because the Gamma distribution is versatile, it can take on a
variety of shapes depending on parameter values, making it a good candidate
for model parameter priors. More information can be found in Kundu and
Pradhan (2009). Thus, the prior distribution of ψ is

π(ψ) =
ba

Γ(a)
ψa−1e−bψ; ψ > 0, (31)

where a, and b are the hyper-parameters and are assumed to be known. The
posterior distribution of ψ under LnD, XgD, and AkD are given in Equs. (32),
(33), and (34) respectively.

P1(ψ | y) = K−11

(
ψ2

1 + ψ

)n
ψa−1e

−ψ(b+
n∑
i=1

yi)
n∏
i=1

(1 + yi)

= K−11 ψ2n+a−1e
−ψ(b+

n∑
i=1

yi)
(1 + ψ)−n

n∏
i=1

(1 + yi) (32)

where

K−11 =

∫ ∞
0

(
ψ2

1 + ψ

)n
ψa−1e

−ψ(b+
n∑
i=1

yi)
n∏
i=1

(1 + yi)dψ
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is the normalizing constant for LnD.

P2(ψ | y) = K−12

(
ψ2

1 + ψ

)n
ψa−1e

−ψ(b+
n∑
i=1

yi)
n∏
i=1

(
1 +

ψy2i
2

)

= K−12 ψ2n+a−1e
−ψ(b+

n∑
i=1

yi)
(1 + ψ)−n

n∏
i=1

(
1 +

ψy2i
2

)
(33)

where

K−12 =

∫ ∞
0

(
ψ2

1 + ψ

)n
ψa−1e

−ψ(b+
n∑
i=1

yi)
n∏
i=1

(
1 +

ψy2i
2

)
dψ

is the normalizing constant for XgD.

P3(ψ | y) = K−13

(
ψ3

2 + ψ2

)n
ψa−1e

−ψ(b+
n∑
i=1

yi)
n∏
i=1

(1 + y2i )

= K−13 ψ3n+a−1e
−ψ(b+

n∑
i=1

yi)
(2 + ψ2)−n

n∏
i=1

(1 + y2i ) (34)

where

K−13 =

∫ ∞
0

(
ψ3

2 + ψ2

)n
ψa−1e

−ψ(b+
n∑
i=1

yi)
n∏
i=1

(1 + y2i )dψ

is the normalizing constant for AkD. We use the SELF to obtain the Bayes
estimates of Cpy. The expression of the loss functions, the corresponding
Bayes estimator and posterior risk are provided in Table 1. Where d is the
estimate of parameter ψ.

Notice that if we can obtain the posterior distribution of Cpy, then the
Bayes estimate of Cpy can be easily obtained, but the evaluation of the
posterior distribution of Cpy is quite tedious. Therefore, the Bayes estimate

Table 1 Bayes estimate under SELF and corresponding posterior risk
Loss function Bayes estimator Posterior risk

L = SELF = (ψ − d)2 E(ψ |y) Var(ψ |y)
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under SELF of Cpy for known U and L concerning LnD, XgD, and AkD, can
be obtained by the Equations (35), (36) and (37), respectively.

ĈLnDpy = E(Cpy|y) =

∞∫
0

∞∫
0

Cpy P1(ψ | y) dψ

= K−1
∞∫
0

ψ2n+a−1e
−ψ(b+

n∑
i=1

yi)
(1 + ψ)−n

n∏
i=1

(1 + yi)

× 1

p0

[
1 + ψ + ψL

1 + ψ
e−ψL − 1 + ψ + ψU

1 + ψ
e−ψU

]
dψ (35)

ĈXgDpy = E(Cpy|y) =

∞∫
0

∞∫
0

Cpy P2(ψ | y) dψ

= K−1
∞∫
0

ψ2n+a−1e
−ψ(b+

n∑
i=1

yi)
(1 + ψ)−n

n∏
i=1

(
1 +

ψy2i
2

)

× 1

p0

[
1 + ψ + ψL+ ψ2L2

2

1 + ψ
e−ψL

−
1 + ψ + ψU + ψ2U2

2

1 + ψ
e−ψU

]
dψ (36)

ĈAkDpy = E(Cpy|y) =

∞∫
0

∞∫
0

Cpy P3(ψ | y) dψ

= K−1
∞∫
0

ψ3n+a−1e
−ψ(b+

n∑
i=1

yi)
(2 + ψ2)−n

n∏
i=1

(1 + y2i )

× 1

p0

[(
1 +

2ψL+ ψ2L2

1 + ψ

)
e−ψL

×−

(
1 +

2ψU + ψ2U2

2 + ψ2

)
e−ψU

]
dψ (37)
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Equations (35), (36) and (37) do not yield any standard form due to the
involvement of two integrals in the denominator as well as in the numerator.
Hence, the analytical solution of the same is not possible. Therefore, one
may use any Bayes computation technique to obtain the solutions. Here, we
use one Bayes computation technique namely, the M-H algorithm, which is
more frequently used to approximate the posterior expectations. The detailed
description of this approximation is given below:

Metropolis-Hastings Algorithm

Here, we consider an algorithm suggested by Metropolis and Hastings to
compute the Bayes estimate as well as the credible interval of the index based
on generated posterior samples. In this algorithm, samples are generated
from the fully conditional posterior densities using an appropriate proposal
distribution. The generated samples from the full conditional distribution are
collected using the acceptance-rejection principle. For more details about this
algorithm, the reader may refer to the articles by Metropolis et al. (1953),
Smith and Robert (1993), and many others. To implement the M-H algorithm,
the full conditional density of ψ under LnD can be written as;

P1(ψ | y) ∝ ψ2n+a−1e
−ψ(b+

n∑
i=1

yi)
(1 + ψ)−n

n∏
i=1

(1 + yi) (38)

The following algorithm may be used to extract the samples from
P1(ψ | y).

