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Abstract

The present paper, discusses classical and Bayesian estimation of unknown
combined parameters of two different log-logistic models with common
shape parameters and different scale parameters under a new type of censor-
ing scheme known as joint type II censoring scheme. Maximum likelihood
estimators are derived. Bayes estimates of parameters are proposed under
different loss functions. Classical asymptotic confidence intervals along with
the Bayesian credible intervals and Highest Posterior Density region are also
constructed. Markov Chain Monte Carlo approximation method is used for
simulating the theoretic results. Comparative assessment of the classical and
the Bayes results are illustrated through a real archived dataset.
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1 Introduction

Identical items produced on different production lines can be classified as
having a common shape parameter. However, each production line/time can
differ in scale parameter. Thus, within heterogeneous larger groups, the
sub population time lines can be regarded as homogeneous with similar
shape parameter while allowing variation in scale, which may be caused by
shift in production level or by changing production time trend. Inferences
of common shape parameter event have been studied by Nelson (2003,
2009), Panza and Vargas (2016), Tripathy and Nagamani (2017) and Chehade
et al. (2020).

In any life testing experiment, when the experimenter could not record
complete lifetime for all the test items due to time, cost or other limitations,
then censored samples are obtained. One of the main motivations for using
censoring is reduction of the total experimental time and its associated cost.
In the conventional type II censoring scheme, a single sample of pre-defined
size from the life-test is obtained. Statistical analysis usually involves various
types of one-sample censored data. However, under certain situations the
experimenter aims to have simultaneous assessment of different samples.
In many situations, two different samples arising from the same model are
required to be tested which are combined and subsequently ordered prior to
analysis, after getting a desired number of failures. This mechanism termed
as joint Type-II censoring scheme (JCS) promulgated by Balakrishnan and
Rasouli (2008) enables comparison of sample lifetimes of products coming
from different sources within the same facility. Suppose that similar products
are being produced on two distinct production belts under the same facility.
Under JCS, two independent samples selected from each such production line
are simultaneously placed on the life-test in order to save time and capital
resources such that the life-test terminates when a certain number of failures
(say, r) occur. Balakrishnan and Rasouli (2008) developed likelihood infer-
ence for the parameters of two exponential populations, Abdel-Aty (2017)
studied two exponential distributions, Al-Matrafi & Abd-Elmougod (2017)
gave statistical inferences for two Rayleigh distributions, Ashour & Abo-
Kasem (2014) worked with two Weibull distributions. Bayesian inferences
for some other distributions under JCS have been undertaken by Ashour and
Abo-Kasem (2014), Shafay et al. (2014) and Balakrishnan and Su (2015)
among others.

JCS is described as follows: Let X1, X2, . . . , Xm be m iid random
variables with the probability density function (pdf ) f1(x) and cumulative
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density function (cdf ) F1(x) and Y1, Y 2, . . . , Yn be n iid random variables
with pdf f2(x) and cdf F2(x). Let r be a pre-fixed integer denoting that the
experiment will be stopped after recording the first r failures. Further, let
W1 ≤ W2 ≤ · · · ≤ WN be the collective ordered set of N(= m + n)
random variables {X1, X2, . . . , Xm, . . . Y1, Y 2, . . . , Yn}. Then the observ-
able dataset under joint type II censoring scheme will be (W, δ) where
W = (W1,W 2, . . . ,Wr) and δ = (δ1, δ2, . . . , δr) such that δ represents
an indicator variable with the following demarcation,

δi =

{
1 if Wi ∈ X
0 if Wi ∈ Y

This paper considers Log-logistic distribution (LLD) as a life time model,
under JCS, for survival and reliability studies. Maximum likelihood estimates
(MLE) of unknown parameters are obtained in Section 2. Construction of
Asymptotic Confidence Interval (ACI) based on the asymptotic normality of
the MLEs is also undertaken. In Section 3, we consider parameter estima-
tion under Bayesian setup along with the construction of credible intervals.
Bayes parametric estimates are derived using the following specifications:
Squared error loss function (SELF), general entropy loss function (GELF),
linear exponential loss function (LINEX) and non-linear exponential loss
function (NLINEX) assuming non-informative priors for scale parameters
and gamma prior for the common shape parameter. A Markov chain Monte
Carlo (MCMC) simulation has been conducted under Section 4. In Section 5,
a real data set has been examined to illustrate the proposed theoretical esti-
mation methods. ACI and BCI are compared for efficiency with the bootstrap
confidence intervals.

2 Classical Estimation

Let r be a prefixed integer. Let the lifetime distribution have respective
pdfs f1(x; Θ1) and f2(x; Θ2) with the corresponding cdfs F1(x; Θ1) and
F2(x; Θ2), where Θ1 and Θ2 represent a vector of parameters. Let Pr =∑r

i=1 δi be the number of observed X-failures in W and Qr =
∑r

i=1(1 −
δi) = r− Pr be the number of observed Y-failures in W. Then the likelihood
of (W, δ) is given by

L(Θ1,Θ2,W, δ) =
m!n!

