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Campus, Artvin, 08000, Turkey
2LMNO, University of Caen Normandie, Caen, 14032, France
3Department of Curriculum and Instruction Program, Artvin Çoruh University,
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Abstract

In this paper, we develop a continuous distribution on the unit interval charac-
terized by the distribution of the absolute hyperbolic tangent transformation
of a random variable following the normal distribution. The lack of research
on the prospect of hyperbolic transformations providing flexible distributions
on the unit interval is a motivation for the study. First, we study it theoretically
and discuss its properties of interest from a modeling point of view. In
particular, it is shown that the proposed distribution accommodates various
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262 M. Ç. Korkmaz et al.

levels of skewness and kurtosis. Then, some statistical work is performed.
We investigate diverse estimation methods for the involved parameters and
evaluate their performance through two simulation studies. Subsequently,
the quantile regression model derived from the proposed distribution is
developed. Two real-world data applications of interest are provided. The
first application is about the univariate modeling of the percentage of the
educational attainment of some countries, which is one indicator of the edu-
cation topic of the Better Life Index (BLI) of the Organization for Economic
Co-operation and Development (OECD) countries. The second application
is to explain the relationship between the percentage of educational attain-
ment of some countries with one indicator of the work-life balance, safety,
and health topics of BLI via median quantile regression modeling. For the
considered data sets, the proposed distribution and quantile regression mod-
els show that they have better modeling abilities than competitive models
under some comparison criteria. The results also indicate that covariates are
(statistically) significant at any ordinary level of significance for the median
response.

Keywords: Better life index, educational attainment, hyperbolic tangent
function, normal distribution, point estimates, OECD data sets, quantile
regression, unit distribution.

1 Introduction

BLI has been proposed by the OECD to define the measure of well-being
of different countries. It includes many metrics, such as social, economic,
and environmental performance. By empowering citizens in the policy-
making process, BLI aims to educate citizens on measuring the well-being
of societies by empowering citizens in the policy-making process.

The BLIs of the countries consist of 11 topics such as income, jobs,
housing, community, safety, education, environment, civil engagement, life
satisfaction, health, and work-life balance. Each of the 11 variables of the
index is currently based on one to three indicators. For example, the education
variable consists of the educational attainment, student skills, and years of
education indicators of the related countries. Further, the subject of these
indicators has been used to relate to other indicators in the literature. In
particular, the educational attainment indicator has been the subject of many
studies.
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According to the BLI variable of the OECD, educational attainment is
specified as the highest score obtained at the most advanced level attended
in the education system of the country where the education was received.
The level of education takes into account the number of adults aged 25 to
64 with at least an upper secondary school diploma in the population of
the same age. The unit of this measurement is given as the percentage of
the adult population (aged 25 to 64) in the BLI. Adams [3] has found an
education-health relationship in older people, even after taking into account
individual and family characteristics, and he has examined to what extent
this relationship represents an independent effect of education on health.
Abel and Kruger [2] have examined the relationship between educational
attainment and the suicide rate in the United States for the year 2001.
Hill and Needham [22] have tested whether the self-rated health indicator
improved over time (from 1972 to 2002) for women and men, and they also
examined the extent to which historical gains in health were maintained.
The educational attainment indicator helps explain any trends observed using
ordered logistic regression. Gyekye and Salminen [20] have examined the
relationship between educational attainment and perceptions of safety, job
satisfaction, adherence to safety management policies, and the frequency of
accidents via various statistical test procedures. Borgonovi and Pokropek [8]
have examined the contribution of human capital to health in 23 countries
around the world using the OECD Survey of Adult Skills, a unique large-
scale international assessment of 1-65 year olds that contains information
on self-reported health status, cognitive skills, education, and indicators of
interpersonal confidence. This represents the cognitive dimension of social
capital. Hazekamp et al. [21] have conducted a temporal trend analysis exam-
ining the educational attainment of male homicide victims aged 18 to 24 in
the city of Chicago from 2006 to 2015 to describe the educational attainment
of young victims of homicide in Chicago. Schellekens and Ziv [41] have
tried to explain long-term trends in self-rated (reported) health with gender,
age, race, and education covariates using regression analysis in the United
States. Using the BLI topics, Altun [4] has given two applications via the
regression approach. The first concerns the relationship between educational
attainment values in OECD countries and indicators of the homicide rate
and labor market insecurity. The other concerns the relationship between
self-reported health status and indicators of water quality, air pollution, and
homicide rate via regression modeling of the unit mean response. In general,
these articles were motivated by the link between education level and other
variables (indicators).
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On the other hand, modeling real-world phenomena with probability
models is very important for the statistical inference based on these phe-
nomena. This issue has been studied by many statisticians and it continues
to be studied. In particular, unit interval modeling approaches have increased
recently as they are related to certain issues such as recovery and mortal-
ity rates, and the proportion of educational attainment, etc. based on the
different world countries. When researchers want inferences about these
important questions, the beta distribution comes to mind directly. Although
the beta distribution has a probability density function (PDF) that is flexible
in nature, it is sometimes not sufficient to model and explain all the infor-
mative characteristics of unit data sets. For this reason, in order to assess
whether there are better results than the beta distribution based on statistical
inference, new alternative models have been defined on the unit interval.
Current literature on this topic includes JohnsonSB [25], Topp-Leone [44],
Kumaraswamy [30], generalized beta [36], standard two-sided power distri-
bution [45], log-Lindley [18], log-xgamma [7], unit Birnbaum-Saunders [33],
unit Lindley [31], unit inverse Gaussian [17], unit Gompertz [32], log-
weighted exponential [4], 2nd degree unit Lindley [5], logit slash [26], unit
generalized half normal [27], unit Johnson SU [19], unit Burr-XII [28] and
trapezoidal beta [14] distributions. Many of the above distributions were
obtained via transforming a parent distribution, and most of them gave better
results than the beta distribution from a modeling point of view. In addition,
for some of the distributions introduced above, alternative regression models
have been derived. It is well-known that the beta regression has been proposed
by [12], the Kumaraswamy quantile regression model has been introduced
by [37], the unit-Lindley regression model has been studied by [31]. Also,
Reference [4] proposed a regression model alternative to the beta regression
model based on the weighted-exponential distribution. A flexible alterna-
tive regression model has been elaborated by [5] for the beta and simplex
regression models. The unit-Weibull quantile regression (QR) model has been
introduced by [35] as an alternative model to the beta and Kumaraswamy QR
models. Last but not least, the log-extended exponential-geometric QR model
developed by [24] also appears to be a serious competitor.