1. Set the initial guess value {ψ(0)}.
2. Begin with r = 1.
3. Generate a new sample for ψ from the respective conditional posterior

densities by choosing any arbitrary proposal distribution as follows:
ψ(r) ∼ P1(y | ψ(r−1))

4. Repeat step 2-3 for all r = 1, 2, 3, . . . ,K(= 10000) times and obtain
posterior samples of size K for parameters ψ.

5. Using the above sequences obtained in step 4, we can obtain the
sequence Crpy.
After obtaining the posterior samples, the Bayes estimate of Cpy under
SELF is obtained as

ĈLnDpy = E(Cpy | y) ≈ 1

K −K0

K∑
r=K0+1

Crpy (39)
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Similarly we can get the Bayes estimate of Cpy under SELF for XgD and
AkD respectively, as follows

ĈXgDpy = E(Cpy | y) ≈ 1

K −K0

K∑
r=K0+1

Crpy (40)

ĈAkDpy = E(Cpy | y) ≈ 1

K −K0

K∑
r=K0+1

Crpy (41)

where K0 = 500 is the burn-in-period of Markov Chain.
6. Chen and Shao (1999) suggested the algorithm by which we can get the

100(1− α)% HPD credible interval for the index Cpy under considered
models.

5 Simulation and Discussions

Here, we have carried out a Monte Carlo simulation study to assess the perfor-
mances of the GPCIs Cpy under-considered models (LnD, XgD, AkD) using
classical methods (MLE, LSE, WLSE, MPSE) and the Bayesian method of
estimation. The classical estimators’ performances are evaluated in terms of
MSEs, whereas the Bayes estimators are evaluated in terms of simulated risk.
Besides, we have constructed BCIs (SB, PB, ST B, BCPB) for classical
methods of estimation and HPD credible intervals for the Bayesian method.
The performances of different CIs (BCIs and HPD) are assessed based on
their estimated AWs. “AW” is the ratio of the sum of the differences
between the upper and lower specification limits to the number of trials K
and a lower AW indicates better performance. we consider the sample sizes
n = 10, 20, 30, 50 and 100, for parameter (ψ) = 0.25, 0.75, 1.0, 1.25 with
(L, U) = (0.1, 6) and p0 = 0.95, respectively. For each design, samples
of each size n are drawn from the original sample and replicated 3,000
times. For Bayesian computation, we have considered the hyper-parameter
values of the informative prior for comparing the Bayes estimates under the
considered models. We have chosen the hyper-parameter values arbitrarily
as (a, b) = (0.06, 0.25), (0.56, 0.75), (1, 1), (1.56, 1.25) for different sets of
parameter values.

The estimate and corresponding MSEs of GPCI Cpy for LnD, XgD and
AkD are obtained through classical methods of estimation and reported in
Tables 2, 3, and 4, respectively. BCIs of GPCI Cpy for considered classical
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Table 2 True values and estimated values of Cpy by different methods of estimation along
with their MSEs for LnD