(m− pr)!(n− qr)!

r∏
i=1
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× [{f1(wi)}δi{f2(wi)}1−δi ]

× {1− F1(wr)}(m−pr){1− F2(wr)}(n−qr) (1)

LLD can be considered as a combination of the Gompertz and Gamma
distribution with a restriction of unit mean and variance. It is also known
as Fisk distribution in economics (Fisk, 1961). Owing to its non-monotonic
and decreasing hazard rate function, LLD has been widely used in several life
time analyses (Shoukari et al., 1988; Collett, 2003; Ashkar and Mandi, 2006).
Its various statistical characteristics have been studied by Reath et al. (2018),
Vroon (1987), Singh and Guo (1995), Ahsanullah, and Alzaatreh (2018) and
many more. Bayesian Estimation of parameters of LLD was considered by
Guure (2015) and Al-Shomrani et al. (2016), Sewailen and Baklizi (2019)
under different censoring scheme. The pdf and cdf of LLD is defined as

f(x;α, β) =

(
β
α

) (
x
α

)β−1{
1 +

(
x
α

)β}2 for x, α, β > 0 (2)

F (x) =
1

1 +
(
x
α

)−β (3)

When two similar kinds of items or products are put on test, we expect
that the underlying distributions have some common properties. To mirror
such situation, in this paper, we assume that the units or items from two
different sample groups follow LLD with the common shape parameter
but possibly different scale parameters. Therefore, assuming two different
models as LL(α1, β) and LL(α2, β) the likelihood function can be written as

L (α1, α2, β, w, δ) ∝
r∏
i=1



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

(4)
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Corresponding log-likelihood function can be written as

lnL = const+
r∑
i=1

δi log


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2



+
r∑
i=1

(1− δi) log


(
β
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2



+ (m− pr) log

 1

1 +
(
wr
α1

)β
+ (n− qr) log

 1

1 +
(
wr
α2

)β


(5)

There are several classical estimators available in the literature. In this
paper, we obtain estimates of unknown parameters using principle of max-
imum likelihood estimation. Let λ be the unknown parameters, then any
function λ̂(x) of sample values which maximizes the likelihood function
L(x1, x2, . . . , xn), will be the mle of λ. Since logarithm is non-decreasing
monotonic function, it will be convenient to work on log-likelihood function.
The value of parameter that maximizes the log-likelihood will be obtained
using maxima and minima. Thus,

α̂1, the mle of α1, is the value for which

∂ lnL

∂α1
= 0 and

∂2 lnL

∂α2
1

∣∣∣∣
α1=α̂1

< 0.

α̂2, the mle of α2, is the value for which

∂ lnL

∂α2
= 0 and

∂2 lnL

∂α2
2

∣∣∣∣
α2=α̂2

< 0.

β̂, the mle of β, is the value for which

∂ lnL

∂β
= 0 and

∂2 lnL

∂β2

∣∣∣∣
β=β̂

< 0.
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Equations of the first partial derivatives of log-likelihood function with
respect to individual parameters are analogous to the system of non-linear
equations and therefore cannot be solved explicitly as these equations do not
have solutions in closed form. Therefore, numerical approximation method
of Newton-Raphson is used to evaluate the MLEs.

The asymptotic variance-covariance matrix is needed to construct the
confidence intervals. This matrix is obtained by taking inverse of the Fisher’s
information matrix I(λ) (Aldrich, 1997). Let λ̂ = (α̂1, α̂2, β̂) denote the mle
of λ = (α1, α2, β). The asymptotic normality result is stated as follows to
obtain the confidence interval:

√
n(λ̂− λ) −→ N(0, I−1(λ))

In other words, under certain regularity conditions, λ̂ = (α̂1, α̂2, β̂)
is approximately normal with mean (α1, α2, β) and covariance matrix
I−1(α1, α2, β) where

I(λ) = − 1

n
E



∂2 lnL

∂α2
1

∂2 lnL

∂α1∂α2

∂2 lnL

∂α1∂β

∂2 lnL

∂α2∂α1

∂2 lnL

∂α2
2

∂2 lnL

∂α2∂β

∂2 lnL

∂β∂α1

∂2 lnL

∂β2∂α2

∂2 lnL

∂β22


Such that the matrix entries are defined as

∂2 lnL

∂α2
1

=

r∑
i=1

δi
∂2

∂α2
1

log


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2



+
r∑
i=1

(1− δi)
∂2

∂α2
1

log


(
β
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2
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+ (m− pr)
∂2

∂α2
1

log

 1

1 +
(
wr
α1

)β


+ (n− qr)
∂2

∂α2
1

log

 1

1 +
(
wr
α2

)β
 (6)

∂2 lnL

∂α2
2

=
r∑
i=1

δi
∂2

∂α2
2

log


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2



+
r∑
i=1

(1− δi)
∂2

∂α2
2

log


(
β
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2



+ (m− pr)
∂2

∂α2
2

log

 1

1 +
(
wr
α1

)β


+ (n− qr)
∂2

∂α2
2

log

 1

1 +
(
wr
α2

)β
 (7)

∂2 lnL

∂β2
=

r∑
i=1

δi
∂2

∂β2
log


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2



+

r∑
i=1

(1− δi)
∂2

∂β2
log


(
β
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2
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+ (m− pr)
∂2