The objective of this study is to propose an original unit competitive
distribution and its QR modeling to deal with percentages and propor-
tions with their applications based on the proportion of the educational
attainments’ OECD countries. We are also motivated to relate educational
attainments’ OECD countries with covariates, which are some indicators of
BLI topics such as work-life balance, safety, and health. To obtain a new
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‘unit distribution’, we use a novel transformation of the normal distribution.
This transformation is based on the absolute version of the hyperbolic tan-
gent function. To our knowledge, this direction of research remains almost
unexplored in the literature on unit distributions, despite the interest of hyper-
bolic functions in various branches of probability and statistical modeling
(see [13]). “Almost” because, to our knowledge, in this framework, only
the arcsecant normal distribution by [29] uses such an approach. Here, we
motivate the fact that the considered transformation is able to carry the
applicability of the normal distribution to the unit interval. It can be also
noted that although a lot of distributions are proposed in order to analyze
data on the (0, 1) unit interval, using the same models for every problem
is not useful. In this sense, proposing new distributions is welcome and is
applied.

The frame of the paper is as follows: The new distribution is described in
Section 2. Some of its characteristics are specified by Section 3. Section 4
is dedicated to the estimation of the related model parameters, including
simulation work. The new QR model based on the newly defined distribution,
as well as its residual analysis, are explored in Section 5. Section 6 discusses
univariate data modeling and QR modeling applications. Finally, the article
ends with some comments in Section 7.

2 The ‘UFN distribution’

We start with a normal random variable (RV): Y ∼ N(µ, σ2), where
µ ∈ R denotes the mean of Y and σ > 0 its standard deviation. We define
X = |tanhY |, where tanh y = (ey − e−y)/(ey + e−y), y ∈ R. We
denote the distribution ofX by the expression UFN for ‘unif folded normal’
or UFN(µ, σ) where the mention of the two related parameters µ and σ
has an interest. Consequently, because of the transformation considered, the
UFN distribution is a unit distribution. To our knowledge, it is new in the
literature, and the underlying motivations are developed in several parts of
the remainder of the study. As the first elements, the next result presents the
related cumulative distribution function (CDF) and PDF, respectively.

Proposition 1. First, for x ∈ (0, 1), the CDF of the UFN distribution is
determined as

F (x, µ, σ) = Φ

(
arctanhx+ µ

σ

)
+ Φ

(
arctanhx− µ

σ

)
− 1, (1)
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where Φ(x) is the CDF of the standard normal (N(0, 1)) distribution and
arctanhx is the inverse function of tanhx. Also, for x ∈ (0, 1), the related
PDF is

f(x, µ, σ) =
1

σ (1− x2)

[
φ

(
arctanhx+ µ

σ

)
+ φ

(
arctanhx− µ

σ

)]
,

(2)

where φ(x) is the PDF of the N(0, 1) distribution. For x 6∈ (0, 1), we
complete the functions F (x, µ, σ) and f(x, µ, σ) as usual.

Proof. Owing to the representation X = |tanhY | with Y ∼ N(µ, σ2), the
CDF of X can be developed as

P (X ≤ x) = P (−x ≤ tanhY ≤ x)

= P (arctanh(−x) ≤ Y ≤ arctanhx)

= P (−arctanhx ≤ Y ≤ arctanhx)

= Φ

(
arctanhx− µ

σ

)
− Φ

(
− arctanhx− µ

σ

)
= Φ

(
arctanhx− µ

σ

)
−
[
1− Φ

(
−− arctanhx− µ

σ

)]
= Φ

(
arctanhx+ µ

σ

)
+ Φ

(
arctanhx− µ

σ

)
− 1.

The desired expression for F (x, µ, σ) is obtained. The expression of
f(x, µ, σ) follows by differentiating F (x, µ, σ) according to x, ending the
proof.

Based on Proposition 1, for x ∈ (0, 1), the following relations hold:

F (x, 0, σ) = 2Φ

(
1

σ
arctanhx

)
− 1,

f(x, 0, σ) =
2

σ (1− x2)
φ

(
1

σ
arctanhx

)
.
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Also, another expression for the PDF is

f(x, µ, σ) =

√
2

π

1

σ (1− x2)
e−

(arctanh x)2+µ2

2σ2 cosh
( µ
σ2

arctanhx
)
, (3)

where cosh y = (ey + e−y)/2. When x tends to 0, we get f(x, µ, σ) =√
2/π(1/σ)e−

µ2

2σ2 , which is a decreasing function with respect to |µ|. Also,
from Equation (2), for x ∈ (0, 1), we notice that

f(x,−µ, σ) =
1

σ (1− x2)

[
φ

(
arctanhx− µ

σ

)
+ φ

(
arctanhx+ µ

σ

)]
= f(x, µ, σ).

This implies that the UFN(µ, σ) and UFN(−µ, σ) distributions coin-
cide. On another plan, the UFN distribution can be unimodal, with a mode
into (0, 1). It can be determined by solving the following nonlinear equation
according to x:

2σ2x− arctanh(x) + µ tanh
( µ
σ2

arctanhx
)

= 0.

The complexity of this equation is certain; a numerical treatment is
required to determine the solution.

Among the important survival functions, the hazard rate function (HRF)
of the UFN(µ, σ) distribution is expressed as

h(x, µ, σ) =
φ
(
arctanhx+µ

σ

)
+ φ

(
arctanhx−µ

σ

)
σ (1− x2)

[
2− Φ

(
arctanhx+µ

σ

)
− Φ

(
arctanhx−µ

σ

)]
(4)

for x ∈ (0, 1). For x 6∈ (0, 1), standard completions on h(x, µ, σ) are applied.

When x tends to 0, we have h(x, µ, σ) ∼ f(x, µ, σ) =
√

2/π(1/σ)e−
µ2

2σ2 ,
which is a decreasing function with respect to |µ|. Figure 1 displays some
curves of f(x, µ, σ) and h(x, µ, σ) for some chosen values of the parameters.

Figure 1 shows that the UFN distribution is very flexible; its PDF
possesses a large panel of forms, including increasing, decreasing, bell-
reversed bathtubs, and almost constant shapes. Also, we observe that the
HRF is exclusively J shaped. This flexibility demonstrates that the UFN
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Figure 1 Samples of PDF and HRF shapes of the UFN distribution.

distribution is able to model various phenomena with values in (0, 1), and
should be considered a serious option in this regard. Some of these modeling
aspects are examined in the next parts of the study.

3 Notable Properties

The UFN distribution is deeply related to the normal distribution, which
makes it easier to study some of these important properties. Some of them
are covered in this section.