n
Cpy=0.8774483, ψ=0.5 Cpy=0.976662, ψ=0.75

MLE LSE WLSE MPSE MLE LSE WLSE MPSE

10
Est. 0.879789 0.865363 0.868285 0.855203 0.964209 0.983523 0.958614 0.958619

MSE 0.005885 0.008642 0.007083 0.005586 0.002215 0.089940 0.001800 0.001748

20
Est. 0.858109 0.851396 0.853165 0.840554 0.970680 0.967701 0.967992 0.964575

MSE 0.004977 0.006025 0.005685 0.004565 0.000495 0.000693 0.000677 0.000396

30
Est. 0.878808 0.876160 0.876407 0.866174 0.971949 0.969396 0.969704 0.967377

MSE 0.002393 0.002636 0.002467 0.002165 0.000409 0.000454 0.000426 0.000365

50
Est. 0.876891 0.874232 0.874623 0.868169 0.972035 0.972308 0.971977 0.968636

MSE 0.001509 0.001750 0.001623 0.001491 0.000137 0.000216 0.000201 0.000102

100
Est. 0.877121 0.874574 0.875038 0.872000 0.975294 0.974632 0.974821 0.973517

MSE 0.000697 0.000837 0.000777 0.000671 0.000580 0.000103 0.000092 0.000018

n
Cpy=0.9896466, ψ=1 Cpy=0.9780293, ψ=1.25

MLE LSE WLSE MPSE MLE LSE WLSE MPSE

10
Est. 0.978130 0.978673 0.976522 0.978587 0.968040 0.968913 0.968853 0.973779

MSE 0.000493 0.005604 0.000511 0.000672 0.000462 0.002232 0.000804 0.000428

20
Est. 0.984350 0.983335 0.983741 0.984690 0.973546 0.973813 0.974149 0.977258

MSE 0.000090 0.000131 0.000117 0.000081 0.000258 0.000293 0.000271 0.000182

30
Est. 0.985879 0.985132 0.985448 0.986250 0.974904 0.975145 0.975368 0.977817

MSE 0.000046 0.000064 0.000056 0.000040 0.000154 0.000192 0.000176 0.000115

50
Est. 0.987334 0.986917 0.987122 0.987655 0.976161 0.976158 0.976299 0.978245

MSE 0.000019 0.000025 0.000022 0.000015 0.000085 0.000106 0.000098 0.000070

100
Est. 0.988560 0.988400 0.988485 0.988769 0.977240 0.977284 0.977348 0.978470

MSE 0.000005 0.000007 0.000006 0.000004 0.000040 0.000052 0.000047 0.000036

methods are provided in Tables 5, 6, and 7 for LnD, XgD and AkD, respec-
tively. For all the models, Bayes estimates with risk and HPD credible interval
through M-H algorithm are given in Tables 8 and 9. From first three tables,
we observed that LnD performs better than XgD and AkD in terms of MSEs
under considered classical methods and for considered parameter setups
except for ψ = 1.25. MPSE gives the smallest MSEs among all classical
methods for almost all the considered setups and this trend is similar in
all considered models. Analysis of Tables 5, 6, and 7 depicts that among
all BCIs ST B gives the least AW under all classical methods and for all
models. Besides, MPSE performs better in calculating the AW of BCIs in
all models. Among considered models LnD gives batter AW for all most all
the considered parameter setups except for ψ = 1.25. In Bayesian estimation
using the M-H algorithm, LnD performs better as compared to Xgd and AkD
in terms of their smaller average risks, and the HPD credible interval is also
small for LnD as compared to other models for all parameter setups. From



Classical and the Bayesian Estimation of Process Capability Index 173

Table 3 True values and estimated values of Cpy by different methods of estimation along
with their MSEs for XgD

n
Cpy=0.7210604, ψ=0.5 Cpy=0.9105752, ψ=0.75

MLE LSE WLSE MPSE MLE LSE WLSE MPSE

10
Est. 0.729966 0.714715 0.713854 0.693307 0.903001 0.890752 0.891013 0.880434

MSE 0.014786 0.015694 0.015036 0.012326 0.004911 0.005714 0.005512 0.004085

20
Est. 0.728137 0.719640 0.719848 0.704688 0.905420 0.899643 0.899999 0.890818

MSE 0.007981 0.008916 0.008364 0.007333 0.002625 0.002965 0.002800 0.002389

30
Est. 0.727594 0.725333 0.725641 0.709470 0.906755 0.907548 0.906732 0.895123

MSE 0.004996 0.005767 0.005273 0.004665 0.000866 0.001503 0.000912 0.000864

50
Est. 0.722135 0.719436 0.719514 0.709635 0.909521 0.903733 0.905410 0.902261

MSE 0.002918 0.003425 0.003162 0.002701 0.000635 0.000915 0.000794 0.000575

100
Est. 0.721463 0.720774 0.720243 0.714225 0.909737 0.908302 0.908615 0.905389

MSE 0.001457 0.001679 0.001543 0.001319 0.000439 0.000591 0.000534 0.000419

n
Cpy=0.9685448, ψ=1 Cpy=0.9739773, ψ=1.25

MLE LSE WLSE MPSE MLE LSE WLSE MPSE

10
Est. 0.956544 0.949060 0.949947 0.947833 0.962388 0.960015 0.960755 0.963296

MSE 0.000768 0.001448 0.001333 0.000626 0.000425 0.000657 0.000601 0.000389

20
Est. 0.962373 0.958862 0.959469 0.957306 0.968104 0.966722 0.967289 0.969029

MSE 0.000409 0.000517 0.000470 0.000349 0.000123 0.000192 0.000167 0.000096

30
Est. 0.964096 0.961881 0.962379 0.960412 0.970038 0.969356 0.969712 0.970876

MSE 0.000193 0.000293 0.000263 0.000132 0.000060 0.000082 0.000072 0.000043

50
Est. 0.965869 0.964440 0.964783 0.963392 0.971533 0.970948 0.971211 0.972213

MSE 0.000102 0.000140 0.000129 0.000083 0.000028 0.000041 0.000036 0.000019

100
Est. 0.967249 0.966848 0.966984 0.965821 0.972791 0.972544 0.972685 0.973224

MSE 0.000043 0.000056 0.000051 0.000028 0.000010 0.000014 0.000012 0.000007

Tables 2 to 9, it has been observed that as the sample sizes increase, the MSEs,
and risks of all the estimators are decrease, which verifies the consistency of
the estimators that we have considered. Besides, the AWs of BCIs and HPD
credible intervals also decreased as we increased the sample size.