∂β2
log

 1

1 +
(
wr
α1

)β


+ (n− qr)
∂2

∂β2
log

 1

1 +
(
wr
α2

)β
 (8)

∂2 lnL

∂α1∂β
=

r∑
i=1

δi
∂2

∂α1∂β
log


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2



+
r∑
i=1

(1− δi)
∂2

∂α1∂β
log


(
β
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2



+ (m− pr)
∂2

∂α1∂β2
log

 1

1 +
(
wr
α1

)β


+ (n− qr)
∂2

∂α1∂β
log

 1

1 +
(
wr
α2

)β
 (9)

∂2 lnL

∂α1∂α2
=

r∑
i=1

δi
∂2

∂α1∂α2
log


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2



+

r∑
i=1

(1− δi)
∂2

∂α1∂α2
log


(
β
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2
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+ (m− pr)
∂2

∂α1∂α2
log

 1

1 +
(
wr
α1

)β


+ (n− qr)
∂2

∂α1∂α2
log

 1

1 +
(
wr
α2

)β
 (10)

∂2 lnL

∂β∂α2
=

r∑
i=1

δi
∂2

∂β∂α2
log


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2



+
r∑
i=1

(1− δi)
∂2

∂β∂α2
log


(
β
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2



+ (m− pr)
∂2

∂β∂α2
log

 1

1 +
(
wr
α1

)β


+ (n− qr)
∂2

∂β∂α2
log

 1

1 +
(
wr
α2

)β
 (11)

The exact mathematical expression for I(λ) is difficult to obtain in a
closed form as its elements are intractable in nature. Since λ is unknown,
using uniqueness property of mle, we estimate I−1(λ) by I−1(λ̂) which
provides ACIs for the unknown parameters α1, α2, β as(

α̂1 − z ξ
2

√
var(α̂1), α̂1 + z ξ

2

√
var (α̂1)

)
,(

α̂2 − z ξ
2

√
var (α̂2), α̂2 + z ξ

2

√
var (α̂2)

)
and(

β̂ − z ξ
2

√
var
(
β̂
)
, β̂ + z ξ

2

√
var
(
β̂
))
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where var(α̂1), var(α̂2) and var(β̂) are the estimated variances of α̂1, α̂2, β̂

respectively given by the main diagonal elements of I−1(λ̂) and z ξ
2

represents

the right tail probability for standard normal distribution.

3 Bayesian Estimation

Any apriori information about parameters can be modelled using a prior dis-
tribution. In Bayesian paradigm, choosing such prior distribution is subjective
which totally depends on past experience or personal beliefs of the experi-
menter. Several priors are suggested by different authors. Informative prior
should be used in case of availability of any prior information about the con-
cerned parameters (Berger, 1985). A situation where no or little information is
available, a better choice is to use non-informative invariant prior as proposed
by Jeffreys (1967). For scale parameter, we have used Jeffreys’ weak prior as
Jeffreys’ prior is widely used due to its invariance property under one-to-
one transformations of parameters. The shape parameter controls the shape
of the distribution. Gamma (a,b) distribution is a flexible distribution which
can assume variety of shapes. It has, therefore, been used as a prior, in the
present paper to represent the shape parameter. Assuming the independence
of the scale and shape parameters, the joint prior distribution of α1, α2, β can
be written as

Π (α1, α2, β) =
ab

α1α2Γb
βb−1 exp (−aβ) ;α1, α2, β, a, b > 0 (12)

where a, b are hyper parameters. Joint posterior distribution of α1, α2, β is

Π (α1, α2, β|x) ∝ L (x|α1, α2, β) Π (α1, α2, β)

∝
r∏
i=1



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) (13)
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Marginal posterior distribution of α1

Π (α1|x, α2, β)

∝
∫∫ r∏

i=1



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα2dβ (14)

Marginal posterior distribution of α2

Π (α2|x, α1, β)

∝
∫∫ r∏

i=1



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dβ (15)

Marginal posterior distribution of β

Π (β|x, α1, α2)

∝
∫∫ r∏

i=1



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi
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×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2 (16)

Next we derive expressions of Bayes estimates under symmetric and
asymmetric loss functions. SELF is taken as symmetric loss function. GELF
(Calabria and Pulcini, 1996), LINEX (Varian, 1975) and NLINEX (Islam et.
al 2004) are taken as asymmetric loss functions.