3.1 Stochastic ordering

As a first approach, the UFN distribution satisfies some stochastic ordering
properties as described in full generality in [42]. As an immediate fact, the
following stochastic dominance holds. For any σ2 > σ1, based on Equation
(1), since the CDF Φ(x) is increasing, we have F (x, σ2, 0) ≤ F (x, σ1, 0). We
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now discuss a monotone likelihood ratio property of the UFN distribution.
Let X1 ∼ UFN(µ, σ1), X2 ∼ UFN(µ, σ2), and g(x) be the ratio function
defined by the respective PDFs, that is, by using Equation (3),

g(x) =
f(x, µ, σ1)

f(x, µ, σ2)
=
σ2
σ1
e
− (arctanh x)2+µ2

2

(
1

σ21
− 1

σ22

)
cosh

(
µ
σ2
1
arctanhx

)
cosh

(
µ
σ2
2
arctanhx

) .
Then, we have

log [g(x)] = log

(
σ2
σ1

)
− (arctanhx)2 + µ2

2

(
1

σ21
− 1

σ22

)

+ log

cosh
(
µ
σ2
1
arctanhx

)
cosh

(
µ
σ2
2
arctanhx

)


and

d

dx
log [g(x)] = −arctanhx

1− x2

(
1

σ21
− 1

σ22

)
+ µ

1

1− x2

×
[

1

σ21
tanh

(
µ

σ21
arctanhx

)
− 1

σ22
tanh

(
µ

σ22
arctanhx

)]
.

If we focus on the two main terms of this difference, one can notice that
the function r(y) = (1/y) tanh[(µ/y) arctanhx] is decreasing with respect
to y, contrary to −1/y, implying that there is no immediate result on the sign
of d log [g(x)] /dx according to σ2 > σ1 or σ2 < σ1. However, when µ tends
to 0, the following equivalence holds:

d

dx
log [g(x)] ∼ −arctanhx

1− x2

(
1

σ21
− 1

σ22

)[
1− µ2

(
1

σ21
+

1

σ22

)]
,

and this last function is nonnegative for σ1 > σ2. This establishes the
existence of a constant c such that, if |µ| ≤ c and σ1 > σ2, g(x) is
nondecreasing, implying that the UFN distribution satisfies the monotone
likelihood ratio property in this setting; the higher the observed value, the
more likely it is to come from X1 rather than X2.

3.2 Generation of the Random Numbers

Generating n values from the UFN distribution is straightforward thanks
to its mathematical structure. Indeed, since X = |tanhY | ∼ UFN(µ, σ),
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where Y ∼ N(µ, σ2), it is enough to generate n values from the classic
N(µ, σ2) distribution, say x1, x2, . . . , xn, then n values from the UFN
distribution are given by y1, y2, . . . , yn, where yi = | tanh(xi)| for i =
1, . . . , n.

3.3 Quantile Function

The quantile function (QF) of a distribution completely identifies the distri-
bution. It is the main ingredient of various probabilistic objects and statistical
tools. The QF of the UFN distribution is defined by the inverse of F (x, µ, σ)
as presented in Equation (1). That is, it is the function Q(u, µ, σ) such that
F [Q(u, µ, σ)] = u for u ∈ (0, 1), or equivalently,

Φ

(
arctanh[Q(u, µ, σ)] + µ

σ

)
+ Φ

(
arctanh[Q(u, µ, σ)]− µ

σ

)
= 1 + u.

In the special case µ = 0, the QF has the following closed form:

Q(u, 0, σ) = tanh

[
σΦ−1

(
1 + u

2

)]
,

where Φ−1(x) is the inverse function of Φ(x) (corresponding to the QF of
the N(0, 1) distribution). From this expression, the quartiles of the UFN
distribution follow:

Q1 = tanh

[
σΦ−1

(
5

8

)]
, Q2 = tanh

[
σΦ−1

(
3

4

)]
,

Q3 = tanh

[
σΦ−1

(
7

8

)]
,

with Φ−1 (5/8) ≈ 0.3186394, Φ−1 (3/4) ≈ 0.6744898 and Φ−1 (7/8) ≈
1.150349. In addition, thanks to the QF, one can introduce various measures
of asymmetry and kurtosis, such as those proposed in [16] and [38].

3.4 Moments

Since the UFN distribution is unit-support, the moments of any order exist
automatically. Since no closed form expression exists for them, a manageable
series expansion is provided in the next proposition.

Proposition 2. Firstly, let U be a RV following the N(0, 1) distribution.
We define the truncated moment generating function of U as Ma(t) =
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E
[
etUI(U > a)

]
, t, a ∈ R, and I(U > a) = 1 if {U > a} is realized,

and 0 otherwise. Now, let m be a positive integer and X ∼ UFN(µ, σ).
Then, the m-th moment of X can be expressed as

θm = E(Xm) =
m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2k

×
[
e−2(k+`)µM−µ

σ
(−2(k + `)σ) + e2`µMµ

σ
(−2`σ)

]
.

Proof. From the representationX = |tanhY |, where Y ∼ N(µ, σ2), we can
write θm = E(|tanhY |m). Now, let us show that

[tanh y]m =

m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2k

×
[
e−2(k+`)yI(y > 0) + e2`yI(y < 0)

]
. (5)

The formula is straightforward for y = 0. For y > 0, the binomial formula
yields

[tanh y]m =

(
ey − e−y

ey + e−y

)m
=

(
1− 2

e−2y

1 + e−2y

)m
=

m∑
k=0

(
m

k

)
(−1)k2ke−2ky(1 + e−2y)−k

=
m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2ke−2(k+`)y.

Also, for y < 0, by the same argument, we get

[tanh y]m =

(
ey − e−y

ey + e−y

)m
=

(
1− 2

1

1 + e2y

)m
=

m∑
k=0

(
m

k

)
(−1)k2k(1 + e2y)−k

=

m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2ke2`y.
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The desired formula follows by putting the two equalities together.
Therefore, by Equation (5) and the dominated convergence theorem, we can
write

θm =
m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2k

×
[
E(e−2(k+`)Y I(Y > 0)) + E(e2`Y I(Y < 0))

]
.

Now, since Y ∼ N(µ, σ2), we have Y = µ + σU where U ∼ N(0, 1),
in the distribution sense. Therefore, we have

θm =
m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2k

×
[
e−2(k+`)µE

{
e−2(k+`)σUI

(
U > −µ

σ

)}
+ e2`µE

{
e2`σUI

(
U < −µ

σ

)}]
=

m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2k

×
[
e−2(k+`)µE

{
e−2(k+`)σUI

(
U > −µ

σ

)}
+ e2`µE

{
e−2`σUI

(
U >

µ

σ

)}]
=

m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2k

×
[
e−2(k+`)µM−µ

σ
(−2(k + `)σ) + e2`µMµ

σ
(−2`σ)

]
.