6 Data Analysis

In this section, we consider two real data sets and analyzed for illustrative
purposes. Descriptive statistics of the considered data sets are displayed in
Table 10. First, using the goodness of fit test, we verify whether the given
data sets confirm that they belong to the LnD, XgD, and AkD. Results of the
goodness of fit test are reported in Table 11. From Table 11, it is observed
that the p-values for both the data sets are much higher than the level of
significance (0.05), which indicates that the considered data sets are suitable
for the considered model.
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Table 4 True values and estimated values of Cpy by different methods of estimation along
with their MSEs for AkD

n
Cpy=0.6451183, ψ=0.5 Cpy=0.8907082, ψ=0.75
MLE LSE WLSE MPSE MLE LSE WLSE MPSE

10
Est. 0.665227 0.652336 0.652887 0.594764 0.881376 0.872612 0.872651 0.833047

MSE 0.015521 0.016210 0.015715 0.014408 0.006537 0.006923 0.006747 0.005484

20
Est. 0.627245 0.617239 0.618919 0.582421 0.889076 0.884923 0.885180 0.861044

MSE 0.008680 0.009645 0.009381 0.008176 0.002748 0.003307 0.003152 0.002358

30
Est. 0.649798 0.647868 0.647036 0.617526 0.887893 0.885007 0.885383 0.867529

MSE 0.004458 0.005178 0.004889 0.004307 0.001974 0.002366 0.002235 0.001892

50
Est. 0.646021 0.644475 0.644294 0.624784 0.889751 0.887847 0.888168 0.876628

MSE 0.002906 0.003442 0.003202 0.002371 0.001227 0.001432 0.001347 0.001199

100
Est. 0.648702 0.650901 0.650566 0.636540 0.890053 0.889191 0.889390 0.882843

MSE 0.001590 0.001980 0.001787 0.001573 0.000582 0.000682 0.000634 0.000488

n
Cpy=0.9747761, ψ=1 Cpy=0.9859814, ψ=1.25
MLE LSE WLSE MPSE MLE LSE WLSE MPSE

10
Est. 0.966257 0.962349 0.962575 0.948346 0.975280 0.974110 0.972375 0.973278

MSE 0.000931 0.001073 0.001035 0.000924 0.000590 0.001503 0.002012 0.000585

20
Est. 0.969145 0.966658 0.967025 0.958633 0.980810 0.980119 0.979125 0.981273

MSE 0.000408 0.000574 0.000538 0.000338 0.000090 0.000117 0.001085 0.000084

30
Est. 0.970646 0.968992 0.969319 0.963343 0.982414 0.982034 0.981788 0.983060

MSE 0.000273 0.000358 0.000334 0.000234 0.000048 0.000062 0.000457 0.000036

50
Est. 0.972129 0.971183 0.971401 0.967524 0.983865 0.983576 0.983716 0.984473

MSE 0.000151 0.000186 0.000173 0.000122 0.000019 0.000024 0.000022 0.000012

100
Est. 0.973401 0.972908 0.973051 0.970956 0.984961 0.984843 0.984905 0.985380

MSE 0.000067 0.000080 0.000074 0.000044 0.000006 0.000007 0.000006 0.000003

• Data set I: The data set represents the waiting time (in minutes) before
customer service in a bank the detailed description of the data set is
mentioned in Ghitany et al. (2008). Here, we assume that the upper and
lower specification limits L = 1 and U = 35.1 (each measurement in
minutes), respectively.

• Data set II: The second data set is regarding the first failure time (time in
months) of 20 electric carts used for internal transformation and delivery
in a large manufacturing facility. This data set discussed by Zimmer
et al. (1998) for the Burr XII reliability analysis. Here, we assume that
the upper and lower specification limits L = 0.95 and U = 52.1 (each
measurement in minutes), respectively.

For the considered data sets, we have calculated the point estimates of GPCI
Cpy using different classical estimation methods and the Bayesian estimation
method. The classical estimates of the considered index are reported in
Table 12 and the Bayes estimates (point and interval) of GPCI Cpy under
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Table 5 True values and AWs of Cpy of BCIs for LnD
Cpy

n
MLE LSE

ψ SB PB ST B BCPB SB PB ST B BCPB
10 0.294136 0.280690 0.209344 0.291864 0.656123 0.321227 0.207201 0.414685

0.877448 20 0.210582 0.205766 0.166374 0.211112 0.243901 0.236562 0.182931 0.233462

0.5 30 0.179497 0.177130 0.150699 0.180705 0.200585 0.194900 0.157803 0.193299

50 0.145064 0.143915 0.128103 0.145269 0.154407 0.152830 0.129211 0.150823

100 0.105432 0.104884 0.097071 0.105360 0.115049 0.114632 0.102558 0.114347

10 0.135649 0.126159 0.047982 0.115180 0.186165 0.172515 0.069833 0.142938

0.976662 20 0.089950 0.084236 0.040070 0.082346 0.138575 0.102258 0.047206 0.090716

0.75 30 0.073276 0.069389 0.037925 0.069920 0.077388 0.072993 0.033078 0.066440

50 0.051911 0.049812 0.029438 0.050939 0.059311 0.056615 0.030896 0.054296

100 0.035199 0.034268 0.023810 0.035099 0.036388 0.035104 0.021778 0.034802

10 0.093305 0.086358 0.022290 0.057988 0.115793 0.105702 0.022045 0.074261

0.989647 20 0.047465 0.043928 0.010436 0.031123 0.088019 0.056408 0.014554 0.040293

1 30 0.032484 0.030079 0.008168 0.021752 0.040860 0.037452 0.010238 0.029139

50 0.021916 0.017863 0.004590 0.012408 0.022963 0.021204 0.005139 0.014993

100 0.010215 0.009458 0.002727 0.006986 0.013411 0.012480 0.004046 0.010123

10 0.102690 0.096411 0.033154 0.072400 0.123670 0.114753 0.037203 0.090518

0.978029 20 0.066462 0.063186 0.031317 0.057623 0.097819 0.065840 0.028744 0.062803