Bayes estimate of unknown parameters under SELF

It is a symmetric loss function. Underestimation and overestimation both
are given equal weights under SELF. For an unknown parameterλ, SELF is
defined as L(λ̂, λ) = (λ̂ − λ)2 where λ̂ is the estimate of λ. Bayes estimate
under SELF is

λ̂SELF = Eλ(λ) (17)

• For unknown scale parameters

α̃1BS ∝
∫∫∫

α1

r∏
i=1

×



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ (18)

α̃2BS ∝
∫∫∫

α2

r∏
i=1
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×



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ (19)

• For unknown shape parameter

β̃BS ∝
∫∫∫

β

r∏
i=1



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ (20)

Bayes estimate of unknown parameters under GELF

GELF is defined as

L(λ̂, λ) ∝

(
λ̂

λ

)q
− q ln

(
λ̂

λ

)
− 1

The Bayes estimator under GELF is

λ̂GELF = [Eλ(λ−q)]
− 1
q (21)

provided Eλ(λ−q) exists and is finite. q > 0 represents overestimation and
q < 0 represents underestimation.
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• For unknown scale parameters

(α̃1BG)−q ∝
∫∫∫

α−q
1

r∏
i=1

×



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ (22)

(α̃2BG)−q ∝
∫∫∫

α−q
2

r∏
i=1

×



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ (23)

• For unknown shape parameter(
β̃BG

)−q
∝
∫∫∫

β−q
r∏
i=1
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×



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ (24)

Bayes estimate of unknown parameter under LINEX

LINEX loss function is defined as

L(λ̂, λ) ∝ exp(c(λ̂− λ))− c(λ̂− λ)− 1

The constant c determines the shape of the loss function. The Bayes
estimator under the LINEX loss function is

λ̂LINEX = −1

c
lnEλ[exp(−cλ)] (25)

provided Eλ[exp(−cλ)] exists and is finite. c > 0 represents overestimation
and c < 0 represents underestimation.

• For unknown scale parameters
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α̃2BLL ∝
1

c
ln

∫∫∫
e−cα2

r∏
i=1

×



(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

×

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

× ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ (27)

• For unknown shape parameter
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Bayes estimate of unknown parameter under NLINEX

NLINEX is defined as

L(∆) = k[{exp(c∆)− c∆− 1}+ c∆2]; ∆ = λ̂− λ, k > 0, c > 0 (29)

The Bayes estimates under NLINEX will be

λ̂NLINEX = − 1

(c+ 2)
[lnEλ{exp(−cλ)} − 2Eλ(λ)] (30)

• For unknown scale parameters
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α̃2BNL ∝
1

(c+ 2)

×



ln

∫∫∫
e−cα2

r∏
i=1


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ

+2

∫∫∫
α2

r∏
i=1


(
β
α1

)(
wi
α1

)β−1

{
1 +

(
wi
αi

)β}2


δi

(
β2
α2

)(
wi
α2

)β−1

{
1 +

(
wi
α2

)β}2


1−δi

 1

1 +
(
wr
α1

)β


(m−pr) 1

1 +
(
wr
α2

)β


(n−qr)

ab

α1α2Γb
βb−1 exp (−aβ) dα1dα2dβ


(32)



Bayesian Estimation for the Two Log-Logistic Models 247

• for unknown shape parameter
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4 Markov Chain Monte Carlo Approximation

When the expressions for posterior distributions and Bayes estimates of
unknown parameters cannot be solved analytically, a usual procedure is to use
MCMC techniques to approximate the complicated integrals. MCMC con-
sists of two methods, namely the Gibbs sampler which is used for simulating
from the full conditional posterior distributions and the Metropolis-Hastings
algorithms (Metropolis et al., 1953; Hastings, 1970) generates samples from
an arbitrary distribution.

The following iterative algorithm is proposed to simulate Bayes
estimators:

Step 1: Start with an initial value ω0 = (α10, α20, β0) and set i = 0.

Step 2: Generate a candidate point α∗
1, α

∗
2, β

∗ from the respective proposal
distributions α∗

1 ∼ N(α̂1, I
−1(ω̂)) , α∗

2 ∼ N(α̂2, I
−1(ω̂)), β∗ ∼ N(β̂,

I−1(ω̂)) and a point u from U (0, 1).
Then

α
(i+1)
1 =

{
α∗
1 with probability κ1(α

∗
1, α

(i)
1 ) for κ1 ≤ u

α
(i)
1 with probability 1− κ1(α∗

1, α
(i)
1 ) for κ1 > u

α
(i+1)
2 =

{
α∗
2 with probability κ2(α

∗
2, α

(i)
2 ) for κ2 ≤ u

α
(i)
2 with probability 1− κ2(α∗

2, α
(i)
2 ) for κ2 > u

β(i+1) =

{
β∗ with probability κ3(β

∗, β(i)) for κ3 ≤ u
β(i) with probability 1− κ3(β∗, β(i)) for κ3 > u

Step 3: Set i = i+ 1

Step 4: Repeat steps 2–3. N = 10000 times, in order to generate the sample
observations ω(1), ω(2), . . . ω(N) = (α

(1)
1 , α

(1)
2 , β(1)), (α

(2)
1 , α

(2)
2 , β(2)), . . .

(α
(N)
1 , α

(N)
2 , β(N)).