The desired result is obtained.

The mean and variance of the UFN distribution are given by θ = θ1 and
V = θ2 − θ21. Also, by using standard relations, we can determine the m-th
moment about the mean given as θ†m = E[(X−θ)m]. The moments skewness



The Unit Folded Normal Distribution 273

mu
−2 −1 0 1 2sigma

0 1 2 3 4 5

S
ke

w
ne

ss

0

10

20

30

40

mu

−2

−1

0

1

2

sig
ma

0

1

2

3

4

5

K
urtosis

1000

2000

3000

Figure 2 Three-dimensional plots of S and K for some ranges of parameter values.

and kurtosis coefficients of the UFN distribution are given by S = θ†3/V
3
2

and K = θ†4/V
2, respectively.

Three-dimensional plots of S and K are displayed in Figure 2 for wide
ranges of values of the parameters.

From Figure 2, a great numerical versatility is observed for the considered
skewness and kurtosis measures, depending on the values of µ and σ. This is
another modeling benefit to the credit of the UFN distribution.

The incomplete moments of the UFN distribution can be expressed
in a similar manner. The corresponding result is formulated in the new
proposition.

Proposition 3. Firstly, let U be a RV following the N(0, 1) distribution.
Then, we define the double truncated moment generating function of U as
Ma,b(t) = E

[
etUI(a < U < b)

]
, t, a ∈ R and b ∈ (a,+∞). Now, let m be

a positive integer and X ∼ UFN(µ, σ). Then, the m-th incomplete moment
of X depending on u ∈ (0, 1) can be expressed as

θm(u) = E [XmI(X ≤ u)]

=

m∑
k=0

+∞∑
`=0

(
m

k

)(
−k
`

)
(−1)k2k

×
[
e−2(k+`)µM−µ

σ
,
arctanh(u)−µ

σ

(−2(k + `)σ)

+ e2`µMµ
σ
,
arctanh(u)+µ

σ

(−2`σ)
]
.
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The proof of Proposition 3 is similar to the proof of Proposition 2, we
thus omit it. When u tends to 1, Proposition 3 becomes Proposition 2.

Taking m = 1 yields the first incomplete moment, θ1(u). It is espe-
cially useful for calculating the Bonferroni and Lorenz curves, moments of
the standard and reversed residual life, and mean deviations for the UFN
distribution. All of them can be evaluated numerically.

3.5 Order Statistics

The minimal theory on the distributions of order statistics is described below.
First, let (X1, X2, . . . , Xn) be a n-random sample from the UFN distribu-
tion. Then, by placing them in ascending order, we define the order statistics
denoted by X(1), X(2), . . . , X(n). Then, for i = 1, 2, . . . , n, the PDF of X(i)

is specified by

fX(i)
(x, µ, σ) = Ci,n[F (x, µ, σ)]i−1[1− F (x, µ, σ)]n−if(x, µ, σ), (6)

where Ci,n = n!/[(i− 1)!(n− i)!].
Explicitly, by using Equations (1) and (2), for x ∈ (0, 1), we get

fX(i)
(x, µ, σ) = Ci,n

1

σ(1− x2)

[
φ

(
arctanhx+ µ

σ

)
+ φ

(
arctanhx− µ

σ

)]

×
[
Φ

(
arctanhx+ µ

σ

)
+ Φ

(
arctanhx− µ

σ

)
− 1

]i−1
×
[
2− Φ

(
arctanhx+ µ

σ

)
− Φ

(
arctanhx− µ

σ

)]n−i
.

For x 6∈ (0, 1), we apply the standard completions on this function. In
particular, by taking i = n, for x ∈ (0, 1), the maximum RV X(n) has the
following PDF:

fX(n)
(x, µ, σ) = n

1

σ(1− x2)

[
φ

(
arctanhx+ µ

σ

)
+ φ

(
arctanhx− µ

σ

)]

×
[
Φ

(
arctanhx+ µ

σ

)
+ Φ

(
arctanhx− µ

σ

)
− 1

]n−1
.
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Also, by taking i = 1, for x ∈ (0, 1), the minimum RV X(1) has the
following PDF:

fX(1)
(x, µ, σ) = n

1

σ (1− x2)

[
φ

(
arctanhx+ µ

σ

)
+ φ

(
arctanhx− µ

σ

)]

×
[
2− Φ

(
arctanhx+ µ

σ

)
− Φ

(
arctanhx− µ

σ

)]n−1
.

Order statistics are the main ingredients of useful estimation methods.
Some of them will be described in the next estimation study.

4 Estimation Methods

Here, we present six different methods that are useful to estimate the param-
eters of the UFN distribution. The methods are supported by simulation
studies.

4.1 Maximum Likelihood Method

Here, the estimation of the parameters is examined via the well-established
method of maximum likelihood (ML) method. Let (X1, X2, . . . , Xn) be
a n-random sample from the UFN distribution. The observed values are
classically denoted by x1, x2, . . . , xn, referring to generic data, and the model
parameter vector is specified as Ξ = (µ, σ)T . Then, the log-likelihood
function is given as

` = ` (Ξ) = −n log σ − n

2
log (2π)−

n∑
i=1

log
(
1− x2i

)
− 1

2σ2

n∑
i=1

(arctanh(xi)− µ)2

+

n∑
i=1

log
[
1 + e−

2µ

σ2
arctanh(xi)

]
. (7)

Following normal routine, the ML estimates (MLEs) µ̂MLE and σ̂MLE

of µ and σ, respectively, can be derived by maximizing ` (Ξ) with respect to
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Ξ, also being the solutions of the following equations:

∂`(Ξ)

∂µ
=

1

σ2

n∑
i=1

(arctanh(xi)− µ)

− 2

σ2

n∑
i=1

arctanh(xi) e
− 2µ

σ2
arctanh(xi)

1 + e−
2µ

σ2
arctanh(xi)

= 0 (8)

and

∂`(Ξ)

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(arctanh(xi)− µ)2

+
4µ

σ3

n∑
i=1

arctanh(xi) e
− 2µ

σ2
arctanh(xi)

1 + e−
2µ

σ2
arctanh(xi)

= 0. (9)

From Equation (8), we have

1

2

n∑
i=1

(arctanh(xi)− µ) =

n∑
i=1

arctanh(xi) e
− 2µ

σ2
arctanh(xi)

1 + e−
2µ

σ2
arctanh(xi)

.