1.25 30 0.047723 0.045609 0.024369 0.042230 0.055094 0.052678 0.027689 0.051649

50 0.035140 0.034105 0.020892 0.032773 0.037576 0.035928 0.020731 0.036242

100 0.025194 0.024784 0.018293 0.024416 0.028522 0.028001 0.020407 0.028377

Cpy
n

WLSE MPSE

ψ SB PB ST B BCPB SB PB ST B BCPB
10 0.310544 0.295794 0.203689 0.282632 0.285017 0.273379 0.202178 0.293050

0.877448 20 0.229858 0.224253 0.171414 0.222131 0.208656 0.203425 0.160410 0.203876

0.5 30 0.201329 0.198203 0.166035 0.196747 0.175773 0.172703 0.144598 0.179581

50 0.153786 0.151717 0.131460 0.151669 0.143901 0.142529 0.121321 0.145268

100 0.111167 0.110506 0.099566 0.110349 0.100833 0.101413 0.088174 0.103117

10 0.159903 0.148093 0.049612 0.116259 0.131197 0.118116 0.043433 0.114271

0.976662 20 0.101563 0.094851 0.039842 0.084764 0.081318 0.081223 0.039787 0.078596

0.75 30 0.076629 0.072511 0.034718 0.067302 0.068384 0.064629 0.034083 0.068826

50 0.058623 0.056142 0.032215 0.054542 0.050628 0.048607 0.026266 0.049518

100 0.036052 0.034921 0.022859 0.034456 0.033529 0.031570 0.023427 0.034690

10 0.116290 0.106394 0.026012 0.079890 0.090587 0.078179 0.021037 0.056182

0.989647 20 0.057771 0.053797 0.014953 0.040517 0.044052 0.040166 0.010065 0.031055

1 30 0.037875 0.035132 0.008797 0.024993 0.030070 0.002905 0.006557 0.019737

50 0.021367 0.019675 0.004449 0.013659 0.020338 0.016791 0.004503 0.011977

100 0.011966 0.011194 0.003378 0.008930 0.009796 0.009039 0.002362 0.006800

10 0.116114 0.106735 0.032383 0.087482 0.090236 0.083952 0.024682 0.070959

0.978029 20 0.069914 0.066120 0.030636 0.061823 0.055009 0.051701 0.026083 0.056654

1.25 30 0.056191 0.053826 0.030470 0.053858 0.039090 0.037047 0.021346 0.042029

50 0.039595 0.038334 0.024173 0.038526 0.030270 0.029027 0.019838 0.030790

100 0.026729 0.026320 0.019296 0.026591 0.023065 0.022606 0.017519 0.023049
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Table 6 True values and AWs of Cpy of BCIs for XgD
Cpy

n
MLE LSE

ψ SB PB ST B BCPB SB PB ST B BCPB
10 0.404213 0.396618 0.341336 0.372246 0.464587 0.448132 0.449843 0.432402

0.721060 20 0.306730 0.302914 0.298811 0.299697 0.348492 0.343875 0.352192 0.337741

0.5 30 0.256145 0.253767 0.263676 0.253334 0.289339 0.285637 0.304868 0.284427

50 0.202482 0.201293 0.219669 0.204139 0.222909 0.221130 0.206987 0.218780

100 0.143889 0.143036 0.139454 0.142729 0.159815 0.159838 0.155933 0.156733

10 0.230394 0.214949 0.137809 0.244377 0.284017 0.261854 0.179937 0.270438

0.910575 20 0.166718 0.160138 0.114500 0.164097 0.191347 0.181943 0.139160 0.192199

0.75 30 0.151999 0.149267 0.112405 0.142428 0.152699 0.147826 0.114533 0.145574

50 0.108212 0.106523 0.104902 0.123842 0.123989 0.122205 0.100959 0.110834

100 0.078546 0.078197 0.071296 0.080435 0.095715 0.095071 0.074667 0.089110

10 0.100545 0.091774 0.028866 0.075334 0.176356 0.162865 0.074564 0.140182

0.968545 20 0.072646 0.066961 0.023910 0.075030 0.107431 0.099626 0.034733 0.079362

1 30 0.054667 0.050676 0.021592 0.048380 0.074976 0.069483 0.026981 0.061665

50 0.035131 0.033110 0.017676 0.035334 0.053742 0.050940 0.024086 0.049720

100 0.027000 0.025704 0.015135 0.024920 0.025823 0.024285 0.013000 0.028615

10 0.113921 0.104872 0.034864 0.058311 0.124001 0.111816 0.033211 0.127577

0.973977 20 0.055423 0.050783 0.018254 0.043441 0.058817 0.053841 0.013526 0.047762

1.25 30 0.031787 0.030295 0.009966 0.026078 0.046213 0.042261 0.013871 0.036187

50 0.020585 0.019022 0.006952 0.019088 0.025613 0.023488 0.008151 0.017135

100 0.011518 0.010725 0.004295 0.010787 0.013442 0.012402 0.004393 0.012015

Cpy
n

WLSE MPSE

ψ SB PB ST B BCPB SB PB ST B BCPB
10 0.460088 0.446721 0.434481 0.427817 0.400653 0.383063 0.337199 0.369410

0.721060 20 0.344096 0.339964 0.391265 0.330106 0.297349 0.293130 0.252886 0.296504