The MCMC algorithm has rapid convergence when the starting value is
chosen such that it is in the close neighbourhood of the true value. This is
achieved by picking the initial values based on some previous study, experi-
ence or some pre-defined criterion. Since initial values are chosen arbitrarily,
therefore to revoke its effect, initial M simulated variates are discarded. An
approximate posterior sample which is used for further Bayesian analysis is
then taken as the remaining residual set corresponding to the position i such
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that i = M + 1, . . . N , for sufficiently large N. Approximate Bayes estimates
of the unknown parameters under SELF are given by

α̃1BSMC =
1

N −M

N∑
i=M+1

α1i

α̃2BSMC =
1

N −M

N∑
i=M+1

α2i

β̃BSMC =
1

N −M

N∑
i=M+1

βi (34)

Also, the approximate Bayes estimates of the unknown parameters under
GELF are given by

α̃1BGMC =

(
1

N −M

N∑
i=M+1

α−q
1i

)− 1
q

α̃2BGMC =

(
1
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i=M+1

α−q
2i

)− 1
q

β̃BGMC =

(
1

N −M

N∑
i=M+1

β−qi

)− 1
q

(35)

The approximate Bayes estimates of the unknown parameters under
LINEX are given by

α̃1BLMC = −1

c

(
1

N −M

N∑
i=M+1

e−cα1i

)

α̃2BLMC = −1

c

(
1

N −M

N∑
i=M+1

e−cα2i

)

β̃BLMC = −1

c

(
1

N −M

N∑
i=M+1

e−cβi

)
(36)
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The approximate Bayes estimates of the unknown parameters under
NLINEX are given by

α̃1BNMC = − 1

(c+ 2)

×

[(
1

N −M

N∑
i=M+1

e−cα1i

)
+ 2

(
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)]
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)
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)]

β̃BNMC = − 1

(c+ 2)

×

[(
1

N −M

N∑
i=M+1

e−cβi

)
+ 2

(
1

N −M

N∑
i=M+1

βi

)]
(37)

5 Simulation Study

In this section, estimation under JCS for simulated data from LLD is under-
taken by taking initial values of unknown parameters as α1 = 0.8, β =
1.1, α2 = 0.5. Assuming a weak prior with mean 0.5 for the shape parameter,
we subsequently fix hyper parameters as a = 1, b = 2 OpenBUGS software
is used for generating 10,000 posterior samples using MCMC iteration such
that the first 2,000 samples are dropped from computation towards burn-
in. We have taken 30 iteration of this procedure to get the mean square
errors of the estimates along with 10,000 such replications. This results in
30x 10,000 sample frames on which computations for Table No. 1–5 are
based. Approximate Bayes estimates under MCMC are then evaluated using
(34)–(37).

Estimated values and mean squared errors (MSEs) of MLE and Bayes
estimates under different loss functions for unknown scale parameter α1

are tabulated in Table 1. Similarly, estimated values and MSEs of MLEs
and Bayes estimates for unknown parameters α2, β are given in Tables 2–3
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Table 1 MLEs and Bayes estimates of α1 for different choices of m,n and r
Bayes Estimates

MLE SELF GELF LINEX NLINEX

(m,n) r α̂1 α̃1BSMC α̃1BGMC1
α̃1BGMC2

α̃1BLMC1
α̃1BLMC2

α̃1BNMC

(30,35) 55 Est. 0.5984 0.5847 0.5748 0.5885 0.5805 0.5894 0.5826

MSE 0.0223 0.0464 0.0508 0.0448 0.0482 0.0444 0.0473

60 Est. 0.6898 0.5410 0.5373 0.5425 0.5395 0.5427 0.5403

MSE 0.0525 0.0671 0.0690 0.0664 0.0679 0.0663 0.0675

65 Est. 0.8077 0.9651 0.9237 0.9791 0.9391 0.9937 0.9521

MSE 0.1227 0.0276 0.0156 0.0324 0.0196 0.0380 0.0234

(35,30) 55 Est. 0.6019 0.6039 0.5917 0.6085 0.5986 0.6097 0.6013

MSE 0.0209 0.0385 0.0434 0.0367 0.0406 0.0363 0.0395

60 Est. 0.6886 0.6120 0.5987 0.6170 0.6062 0.6184 0.6091

MSE 0.0498 0.0354 0.0406 0.0336 0.0376 0.0331 0.0365

65 Est. 0.815 0.6432 0.6238 0.6504 0.6343 0.6532 0.6387

MSE 0.1216 0.0248 0.0311 0.0226 0.0276 0.0218 0.0262

(35,35) 60 Est. 0.6073 0.5898 0.5786 0.5941 0.5850 0.5953 0.5874

MSE 0.0227 0.0442 0.0491 0.0424 0.0463 0.0420 0.0453

65 Est. 0.6963 0.6284 0.6107 0.6352 0.6204 0.6376 0.6244

MSE 0.0544 0.0295 0.0359 0.0273 0.0324 0.0265 0.0309

70 Est. 0.8075 0.6969 0.6678 0.7078 0.6826 0.7135 0.6897

MSE 0.1149 0.0108 0.0176 0.0088 0.0139 0.0078 0.0123

Table 2 MLEs and Bayes estimates of α2 for different choices of m,n and r
Bayes Estimates