(10)

Based on Equations (10) and (9), the following equation is obtained:

σ2 =
1

n

[
n∑
i=1

(arctanh(xi)− µ)2 + 2µ
n∑
i=1

(arctanh(xi)− µ)

]

=
1

n

n∑
i=1

(arctanh(xi))
2 − µ2. (11)

Then, putting Equation (11) into Equation (7), the profile log-likelihood
with respect to µ is specified as

` (µ) = −n
2

log

[
1

n

n∑
i=1

(arctanh(xi))
2 − µ2

]
− n

2
log (2π)
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−
n∑
i=1

log
(
1− x2i

)
−

n∑
i=1

(arctanh(xi)− µ)2

2

(
1
n

n∑
i=1

(arctanh(xi))
2 − µ2

) +
n∑
i=1

log

1 + exp

−2µarctanh(xi)

(
1

n

n∑
i=1

(arctanh(xi))
2 − µ2

)−1
 .

It satisfies
∂` (µ)

∂µ
=

nµ

1
n

n∑
i=1

(arctanh(xi))
2 − µ2

−

µ
n∑
i=1

(arctanh(xi)− µ)2

−
n∑
i=1

(arctanh(xi)− µ)

(
1
n

n∑
i=1

(arctanh(xi))
2 − µ2

)
(

1
n

n∑
i=1

(arctanh(xi))
2 − µ2

)2

−
n∑
i=1

2 arctanh(xi)

(
1
n

n∑
i=1

(arctanh(xi))
2 + 4µ2

)
exp

{
−2µarctanh(xi)

(
1
n

n∑
i=1

(arctanh(xi))
2 − µ2

)−1
}

(
1
n

n∑
i=1

(arctanh(xi))
2 − µ2

)2

(
1 + exp

{
−2µarctanh(xi)

(
1
n

n∑
i=1

(arctanh(xi))
2 − µ2

)−1
})

.

Hence, we need to solve the following equation: ∂` (µ) /(∂µ) = 0;
numerical techniques are needed to get the µ̂MLE . After obtaining the µ̂MLE ,
the σ̂MLE is determined by taking the square root of σ̂2MLE as defined in
Equation (11) with µ = µ̂MLE .

For the interval estimations of the parameters µ and σ, the observed
information matrix is required. Here, this matrix is defined by

I =

 −
∂2` (Ξ)

∂µ2
−∂

2` (Ξ)

∂µ∂σ

−∂
2` (Ξ)

∂σ ∂µ
−∂

2` (Ξ)

∂σ2


∣∣∣∣∣∣∣∣
µ=µ̂MLE ,σ=σ̂MLE

.
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Under mild conditions identified as ‘regularity conditions’, one can use
the two-dimensional normal distribution with mean vector Ξ and covari-
ance matrix I−1 for interval estimations. The formulas for the components
of I are available upon author request. Several alternative methods to
the ML method have been proposed. Some of them are briefly presented
below.

4.2 Some Other Estimation Methods

Maximum product spacing (MPS) method First, the MPS method was
developed by [9] and [40]. It can be described as follows. Let
x(1), x(2), . . . , x(n) be x1, x2, . . . , xn put in an ascending order. Let
us set

GM(Ξ) = n+1

√√√√n+1∏
i=1

[
F (x(i), µ, σ)− F (x(i−1), µ, σ)

]
,

with the conventions: F (x(0), µ, σ) = 0 and F (x(n+1), µ, σ) = 1. The
MPS estimates (MPSEs) µ̂MPS and σ̂MPS of µ and σ, respectively, are
determined by maximizing GM(Ξ) with respect to Ξ.

Least square (LS) method The LS estimates (LSEs) µ̂LSE and σ̂LSE of the
parameters µ and σ, respectively, are given by minimizing

LSE(Ξ) =
n∑
i=1

(
F (x(i), µ, σ)− i

n+ 1

)2

,

with respect to Ξ.

Weighted least square (WLS) method In a similar way, the WLS estimates
(WLSEs) µ̂WLSE and σ̂WLSE of the parameters µ and σ, respectively,
are determined by minimizing

WLSE(Ξ) =

n∑
i=1

wi,n

(
F (x(i), µ, σ)− i

n+ 1

)2

,

with respect to Ξ, where wi,n = [(n + 2)(n + 1)2]/i(n− i+ 1) for
i = 1, 2, . . . , n.
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Anderson-Darling (AD) method The AD estimates (ADEs) µ̂AD and σ̂AD
of the parameters µ and σ, respectively, are got by minimizing

AD (Ξ) = −n−
n∑
i=1

2i− 1

n

×
[
log
{

1− F (x(n+1−i), µ, σ) + logF (x(i), µ, σ)
}]
,

with respect to Ξ.

Cramér-von Mises (CVM) method The CVM estimates (CVMEs) µ̂CVM
and σ̂CVM of the parameters µ and σ, respectively, are acquired by
minimizing

CVM (Ξ) =
1

12n
+

n∑
i=1

[
F (x(i), µ, σ)− 2i− 1

2n

]2
,

with respect to Ξ.

4.3 Simulation Experiments

We now perform a simulation work based on n-random samples to evaluate
the performance of the estimates presented above with respect to varying
n. First, we generate N = 1000 samples of size n = 20 + 5k with k =
0, 1, . . . , 196 from the UFN distribution. More precisely, we conducted two
simulation studies where

• we take µ = 1, σ = 0.5 and µ = 2, σ = 2 for the first and second ones,
respectively,

• the generated values are given by the formula x = |tanh y|, where the y
is the random number from the N(µ, σ2) distribution.

The constrOptim routine available in the R program is employed. Further,
we compute the average of the estimates (AEs), biases and mean square errors
(MSE). Mathematically, for h = µ and h = σ, the AEs, biases and MSEs are
calculated by

AEh(n) =
1

N

N∑
i=1

ĥi, Biash(n) = h−AEh(n),

MSEh(n) =
1

N

N∑
i=1

(h− ĥi)2,
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Figure 3 Graphical results of the µ (top) and σ (bottom) parameters for the first simulation
study.
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Figure 4 Graphical results of the µ (top) and σ (bottom) parameters for the second simula-
tion study.

respectively, where the index i refers to the i-th sample. We anticipate that
the AEs are close to true values, especially when the biases and MSEs are
almost zero. Figures 3 and 4 display the results of these two simulation
studies.
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Figures 3 and 4 illustrate the consistency of the estimates. In particular,
the biases and MSEs decrease to zero when n increases, as expected. Also,
their unbiasedness is observed. The amount of biases and MSEs on changing
sample size is very close to the parameter µ, according to the first simu-
lation study. In addition, the amount of the biases and MSEs of the MPS
and LSE methods is the greatest initially for the parameter σ according to
changes in the sample size. However, when the sample size increases, these
amounts are close together. According to the second simulation study, when
changing sample size, the amount of bias and MSEs introduced by the ML
method is the smallest for both parameters. However, when the sample size
increases, these amounts are close together. Generally, the performance of all
estimates is close. Similar simulation results can also be obtained for arbitrary
parameter settings.