0.5 30 0.273240 0.271835 0.238852 0.260739 0.255607 0.253129 0.251097 0.252395

50 0.217184 0.216057 0.222478 0.214956 0.194604 0.192556 0.194341 0.191107

100 0.157843 0.157920 0.164907 0.157340 0.147023 0.140212 0.124748 0.141724

10 0.302805 0.283702 0.197969 0.301453 0.219958 0.203534 0.123130 0.242078

0.910575 20 0.212119 0.204998 0.123383 0.164024 0.154204 0.158711 0.100125 0.151573

0.75 30 0.162883 0.158423 0.136942 0.170730 0.148111 0.143458 0.105396 0.140124

50 0.125488 0.123054 0.110634 0.130880 0.091369 0.099841 0.085208 0.109574

100 0.098558 0.098506 0.100252 0.092195 0.061364 0.068010 0.056557 0.067917

10 0.173100 0.157255 0.052056 0.146356 0.097198 0.090542 0.028151 0.074352

0.968545 20 0.098569 0.091090 0.039812 0.078501 0.071171 0.065810 0.023385 0.071768

1 30 0.054262 0.049740 0.026511 0.049619 0.045541 0.040886 0.020895 0.045946

50 0.052109 0.048848 0.024247 0.046091 0.034406 0.032117 0.013219 0.034688

100 0.029045 0.027754 0.018093 0.029052 0.026965 0.024875 0.014228 0.023341

10 0.115728 0.102848 0.033623 0.083063 0.111466 0.101528 0.028261 0.048911

0.973977 20 0.053489 0.049699 0.011128 0.034469 0.046053 0.045547 0.017531 0.035451

1.25 30 0.036628 0.034693 0.008564 0.030869 0.030033 0.029148 0.005871 0.025056

50 0.020442 0.019054 0.005336 0.018296 0.019779 0.018395 0.006049 0.018692

100 0.011054 0.009930 0.003267 0.012478 0.009584 0.008882 0.002277 0.004374
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Table 7 True values and AWs of Cpy of BCIs for AkD
Cpy

n
MLE LSE

ψ SB PB ST B BCPB SB PB ST B BCPB
10 0.437687 0.430605 0.411914 0.415991 0.461418 0.452105 0.402186 0.428910

0.645118 20 0.330898 0.327374 0.332497 0.324617 0.354265 0.349750 0.328684 0.345806

0.5 30 0.279391 0.278132 0.295479 0.276766 0.302593 0.300121 0.329704 0.298886

50 0.215426 0.214608 0.217570 0.214397 0.233573 0.232874 0.236927 0.231654

100 0.153630 0.153512 0.146728 0.152530 0.164612 0.163342 0.150733 0.162116

10 0.266976 0.250841 0.204355 0.285924 0.323048 0.307740 0.193237 0.261823

0.890708 20 0.209480 0.205526 0.137988 0.180488 0.219456 0.212140 0.183338 0.238014

0.75 30 0.169684 0.167224 0.148357 0.175352 0.198359 0.196279 0.160253 0.193397

50 0.134632 0.132693 0.112369 0.131351 0.145054 0.143826 0.112019 0.135153

100 0.093588 0.093092 0.090389 0.098186 0.099968 0.100422 0.089721 0.091989

10 0.115747 0.106237 0.045426 0.108971 0.153401 0.141536 0.054918 0.150901

0.974776 20 0.103980 0.098063 0.036447 0.067112 0.100915 0.094895 0.041952 0.085862

1 30 0.056523 0.052851 0.025361 0.057322 0.075928 0.071461 0.032226 0.062132

50 0.049763 0.047807 0.022174 0.035941 0.053144 0.050744 0.027869 0.049205

100 0.034374 0.033507 0.022178 0.031629 0.036033 0.035189 0.022769 0.032929

10 0.081450 0.073808 0.018443 0.051332 0.112037 0.100418 0.036216 0.104392

0.985981 20 0.047723 0.044160 0.013888 0.035435 0.052700 0.048457 0.018813 0.044577

1.25 30 0.024061 0.021944 0.004342 0.013169 0.041736 0.038384 0.015630 0.028089

50 0.016988 0.015716 0.003935 0.012054 0.017449 0.015978 0.003560 0.010694

100 0.009086 0.008278 0.002493 0.006470 0.011093 0.010151 0.002729 0.007426

Cpy
n

WLSE MPSE

ψ SB PB ST B BCPB SB PB ST B BCPB
10 0.476791 0.467952 0.468416 0.450657 0.427025 0.425572 0.403884 0.415798

0.645118 20 0.352671 0.348144 0.362391 0.344774 0.327929 0.322354 0.300892 0.327757

0.5 30 0.288292 0.285888 0.276887 0.282797 0.278749 0.274946 0.205127 0.266286

50 0.223318 0.222663 0.212974 0.219545 0.213691 0.212494 0.165830 0.209318

100 0.161620 0.161200 0.163585 0.160669 0.150806 0.150429 0.134732 0.146557

10 0.316434 0.301652 0.213860 0.297511 0.239781 0.238908 0.194207 0.264864

0.890708 20 0.220467 0.214655 0.174164 0.218879 0.200038 0.200559 0.129140 0.171952

0.75 30 0.171470 0.169755 0.146188 0.143276 0.160071 0.158180 0.120468 0.163569

50 0.136668 0.135182 0.117604 0.136248 0.122186 0.121402 0.107219 0.124179

100 0.103155 0.102816 0.064773 0.085772 0.083885 0.083734 0.069758 0.090797

10 0.075981 0.069321 0.010496 0.013689 0.109536 0.100336 0.039607 0.094399

0.974776 20 0.105981 0.096204 0.149310 0.097202 0.096568 0.090410 0.034790 0.058332