MLE SELF GELF LINEX NLINEX

(m,n) r α̂2 α̃2BSMC α̃2BGMC1 α̃2BGMC2 α̃2BLMC1 α̃2BLMC2 α̃2BNMC

(30,35) 55 Est. 0.4151 0.4361 0.4332 0.4372 0.4352 0.4371 0.4357

MSE 0.3470 0.0041 0.0045 0.0040 0.0042 0.0040 0.0042

60 Est. 0.4561 0.4507 0.4452 0.4528 0.4489 0.4526 0.4498

MSE 0.3023 0.0025 0.0030 0.0023 0.0026 0.0023 0.0026

65 Est. 0.5104 0.4617 0.4545 0.4644 0.4592 0.4643 0.4604

MSE 0.2484 0.0015 0.0021 0.0013 0.0017 0.0013 0.0016

(35,30) 55 Est. 0.4180 0.5204 0.5032 0.5269 0.5139 0.5276 0.5172

MSE 0.3446 0.0005 0.0001 0.0009 0.0003 0.0009 0.0004

60 Est. 0.4598 0.4451 0.4407 0.4468 0.4437 0.4467 0.4444

MSE 0.2993 0.0030 0.0035 0.0028 0.0032 0.0029 0.0031

65 Est. 0.5122 0.5845 0.5563 0.5950 0.5728 0.5978 0.5787

MSE 0.2481 0.0073 0.0033 0.0092 0.0054 0.0097 0.0063

(35,35) 60 Est. 0.4202 0.4576 0.4513 0.4600 0.4555 0.4599 0.4565

MSE 0.3415 0.0019 0.0024 0.0017 0.0020 0.0017 0.0019

65 Est. 0.4554 0.6113 0.5834 0.6213 0.5996 0.6243 0.6054

MSE 0.3030 0.0126 0.0071 0.0149 0.0101 0.0157 0.0113

70 Est. 0.5032 0.4879 0.4754 0.4927 0.4834 0.4929 0.4856

MSE 0.2557 0.0002 0.0006 0.0001 0.0003 0.0001 0.0003
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Table 3 MLEs and Bayes estimates of β for different choices of m,n and r
Bayes Estimates

MLE SELF GELF LINEX NLINEX

(m,n) r β̂ β̃BSMC β̃BGMC1 β̃BGMC2 β̃BLMC1 β̃BLMC2 β̃BNMC

(30,35) 55 Est. 2.0146 2.1833 2.1441 2.1962 2.1283 2.2412 2.1558

MSE 0.3449 1.1741 1.0909 1.2023 1.0581 1.3034 1.1153

60 Est. 1.8344 1.7671 1.7349 1.7778 1.7303 1.8063 1.7487

MSE 0.1756 0.4457 0.4039 0.4601 0.3979 0.4995 0.4215

65 Est. 1.5397 1.7634 1.7363 1.7724 1.7324 1.7957 1.7479

MSE 0.0384 0.4405 0.4053 0.4525 0.4003 0.4844 0.4202

(35,30) 55 Est. 2.0254 1.8381 1.8041 1.8494 1.7978 1.8808 1.8180

MSE 0.3690 0.5453 0.4963 0.5621 0.4874 0.6102 0.5160

60 Est. 1.8365 1.8831 1.8508 1.8939 1.8437 1.9253 1.8634

MSE 0.1825 0.6139 0.5643 0.6309 0.5537 0.6818 0.5834

65 Est. 1.5427 1.5479 1.5219 1.5565 1.5217 1.5751 1.5348

MSE 0.0385 0.2009 0.1784 0.2087 0.1782 0.2261 0.1894

(35,35) 60 Est. 1.9796 1.8622 1.8302 1.8726 1.8236 1.9017 1.8429

MSE 0.3039 0.5812 0.5335 0.5973 0.5240 0.6431 0.5522

65 Est. 1.8159 1.6104 1.5846 1.6189 1.5833 1.6383 1.5969

MSE 0.1558 0.2609 0.2351 0.2696 0.2339 0.2902 0.2472

70 Est. 1.5349 1.4918 1.4693 1.4994 1.4698 1.5150 1.4808

MSE 0.0390 0.1538 0.1366 0.1598 0.1370 0.1726 0.1453

respectively. Table 4 represents lower limit (LL), upper limit (UL) and
average length (AL) of ACI and BCI of the unknown parameters. Similarly,
Table 5 gives LL, UL and AL 89% HPD and 95% HPD confidence intervals
of parameters. The following results are observed:

I. For the unknown scale parameter α1, MLEs and Bayes estimates under
different loss functions are not comparable as they do not show any
unidirectional trend. For some combinations, MLEs have lower MSEs
while for other combinations, Bayes estimates show lower MSEs.

II. For the unknown scale parameter α2, Bayes procedure gives better
estimates than MLEs as they have lower MSEs. Among Bayes estimates,
GELF and LINEX give estimates that are closer to true values under the
overestimation case.

