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Abstract

In this paper, we propose an extension to the Topp-Leone distribution, as
introduced by [20] using the Generalized-DUS transformation given by [8].
The Topp-Leone distribution is defined on interval (0,1) and has a character-
istic J-shaped frequency curve. The newly extended version of Topp-Leone
distribution accommodates a variety of shapes of hazard rate functions mak-
ing it a versatile distribution. We have also derived explicit expressions for
some properties like ordinary moments, conditional moments, distribution of
order statistics, quantiles, mean deviation, and entropy. Further, we have also
discussed results on identifiability, stress-strength reliability, and stochastic
ordering that are concerned with two independent random variables. For
inference regarding the unknown parameters of the distribution, we derive
the equations which give their maximum likelihood estimators. We also
present the asymptotic confidence intervals of the unknown parameters of
the distribution, based on large sample property, using the Fisher information
matrix. To facilitate further studies, a step-by-step algorithm is presented to
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produce a random sample from the distribution. Further, extensive simulation
experiments are done to study the long-term behavior of the maximum
likelihood estimators of the parameters through their mean squared error and
mean absolute bias on the basis of large number of samples. The consistency
of the MLEs is empirically proved. Lastly, the application of the proposed dis-
tribution is shown by fitting a real-life dataset over some existing distributions
in the same range.

Keywords: Probability distribution, identifiability, stochastic ordering,
entropy, stress-strength reliability, simulation study, real data fitting..

1 Introduction

With the increasing usage of statistics in diverse fields like medicine, engi-
neering, social sciences, etc., various lifetime probability distributions and
their extensions are introduced to ensure proper modeling of data. Such
distributions are used to study and characterize various datasets. In recent
years, various such distributions have been introduced from time to time
with different ranges, like positive real line (0,∞), bounded range, (0, θ) or
unit range (0,1), etc. The distributions defined on the unit range are partic-
ularly used to model proportions data. A few of the most commonly used
distributions to model proportions data are Beta, Johnson SB (see [5]), and
Kumaraswamy distributions (see [6]). With the increasing demand for mod-
eling proportions data, various lifetime distributions have been transformed
to unitintervals. Some of these are, unit-Gamma or Log-Gamma (see [3]) by
Gamma, unit-Weibull (see [10]) by Weibull, log-Lindley (see [4]) by Lindley,
unit Gompertz (see [11]) by Gompertz, unit Birnbaum-Saunders (see [9])
by Birnbaum-Saunders, unit Burr-XII (see [7]) by Burr-XII distributions
and Transmuted power function distribution (see [21, 22]) by a quadratic
transmutation map, etc.

One of the extensively used distributions to model unit range data (i.e.,
defined on (0,1)) is the Topp-Leone distribution (given by [20]). It is a
mixture of uniform and generalized triangular distributions and has a J-
shaped frequency curve. [12] derived the closed-form expressions for this
distribution. This distribution has also been welcoming to generate new
families of distributions by using various transformations and modifications.
These new families are very flexible in nature and can accommodate a variety
of shapes of density and hazard functions. The Topp-Leone normal distri-
bution (given by [17]) presented its possible application to three datasets.
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The Generalized Topp-Leone distribution (given by [19]) used a skewness
parameter for the extension and showed the application on tissue damage
proportions data. The Topp-Leone generalized distribution was proposed
by [15], using the beta generated (BG) family of distributions. A special case
of such a distribution is the Topp-Leone generalized exponential distribution.
The Topp-Leone odd log-logistic distribution was proposed by [1] along with
its usage on a regression model.

An important transformation, called as the DUS transformation (see [24]),
was introduced to propose new distributions using a baseline distribution.
It increased the flexibility in modelling of various datasets. On the basis
of this transformation, various new distributions, like DUS-Kumarswamy
distribution (see [23]) has been proposed.

In this paper, we propose an extension to the Topp-Leone distribution
using the Generalized DUS transformation given by [8]. We use the Topp-
Leone distribution as a baseline distribution due to its flexibility to capture
hazard functions of variety of shapes. The probability density function and
the cumulative density function are defined as,

F (x) =
(eG

γ(x) − 1)

e− 1
; γ > 0, (1)

and,

f(x) =
γg(x)Gγ−1(x)eG

γ(x)

e− 1
; γ > 0. (2)

where γ is the transformation parameter, f(x) and F(x) denote the pdf and the
cdf of the distribution respectively.