1 30 0.096203 0.093554 0.114821 0.054171 0.048971 0.048598 0.024529 0.047855

50 0.076862 0.075845 0.027831 0.037932 0.044006 0.042025 0.021365 0.034068

100 0.034664 0.033649 0.024008 0.034496 0.033836 0.033161 0.022179 0.031264

10 0.080546 0.073575 0.020598 0.013777 0.079109 0.070205 0.009976 0.032750

0.985981 20 0.069279 0.065396 0.123183 0.030402 0.045865 0.040532 0.010402 0.023541

1.25 30 0.046304 0.042530 0.026635 0.045790 0.020221 0.018201 0.004187 0.012621

50 0.044698 0.044740 0.089913 0.012600 0.016837 0.015361 0.002237 0.008470

100 0.021210 0.020895 0.039214 0.013721 0.008830 0.008271 0.002185 0.005409
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Table 8 True and Bayes estimate of Cpy along with the Risk under SELF through M-H
algorithm for LnD, XgD, and AkD

Model

Estimate (Est.) and Risk of Cpy through M-H algorithm
Cpy 0.8774483 0.976662 0.989647 0.978029
ψ 0.5 0.75 1 1.25
n Est. Risk Est. Risk Est. Risk Est. Risk

LnD

10 0.853024 0.004214 0.948373 0.004177 0.969128 0.000240 0.961106 0.000452
20 0.864481 0.003102 0.960922 0.001487 0.979044 0.000110 0.971526 0.000264
30 0.874767 0.001541 0.962843 0.001110 0.982419 0.000076 0.972255 0.000065
50 0.869895 0.001423 0.971615 0.000170 0.985448 0.000009 0.974809 0.000129
100 0.873286 0.000923 0.973450 0.000005 0.987620 0.000006 0.976895 0.000038
Cpy 0.7210604 0.9105752 0.968545 0.973977
ψ 0.5 0.75 1 1.25
n Est. Risk Est. Risk Est. Risk Est. Risk

XgD

10 0.756474 0.009039 0.926176 0.003752 0.953478 0.000297 0.942043 0.000613
20 0.767116 0.005587 0.930856 0.001934 0.963577 0.000290 0.952245 0.000238
30 0.790385 0.003173 0.937375 0.001010 0.967313 0.000066 0.950271 0.000069
50 0.785451 0.002058 0.945529 0.000096 0.969858 0.000010 0.954306 0.000046
100 0.789346 0.000894 0.948281 0.000199 0.972459 0.000004 0.955171 0.000043
Cpy 0.6451183 0.8907082 0.974776 0.985981
ψ 0.5 0.75 1 1.25
n Est. Risk Est. Risk Est. Risk Est. Risk

AkD

10 0.565347 0.017604 0.796856 0.011609 0.920499 0.004731 0.956472 0.000569
20 0.559024 0.008279 0.819741 0.007189 0.938336 0.001272 0.971138 0.000175
30 0.540392 0.006021 0.816193 0.004546 0.941741 0.000420 0.976528 0.000077
50 0.553668 0.003820 0.816866 0.002636 0.941253 0.001816 0.979522 0.000021
100 0.559860 0.001870 0.824001 0.001318 0.948663 0.000237 0.983446 0.000006

Table 9 True value of Cpy along with HPD Interval in terms of AWs for LnD, XgD and
AkD

HPD interval of Cpy through M-H algorithm

Model n
Cpy 0.877448 0.976662 0.989647 0.978029
ψ 0.5 0.75 1 1.25

LnD

10 0.286503 0.128196 0.069984 0.071591
20 HPD 0.216304 0.079287 0.034720 0.044250
30 (AWs) 0.177423 0.068828 0.023888 0.038950
50 0.145669 0.044250 0.014169 0.030460
100 0.103922 0.032680 0.007353 0.022453

n
Cpy 0.721060 0.910575 0.968545 0.973977
ψ 0.5 0.75 1 1.25

XgD

10 0.331779 0.131199 0.061547 0.072174
20 HPD 0.260186 0.101713 0.034209 0.046301
30 (AWs) 0.205779 0.081814 0.023311 0.042738
50 0.164615 0.058323 0.015419 0.033091
100 0.118632 0.041921 0.007601 0.025168

n
Cpy 0.645118 0.890708 0.974776 0.985981
ψ 0.5 0.75 1 1.25

AkD

10 0.491227 0.380292 0.195269 0.106567
20 HPD 0.366641 0.287847 0.127084 0.054387
30 (AWs) 0.302958 0.246231 0.109191 0.036017
50 0.239482 0.197394 0.094328 0.023970
100 0.172408 0.140885 0.065415 0.011301
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Table 10 Descriptive Statistics for the considered data sets
Data Sets Minimum Q1 median mean Q3 Maximum Sd CS CK

I 0.8 4.675 8.1 9.877 13.02 38.5 7.236 1.472 5.54
II 0.9 4.725 10.75 14.68 20.12 53 13.663 1.348 4.279

Table 11 Goodness of fit summary for considered data set

Data
Model

-Log
AIC BIC

K.S K.S

Sets Likelihood Statistics (p-value)