III. For the common unknown shape parameter β , MLEs give estimates
with higher precision than Bayes estimates. Among different Bayes
estimates, LINEX under underestimation gives more precise estimates
though GELF under underestimation compete quite well with them.
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Table 4 LL, UL and AL of ACI and BCI of all parameters
(m,n) r ACI for α1 ACI for α2 ACI for β BCI for α1 BCI for α2 BCI for β

(30,35) 55 LL 0.3941 0.2870 1.5650 0.5031 0.4010 1.7290
UL 0.8026 0.5433 2.4642 0.7518 0.5194 2.6750
AL 0.4085 0.2564 0.8992 0.2487 0.1184 0.9460

60 LL 0.4430 0.3067 1.4428 0.5012 0.4016 1.3960
UL 0.9365 0.6055 2.226 0.6492 0.5625 2.1650
AL 0.4935 0.2988 0.7833 0.1480 0.1609 0.7690

65 LL 0.4817 0.3197 1.2212 0.6765 0.4020 1.4260
UL 1.1338 0.7012 1.8582 1.3280 0.5917 2.1230
AL 0.6522 0.3815 0.6371 0.6515 0.1897 0.6970

(35,30) 55 LL 0.4122 0.2797 1.5734 0.5048 0.4063 1.4490
UL 0.7915 0.5564 2.4774 0.7858 0.7154 2.2670
AL 0.3793 0.2767 0.9040 0.2810 0.3091 0.8180

60 LL 0.4615 0.2972 1.4441 0.5053 0.4014 1.4990
UL 0.9157 0.6223 2.2289 0.8007 0.5490 2.3030
AL 0.4542 0.3252 0.7847 0.2954 0.1476 0.8040

65 LL 0.5108 0.3056 1.2236 0.5081 0.4163 1.2390
UL 1.1191 0.7188 1.8619 0.8705 0.8443 1.8820
AL 0.6084 0.4132 0.6383 0.3624 0.4280 0.6430

(35,35) 60 LL 0.4134 0.2895 1.5567 0.5034 0.4021 1.4720
UL 0.8012 0.5509 2.4024 0.7662 0.5751 2.2620
AL 0.3879 0.2613 0.8457 0.2628 0.1730 0.7900

65 LL 0.4651 0.3055 1.4435 0.5053 0.4289 1.2950
UL 0.9276 0.6052 2.1884 0.8561 0.8698 1.9530
AL 0.4625 0.2997 0.7449 0.3508 0.4409 0.6580

70 LL 0.5053 0.3145 1.2288 0.5154 0.4034 1.2150
UL 1.1097 0.6920 1.8409 0.9803 0.6576 1.8090
AL 0.6044 0.3774 0.6121 0.4649 0.2542 0.5940

IV. For all the three unknown parameters, 89% HPD intervals have shortest
length with the following order observed in their lengths:

ACIAL > BCIAL > 95%HPDAL > 89%HPDAL

6 Real Data Study

In this section, a real data has been taken to illustrate the application of
proposed method. Data has been taken from Lawless (2003) (pg-445). The
data in Table 6 give the survival times for two groups of laboratory mice. A
conventional lab environment and a germ-free environment were set up to
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Table 5 LL, UL and AL of 89% HPD and 95% HPD interval of all parameters
89% HPD 89% HPD 89% HPD 95% HPD 95% HPD 95% HPD

(m,n) r for α1 for α2 for β for α1 for α2 for β

(30,35) 55 LL 0.5000 0.4000 1.7890 0.5000 0.4000 1.7110
UL 0.6735 0.4773 2.5540 0.7159 0.5007 2.6510
AL 0.1735 0.0773 0.7650 0.2159 0.1007 0.9400

60 LL 0.5000 0.4000 1.4560 0.5000 0.4000 1.3990
UL 0.5910 0.5074 2.0800 0.6237 0.5385 2.1670
AL 0.0910 0.1074 0.6240 0.1237 0.1385 0.7680

65 LL 0.7087 0.4001 1.4790 0.6506 0.4000 1.4230
UL 1.2300 0.5264 2.0410 1.2920 0.5623 2.1180
AL 0.5213 0.1263 0.5620 0.6414 0.1623 0.6950

(35,30) 55 LL 0.5000 0.4001 1.4990 0.5000 0.4001 1.4250
UL 0.7014 0.6272 2.1580 0.7508 0.6757 2.2350
AL 0.2014 0.2271 0.6590 0.2508 0.2756 0.8100

60 LL 0.5001 0.4001 1.5410 0.5000 0.4000 1.4830
UL 0.7130 0.4954 2.1920 0.7601 0.5245 2.2820
AL 0.2129 0.0953 0.6510 0.2601 0.1245 0.7990

65 LL 0.5000 0.4031 1.2860 0.5000 0.4002 1.2250
UL 0.7693 0.7264 1.8150 0.8231 0.7917 1.8650
AL 0.2693 0.3233 0.5290 0.3231 0.3915 0.6400

(35,35) 60 LL 0.5000 0.4000 1.5330 0.5000 0.4000 1.4710
UL 0.6818 0.5194 2.1750 0.7275 0.5488 2.2600
AL 0.1818 0.1194 0.6420 0.2275 0.1488 0.7890

65 LL 0.5000 0.4311 1.3260 0.5000 0.4050 1.2770
UL 0.7533 0.7731 1.8590 0.8105 0.8170 1.9320
AL 0.2533 0.3420 0.5330 0.3105 0.4120 0.6550

70 LL 0.5003 0.4000 1.2520 0.5003 0.4000 1.1980
UL 0.8553 0.5764 1.7330 0.9258 0.6224 1.7870
AL 0.3550 0.1764 0.4810 0.4255 0.2224 0.5890

Table 6 Survival times and causes of death for laboratory mice
Control group 159, 189, 191, 198, 200, 207, 220, 235, 245, 250, 256, 261, 265,

266, 280, 343, 350, 383, 403, 414, 428, 432
Germ-Free group 158, 192, 193, 194, 195, 202, 212, 215, 229, 230, 237, 240, 244,

247, 259, 300, 301, 321, 337, 415, 434, 444, 485, 496, 529, 537,
624, 707, 800

keep both separately. Mice of both groups were exposed to radiation of fixed
dose (Hoel, 1972). The cause of death for each mouse was thymic lymphoma
(C1) as was confirmed after their autopsy.