5 The Derived Quantile Regression Model

5.1 Description

If the response variable support is set to a unit interval, the use of a unit
regression model based on the unit distribution is suitable to model the condi-
tional mean of the response variable via independent variables (covariates). In
this regard, Reference [12] proposed the beta regression model. For accurate
model inference, when the response variable has outliers in the measures,
robust estimation results based on the regression model are required. For
this aim, the QR model is a solid alternative model to the ordinary LSE
and beta regression models. Whereas the method of least squares and beta
regression models estimate the conditional mean of the response variable,
the QR estimates the conditional median or other quantiles of the response
variable.

With this approach, [37] and [35] have introduced the Kumaraswamy and
unit Weibull QR models by re-parametrization of the Kumaraswamy and unit
Weibull models, respectively.

Now, we introduce an alternative QR model based on a special
UFN(µ, σ) distribution. In order to simplify the expression of the QF of
the UFN distribution, an exponentiated distribution version based on a
special UFN distribution is prefered. We call it as exponentiated UFN
(EUFN ) distribution. Its CDF and PDF are listed by

G(y, α, σ) = [F (y, 0, σ)]α =

[
2Φ

(
arctanh y

σ

)
− 1

]α
(12)
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and

g(y, α, σ) =
2α

σ (1− y2)
φ

(
arctanh y

σ

)[
2Φ

(
arctanh y

σ

)
− 1

]α−1
,

respectively, where y ∈ (0, 1) and α, σ > 0.
The QF of the EUFN distribution is obtained by

Q(u, α, σ) = tanh

[
σΦ−1

(
1 + u

1
α

2

)]
,

where u ∈ (0, 1). Then, the PDF of the EUFN distribution can
be modified by putting η = Q(u, α, σ). Thus, by setting σ =

arctanh η/Φ−1
[
(1 + u

1
α )/2

]
, the PDF of the modified distribution is

given by

g(y, α, η) =

2αΦ−1
(

1+u
1
α

2

)
arctanh η (1− y2)

× φ

(
arctanh y

arctanh η
Φ−1

(
1 + u

1
α

2

))

×

[
2Φ

(
arctanh y

arctanh η
Φ−1

(
1 + u

1
α

2

))
− 1

]α−1
, (13)

where η is the quantile parameter. In this context, u is a tuning parameter
which is assumed to be known. We denote the distribution associated to
Equation (13) with EUFN(α, η, u). Samples of the shapes of g(y, α, η) are
presented in Figure 5.

We see that the EUFN distribution has the skewed shapes as well as
bathtub shaped, inverse N-shaped, decreasing, increasing and unimodal. The
modelling of the conditional median follows by taking u = 0.5.

We now present the QR model based on the EUFN distribution with
the PDF in Equation (13). In this regard, we consider n observations
y1, y2, . . . , yn from the re-parameterized EUFN distribution such that yi is
a realization of Yi ∼ EUFN(α, ηi, u), with unknown parameters ηi and β.
Note that the parameter u is known. The EUFN QR model is defined as

g(ηi) = xiβ
T ,
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Figure 5 Samples of the PDF shapes of the modified EUFN distribution.

where β = (β0, β1, β2, . . . , βp)
T and xi = (1, xi1, xi2, xi3, . . . , xip)are the

unknown regression parameter vector and i -th vector known to covariates.
Thus defined, g(x) is the link function which is used to relate the covariates at
the conditional quantile of the response variable. For example, when u = 0.5,
the covariates are related to the conditional median of the response variable.
Since the EUFN distribution is set to the unit interval, we adopt the logit-
link function such that

g(ηi) = log

(
ηi

1− ηi

)
.

5.2 Parameter Estimation via the ML Method

Classically, the unknown parameters involved in the EUFN QR model are
estimated by the ML method. Consider the link function below:

g(ηi) = log

(
ηi

1− ηi

)
= xiβ

T . (14)

From Equation (14), it comes

ηi =
exp

(
xiβ

T
)

1 + exp (xiβT )
. (15)

Let Ω = (α,β)T be the unknown parameter vector. Then, inserting
Equation (15) in Equation (13), the log-likelihood function of the EUFN
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QR model is

` (Ω) = n log 2− n

2
log (2π) + n logα

+ n log

[
Φ−1

(
1 + u

1
α

2

)]
−

n∑
i=1

log
[
arctanh(ηi)

(
1− y2i

)]
− 1

2

[
Φ−1

(
1 + u

1
α

2

)]2 n∑
i=1

(
arctanh(yi)

arctanh(ηi)

)2

+ (α− 1)

n∑
i=1

log

[
2Φ

(
arctanh(yi)

arctanh(ηi)
Φ−1

(
1 + u

1
α

2

))
− 1

]
.

(16)

Since Equation (16) is composed of nonlinear functions according to
the parameters of the model, this log-likelihood function can be maximized
automatically by software such as R, Python, Matlab and Mathematica. We

thus obtain the MLE denoted by Ω̂ =
(
α̂, β̂

)T
. Here, we employ the maxLik

function [23] of the R software to maximize Equation (16). This function
also gives the components of the observed information matrix, including the
standard errors (SEs). Recent advances in QR modelling with the ML method
can be found in [15, 24, 31, 35] and [29].

5.3 Analysis of the Residuals for the Model Checking

Residual analysis may be necessary to verify if the regression model is
appropriate. To see this, a residual analysis can be performed. Here, we
indicate the randomized quantile and the Cox-Snell residuals.

Randomized quantile residuals The randomized quantile residuals have
been introduced by [11]. The i-th randomized quantile residual is
determined as

r̂i = Φ−1 [G(yi, α̂, η̂i)]

for i = 1, . . . , n, where G(y, α, η) is the CDF of the modified EUFN
distribution and η̂i is defined by Equation (15) with β estimated by β̂.
If the fitted model successfully processes the data set, the underlying
distribution of a randomized quantile residual corresponds to theN(0, 1)
distribution.



The Unit Folded Normal Distribution 285

Cox-Snell residuals Alternatively, one can consider the Cox and Snell
residuals developed by [10]. The i-th Cox-Snell residual is given by

êi = − log [1−G(yi, α̂, η̂i)]

for i = 1, . . . , n. If the model fits to data suitably, the distribution of a
Cox-Snell residual corresponds to the standard exponential distribution.

6 Data Analysis

In this section, two data applications have been given to see applicability of
the proposed distribution model.