I

LnD 319.0374 640.0748 642.6800 0.0677 0.7495

XgD 132.7684 267.5367 270.1419 0.0625 0.8297

AkD 320.9646 643.9292 646.5344 0.1003 0.2672

II

LnD 74.5745 151.1490 152.1448 0.1254 0.8736

XgD 75.9128 153.8256 154.8214 0.1753 0.5146

AkD 79.1776 160.3552 161.3510 0.2071 0.3130

Table 12 Estimates of GPCIs Cpy using different methods of estimation

Data
Model ψ̂

Ĉpy

Sets MLE LSE WLSE MPSE

I

LnD 0.186571 1.000987 1.001030 1.001154 0.015165

XgD 0.263407 0.995442 0.993535 0.994805 0.001645

AkD 0.295277 1.035844 1.033791 1.034129 0.000834

II

LnD 0.128526 1.023422 1.023643 1.023759 1.021968

XgD 0.178251 1.022753 1.017489 1.018073 1.022919

AkD 0.201712 1.046044 1.044679 1.044851 1.044983

SELF are reported in Table 14. Besides, the confidence limits of BCIs using
different classical methods of estimation are reported in Table 13. From
Table 13, it was found that for data set I MLE and LnD give the best
performance as compared to other methods and distributions, respectively.
Similarly, for data set II, MPSE and XgD play the same role. In the different
BCIs, ST B for data set I and BCPB for data set II perform better. It is
observed that the width of the HPD is the minimum among the widths of
BCIs, which shows similar trends of inference as seen in the simulation study.
Specifically, LnD gives the least HPD for Data Set I and XgD gives the least
HPD for Data Set II. From Tables 12 and 14, we observe that the estimated
value of Cpy (under LnD and AkD) based on different methods of estimation
indicates that the process is almost capable, i.e., the process is satisfactory
from a capability point of view even though it is under statistical control.
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Table 13 Widths of BCIs for Cpy under different method of estimation for different models
Data set - I Data set - II

Est. Widths of Cpy for LnD
SB PB ST B BCPB SB PB ST B BCPB

MLE 0.007125 0.006571 0.000601 0.003240 0.025848 0.025948 0.000909 0.006820
LSE 0.007396 0.006559 0.000517 0.002880 0.023367 0.020624 0.000472 0.002329

WLSE 0.006622 0.005997 0.000268 0.001548 0.022409 0.019861 0.000240 0.001610
MPSE 0.006426 0.005871 0.000612 0.000599 0.000899 0.017821 0.000215 0.000158

Widths of Cpy for XgD
SB PB ST B BCPB SB PB ST B BCPB

MLE 0.013944 0.013003 0.007881 0.012974 0.015982 0.014896 0.000433 0.002391
LSE 0.017734 0.017636 0.011626 0.018388 0.032925 0.029829 0.010935 0.031626

WLSE 0.015281 0.014583 0.009184 0.014583 0.029070 0.025405 0.009756 0.026621
MPSE 0.014752 0.013251 0.008131 0.013258 0.024657 0.023337 0.000401 0.000388

Widths of Cpy for AkD
SB PB ST B BCPB SB PB ST B BCPB

MLE 0.035285 0.035945 0.030909 0.037434 0.078136 0.080280 0.050420 0.071256
LSE 0.041131 0.040834 0.028299 0.042009 0.071672 0.072382 0.049761 0.073138

WLSE 0.043836 0.044732 0.035815 0.042761 0.099522 0.100507 0.066170 0.100507
MPSE 0.038869 0.039531 0.030182 0.039732 0.057403 0.056532 0.049625 0.083674

Table 14 Bayes estimates of Cpy through M-H algorithm with corresponding risk and HPD
credible intervals

Model
Data set - I Data set - II

Bayes estimate and HPD interval
Bayes est risk HPD Bayes est risk HPD

LnD 1.000192 0.000002 0.000402 1.018533 0.000080 0.000289
XgD 0.990712 0.000020 0.001643 1.019016 0.000020 0.000131
AkD 1.036033 0.000002 0.001532 1.041075 0.000058 0.000550

7 Conclusions

In this research, we looked at four traditional methods of GPCI Cpy point
estimate (MLE, LSE, WLSE, and MPSE) as well as the Bayesian method
(M-H algorithm) and demonstrated the proposed methods with two real-life
instances. We conducted simulation research to compare these strategies with
different sample sizes and different combinations of the unknown parame-
ters because it is not possible to compare these methods conceptually. For
the GPCI Cpy, we examined BCIs and HPD intervals in addition to point
estimation.

Simulation study results show that the performance of the M-H algorithm
is satisfactory. Further, simulation results suggest that for almost all the cases,
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Bayes estimates perform better than classical methods of estimation. It’s
worth noting that the prior distributions’ hyper-parameters must be care-
fully chosen. Among the other conventional methods of estimation, MPSE
produces the best results in terms of MSEs for practically all sample sizes
and parameter values. Among the considered BCIs, ST B performed better
in terms of AWs. Also, the AWs of HPD under SELF are smaller than
considered BCIs. The data analysis also echoed the similar pattern of results
that we have observed in the simulation study. As a result of the entire
analysis, we can conclude that LnD outperforms XgD and AkD for almost
all paremeter values except ψ = 1.25, and that the performance level of
the investigated distribution is LnD > XgD > AkD. I believe that if this
research approach works well, the industries will be able to use it in the future
to evaluate the capabilities of any process distribution.
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