We first check whether LL distribution fits for the given data set. Results
are given in Table 7. Comparative goodness of fit for the selected data set
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Table 7 Fitting of data to different distributions
Sr no. Reliability Model −LogL AIC BIC AICC HQC
1. Exponential 344.6566 691.3133 693.2451 691.3949 692.0515
2. Gamma 316.6391 637.2783 641.1419 637.5283 638.7547
3. Weibull 321.5562 647.1125 650.9761 647.3625 648.5889
4. Log logistic 315.0155 634.0310 637.8946 634.2810 635.5074
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Figure 1 Boxplot and TTT plot of dataset.

Table 8 JCS real data
r Joint Type II Censored Data
25 158, 159, 189, 191, 192, 193, 194, 195, 198, 200, 202, 207, 212, 215, 220, 229, 230,

235, 237, 240, 244, 245, 247, 250, 256
35 158, 159, 189, 191, 192, 193, 194, 195, 198, 200, 202, 207, 212, 215, 220, 229, 230,

235, 237, 240, 244, 245, 247, 250, 256, 259, 261, 265, 266, 280, 300, 301, 321, 337,
343

based on negative log likelihood and four information criteria is presented
as Log-logistic>gamma>Weibull>exponential. It indicates that LLD gives
the best representation in terms of fit to the given data set. Boxplot and TTT
plots are also shown in Figure 1 which clearly indicates that the data is right
skewed and hence is suitable for LLD.

Here, m = 22, n = 29. We take r = 25, 35. JCS sample extracted from
Table 6 is given in Table 8. MLE and Bayes estimates of parameters are tab-
ulated in Table 9. AL of ACI, Boot-t, Boot-p, BCI, 89% HPD and 95% HPD
confidence intervals of all unknown parameters are presented in Table 10.
Among classical intervals, ACI gives best interval in terms of shorter length
as compared to BOOT-t and BOOT-p for both unknown scale parameters.
However, for the unknown shape parameter, BOOT-t gives shortest length
interval. Among Bayesian intervals 89%HPD intervals have shortest length
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Table 9 MLE and Bayes estimates of parameters
Bayes Estimates

r MLE SELF GELF LINEX NLINEX
25 α1 212.3655 210.8308 209.4131 211.2988 139.3936 282.9075 175.1122

α2 213.4356 210.5700 209.5355 210.9213 168.7928 283.0064 189.6814
β 13.2850 7.6307 7.2492 7.7577 6.0704 9.7957 6.8505

35 α1 231.8739 231.1812 229.7675 231.6547 187.1820 304.7064 209.1816
α2 230.6516 229.0967 227.8632 229.5105 185.8919 281.6296 207.4943
β 9.1368 6.4827 6.2682 6.5526 5.6675 7.5724 6.0751

Table 10 AL of different confidence intervals
r ACI BOOT-t BOOT-p BCI HPD89 HPD95

α1 25 34.390 42.500 35.200 250.393 219.200 236.475
35 43.451 50.100 47.000 110.900 77.400 99.500

α2 25 29.091 33.600 29.600 233.927 197.700 228.791
35 39.962 44.300 41.300 102.500 68.400 97.000

β 25 8.493 6.940 8.340 10.360 9.052 9.780
35 5.004 4.329 5.067 4.965 3.835 4.779

Figure 2 MCMC trace plots of parameters for r = 25, 35.

than 95%HPD and BCI for all the three unknown parameters. AL of classical
(Bayesian) intervals is seen to increase (decrease) with increasing value of
r for both the scale parameters while for the unknown shape parameter, AL
decreases consistently with increase in r. Figure 2 shows MCMC trace plot
of parameters for both values of r.



Bayesian Estimation for the Two Log-Logistic Models 257

7 Conclusion

In this paper, classical and Bayesian estimation of parameters under JCS for
two contemporary samples is considered when lifetimes follow two distinct
log-logistic models with a common shape parameter but different scale
parameters. Point and interval Bayes estimates are obtained under a symmet-
ric and four asymmetric loss functions and compared for efficiency relative to
the respective classical estimates. As the derived estimators are not in closed
form, MCMC iterative technique is used to compute approximate estimates.
A real dataset has also been discussed for illustration of the methodology
developed in the paper. Simulation study shows that the Bayes estimates
perform better than the MLEs in terms of minimum MSE and confidence
length. However, MLEs compete closely with the Bayes estimates. Among
the interval estimators, HPD intervals are found to be more precise than others
in terms of shortest average length.
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