6.1 Description

We obtain all the data sets from OECD.Stat with the following uniform
resource locator: https://stats.oecd.org/. It includes data and metadata for
the OECD countries and selected non-member economies. The OECD.Stat
consists of crucial themes such as Agriculture and Fisheries, Demography,
Education and Training, Labour, Health, Social Protection, Finance, and
Well-being, etc. Each theme is divided into various areas. Here, we consider
the BLI of both OECD countries and some non-economy OECD countries
in the Social Protection and Well-being theme. For the analysis of the two
data, the educational attainment values are used as an indicator in the edu-
cation theme of the BLI. The dataset used covers educational attainment
values for OECD countries as well as for Brazil, Russia and South Africa.
The percentage is the unit of measurement. The first application is about
univariate modeling of educational attainment for the UFN distribution. The
second application is about the QR modeling for the EUFN distribution
to relate educational attainment of the above countries with some indicators
of topics of BLIs such as work-life balance, safety, and health. The refer-
ence year of the indicators is 2017. The data set can be directly found in
https://stats.oecd.org/index.aspx?DataSetCode=BLI.

6.2 Univariate Data Modeling

Here, a real data set is analyzed to prove the empirical importance and mod-
eling ability of the proposed UFN model. This data set has been examined
by [4] for another unit distribution, which is called the log-weighted expo-
nential distribution. The author has obtained the estimated log-likelihood,
denoted by ˆ̀, value of 24.8655 for his model.

https://stats.oecd.org/
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Figure 6 Boxplot of the considered data set.

Figure 6 displays the boxplot of the data set.
From Figure 6, it appears that the data set is left skewed and it has some

outliers.
We compare the performance of the real data fitting of the UFN dis-

tribution through the ML method with the following well-established unit
distributions:

• Beta distribution:

fBeta(x, µ, σ) =
1

B (µ, σ)
xµ−1 (1− x)σ−1 ,

where x ∈ (0, 1), µ > 0, σ > 0, and B(µ, σ) is the beta function.
• Johnson SB distribution:

fSB (x, µ, σ) =
σ

x (1− x)
φ

[
σ log

(
x

1− x

)
+ µ

]
,

where x ∈ (0, 1), µ ∈ R and σ > 0. We note that the density
fSB (x,−µ/σ, 1/σ) is known as the PDF of the logit normal distribution.

• Exponentiated Topp Leone (ETL) distribution (see [39]:

fETL(x, µ, σ) = 2σµ [x (2− x)]µ−1 (1− x) {1− [x (2− x)]µ}σ−1 ,

where x ∈ (0, 1), µ > 0 and σ > 0.
• Kumaraswamy (Kw) distribution:

fKw(x, µ, σ) = σµ (1− xµ)σ−1 xµ−1,

where x ∈ (0, 1), µ > 0 and σ > 0.
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Table 1 MLEs, SEs (in parentheses), ˆ̀ and goodness-of-fits statistics (the p-values of the
KS test are given in [·])

Model µ̂ σ̂ ˆ̀ AIC BIC A∗ W ∗ KS

UFN 1.1302 0.3678 26.8429 −49.6858 −46.4106 0.4850 0.0736 0.1195
(0.0597) (0.0424) [0.6502]

UGHN 0.9558 0.3698 20.2884 −36.5769 −33.3018 1.8384 0.3276 0.2097
(0.1208) (0.0498) [0.0706]

Beta 5.9874 1.8157 23.8684 −43.7369 −40.4616 1.2732 0.2233 0.1826
(1.7258) (0.4566) [0.1588]

Kw 5.4450 2.0847 24.3538 −44.7076 −41.4324 1.2057 0.2057 0.1740
(1.0292) 0.5383 [0.2001]

ETL 8.5134 0.6642 22.0160 −40.0320 −36.7568 1.8182 0.3524 0.2198
(2.0971) (0.1354) [0.0508]

Johnson SB −1.6045 1.1403 26.2280 −48.4560 −45.1809 0.7540 0.1229 0.1472
(0.2455) (0.1308) [0.3828]

• Unit generalized half normal (UGHN) distribution (see [27]):

fUGHN (x, µ, σ) =
2µ (− log x)µ−1

xσµ
φ

[(
− log x

σ

)µ]
,

where x ∈ (0, 1), µ > 0 and σ > 0.

The ˆ̀ values, Akaike information criterion (AIC), Bayesian information
criterion (BIC), Kolmogorov-Smirnov (KS), Cramér-von Mises (W ∗) and
Anderson-Darling (A∗) goodness of-fit statistics are obtained based on all
distribution models to determine the optimum model. In general, one can
choose as the optimal model the one indicating the smallest values of AIC,
BIC, KS, W ∗ and A∗ statistics, and the largest values of ˆ̀and KS p-value.

Firstly, we fit the folded normal (FN ) distribution, which has the follow-
ing PDF: fFN (x, µ, σ) = (1/σ) [φ ((x+ µ)/σ) + φ ((x− µ)/σ)], x > 0,
µ ∈ R and σ > 0, to this data set. For this model, we obtained the ˆ̀value and
KS statistics as 16.2354 and 0.2309 (with p-value = 0.0348), respectively.
It is clear that the FN model is inadequate for explaining to this data set. We
give the data analysis results belong to other competitor models in Table 1.

Table 1 reveals that the UFN distribution has the lowest values of AIC
and BIC statistics. Also, theUFN distribution has the lowest values of theA∗

and W ∗ and KS statistics with higher p-value. Hence, the UFN distribution
is the best choice for the modeling.

Figure 7 shows some important estimated functions of the UFN distri-
bution to graphically prove the fit of the model.

Clearly, the proposed model has successfully captured the skewness and
kurtosis of the data set. The plotted lines of the probability-probability (PP)
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Figure 7 Some fitted functions for the used data.

plot is very closer the diagonal line which indicates that the performance of
the UFN distribution is acceptable for the modeled data. In order to show
that the likelihood equations have a unique solution, we display the profile
log-likelihood (PLL) functions of the parameters µ and σ for the data set in
Figure 8.

The maxima of the curves indicate that the likelihood equations have
unique solutions for the MLEs.

6.3 QR Modeling for the Educational Attainment Data Set

In this section, a real application is provided in order to highlight the
applicability of the newly defined QR model. Two important competitor
regression models are considered. They are beta regression [12] model as
well as Kumaraswamy QR [37] model. Their PDFs are

fBeta(y, α, η) =
Γ (α)

Γ (αη) Γ ((1− η)α)
yαη−1 (1− y)(1−η)α−1 , y ∈ (0, 1),

where η ∈ (0, 1) is the mean and α > 0 and

fKw(y, α, η) =
α log (0.5)

log (1− ηα)
(1− yα)log(0.5)/(α(1−η)−1) yα−1, y ∈ (0, 1),
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Figure 8 Plots of the PLL functions for the considered data set.

where η ∈ (0, 1) is the median and α > 0 for the beta regression and
Kumaraswamy QR, respectively.

Here, we want to relate the level of education of the countries with the
variables of some BLIs such as work-life balance, safety, and health. In this
context, the aim of this application is to linearly explain the educational
attainment values (y) with the percentage of the employees working very long
hours (x1), homicide rate (x2), and self-reported health (x3) covariates. The
values of these indicators belong to the OECD countries as well as Brazil,
Russia, and South Africa. Specifically, x1 is the proportion of dependent
employees whose usual working hours per week are 50 hours or more, x2
is the ratio of deaths due to assault as a standardized rate according to age
per 100,000 population, and x3 is the percentage of the population aged 15
and over who report good or better health. One may see the data set and
detailed information about all covariates via the link which has been given
in Section 6. The following linear regression equation is used for all the
regression models:

logit(ηi) = β0 + β1xi1 + β2xi2 + β3xi3, i = 1, 2, . . . , 38,

where the ηi is the mean for the beta model whereas it denotes the median for
the Kumaraswamy and EUFN models.

From Figure 6, we see that the data are skewed and have some outliers.
For these reasons, relating the unit response variable with covariates via the
median QR will be more useful for the inferences, since the mean is perturbed
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Table 2 Results of the fitted regression models with the considered model selection criteria

Parameters
Beta Kumaraswamy EUFN

Estimate SE p-value Estimate SE p-value Estimate SE p-value

β0 2.5107 0.5606 < 0.001 2.7648 0.4293 < 0.001 2.9713 0.6000 < 0.001

β1 −4.1441 1.2998 0.0014 −4.8408 1.1903 < 0.001 −5.5763 1.4511 < 0.001

β2 −0.0512 0.0176 0.0036 −0.0642 0.0105 < 0.001 −0.0578 0.0173 < 0.001

β3 −1.0869 0.7605 0.1530 −1.1092 0.5034 0.0276 −1.3746 0.7799 0.0780

α 12.2220 2.7550 < 0.001 6.8593 1.1576 < 0.001 6.6951 1.7689 < 0.001

ˆ̀ 31.8600 31.8542 32.5631

AIC −53.7200 −53.7083 −55.1263

BIC −45.5321 −45.5204 −46.9384

by skewed data with the outliers precisely. Thus, it can be obtained as a more
illustrative and more robust inference than the mean response regression.

We use the betareg function of the R software for the results of the beta
regression model. The maxLik function [23] of the R software has been used
for the results of the EUFN , Kumaraswamy, and unit-Weibull QR models.
The details are given as follows.

Firstly, we assume that u = 0.5 for the three QR models for the median
modeling. The obtained results are contained in Table 2.

From this table, the parameters β1 and β2 are seen as significant at any
usual level, as well as the parameter β3 is seen to be significant at an 8% level
for the EUFN regression model. For the Kumaraswamy regression model,
all parameters are significant at any usual level.

According to our regression model, the unit median response variable is
negatively affected by all the covariates. Hence, it can be concluded that in
the related countries, when the percentage of employees working very long
hours, the homicide rate, and the percentage of the population who report
their health as good or better increase, the percentage of educational attain-
ment decreases. The result of self-reported health according to educational
attainment turns out out to be surprisingly surprising. It is obvious that all
covariates affect educational attainment negatively. Moreover, in view of the
AIC and BIC values, it can be concluded that the proposed regression model
is the best.

To complete this work, the Quantile-Quantile (QQ) plots of the random-
ized quantile residuals and the PP plots of the Cox-Snell residuals for all the
models are displayed in Figures 9 and 10, respectively.

The plots of the EUFN regression model are close to the diagonal line,
as shown in Figures 9 and 10. Hence, the randomized quantile and Cox-Snell
residuals based EUFN regression model have the N(0, 1) and exponential
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Figure 9 QQ plots of the randomized quantile residuals for the regression models.
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Figure 10 PP plots of the Cox-Snell residuals for the regression models.

distributions, respectively. Finally, we can say that the data set is modeled by
the EUFN regression model more successfully than the other models.

7 Conclusion

We motivate and study a new unit distribution, called the unit folded normal
(UFN ) distribution, to model the proportion of educational attainment and
other data sets defined over the unit interval. We study the characteristics
and properties of the new distribution. Six methods are used to estimate the
model parameters. Two simulation studies were conducted to illustrate the
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performance of these estimates. The percentage of educational attainment
data set of both OECD countries and some non-economy OECD countries
is considered to point out the applicability of the UFN distribution. The
findings, which are about the modeling of educational attainment, show
that the proposed model provides better fits than referenced unit models.
According to its regression modeling, it also aimed to relate the educational
attainment in the countries with their employees working very long hours,
homicide rate, and self-reported health via median QR modeling. The results
indicate important findings on how these covariates affect the unit response
variable titled ”Country Educational Attainment.”

Most surprising is the finding that, according to the estimated regression
coefficients, there is an inverse relationship between education level and self-
reported health status, statistically significant at an 8% significance level.
That is, the percentages of educational attainment in countries are influenced
negatively by those of self-reported health.Hence, the result of self-reported
health according to educational attainment turns out surprisingly. Based on
the dataset from 69 countries, [43] have shown that adults with lower levels
of education are consistently more likely to self-report poor health than those
with higher levels of education.

In addition, at any usual significance level, when a country’ percent-
age of employees working very long hours and rate of homicide increase,
the country’ percentage of educational attainment decreases, as expected.
The references [4] and [6] have concluded that homicide rate effects the
educational attainment negatively.

In summary, the following findings have been obtained by this paper.

i. A new distribution and its quantile regression model for the modeling of
measurements of proportions and percentages have been introduced.

ii. The percentages of educational attainment in the countries of the OECD
and some other countries have been modeled by a proposed new prob-
ability distribution as well as related to covariates, which are some
indicators of BLI topics such as work-life balance, safety, and health.
It has been concluded that in related countries, when the percentage of
employees working very long hours, the homicide rate, and the percent-
age of the population who report their health as good or better increase,
the percentage of educational attainment decreases. All covariates have
been considered significant at the 8% level for the unit median response.

iii. The results for the unit median response modeling of the data have
shown that the proposed model has ensured better results than the



The Unit Folded Normal Distribution 293

well-known beta and Kumaraswamy regression models under some
comparison criteria.

The UFN distribution is expected to gain attention both in education and
in many other disciplines in demand for unit models.
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