The baseline distribution for the given transformation is taken to be Topp-
Leone distribution with single parameter α having cdf G(x) = xα(2 − x)α;
0 < x < 1;α > 0 and corresponding pdf as g(x) = 2αxα−1(1 − x)(2 −
x)α−1; 0 < x < 1;α > 0. Using the transformation introduced in Equa-
tions (1) and (2), the cdf and the pdf of the newly proposed distribution, which
will now be referred as GDUS-Modified Topp-Leone (GMTL) Distribution
is as follows:

F (x) =
e(xα(2−x)α)γ − 1

e− 1
; 0 < x < 1; α, γ > 0. (3)

f(x) =
2αγxα−1(1− x)(2− x)α−1(xα(2− x)α)(γ−1)e(xα(2−x)α)γ

e− 1
;

0 < x < 1; α, γ > 0. (4)
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The newly proposed GDUS-Modified Topp-Leone (GMTL) distribution
is very flexible as it can accommodate variety of shapes of hazard rates (see
Figure 2), densities (see Figure 1) and survival functions (see Figure 2). We
use GMTL(α, γ) to denote the distribution whose cdf and pdf are given by
Equations (3) and (4), where α and γ are the parameters. In this article, we
present some attractive statistical properties of the proposed GMTL(α, γ)
distribution and present its effective use for modeling proportion data of
recovery rates of CD34+ cells after peripheral blood stem cell (PBSC)
transplants over some existing distributions defined on unit interval.

The shapes of density, distribution, reliability and hazard functions are
visualised in Section 2. The Statistical Properties of the distribution are
derived in Section 3. This include ordinary moments, conditional moments,
quantile function, order statistics, mean deviation about mean and median,
entropy, stress-strength reliability, identifiability, stochastic ordering and dif-
ferential equations. We present the maximum likelihood estimators (MLEs)
along with the asymptotic confidence intervals of the unknown parameters
α and γ in Section 4. An extensive set of simulation experimentsare carried
out to study the behavior of mean squared error and mean absolute bias of
the MLEs for different sample sizes in order to check their consistency. In
Section 5, the proposed distribution is used to model a real dataset of recovery
rates of CD34+ cells over the existing unit-interval distributions like Beta,
Kumaraswamy, unit-Gamma and unit-Weibull distributions. The findings of
the paper are concluded in Section 6.

2 Shapes of the Distribution

Figure 1 visualises the probability density and cumulative distribution func-
tion plots for different values of parameters as per Equations (3) and (4). It
is clear that the proposed distribution can accommodate variety of shapes of
densities as shown in Figure 1. The associated reliability function is,

R(x) =
e− exp(xα(2− x)α)γ

e− 1
; 0 < x < 1; α, γ > 0. (5)

The associated hazard rate is,

h(x) =
2αγxα−1(1− x)(2− x)α−1(xα(2− x)α)(γ−1)e(xα(2−x)α)γ

e− exp(xα(2− x)α)γ
;

0 < x < 1; α, γ > 0. (6)
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The associated hazard rate is,  

 ℎ(𝑥) =
( )( ) ( ( ) )( ) ( ( ) )

( ( ) )
; 0 < 𝑥 < 1; 𝛼, 𝛾 > 0. (6) 

 
Figure 2 visualises the reliability and hazard rate functions for different values of the parameter. The 
hazard rate of the proposed distribution accomodates variety of shapes, as shown in Figure 2. 

 
Figure  1: PDFs and CDFs of GMTL(𝛼, 𝛾) 

 

 
Figure  2: Reliability and Hazard Rate Functions of GMTL(𝛼, 𝛾) 
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3.1  Moments 
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!
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αγ + αγi − 1
j

 

Figure 2 Reliability and hazard rate functions of GMTL(α, γ).

Figure 2 visualises the reliability and hazard rate functions for differ-
ent values of the parameter. The hazard rate of the proposed distribution
accomodates variety of shapes, as shown in Figure 2.

3 Statistical Properties

3.1 Moments

The rth ordinary moments of the proposed distribution can be derived using
the given theorem.
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Theorem 3.1

E(Xr) =
2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

(
αγ + αγi− 1

j

)

×
(

1

r + αγ + αγi+ j
− 1

r + αγ + αγi+ j + 1

)
(7)

Proof.

E(Xr)

=

∫ 1

0
xrf(x)dx,

=

∫ 1

0
xr × 2αγxα−1(1− x)(2− x)α−1(xα(2− x)α)(γ−1)e(xα(2−x)α)γ

e− 1
dx,

Expanding the term e(xα(2−x)α)γ =
∑∞

i=0 (x(2 − x)αγ)i/i! as a conver-
gent sum of infinite terms, we get

E(Xr) =
2αγ

e− 1

∞∑
i=0

1

i!

∫ 1

0
(1− x)(2− x)αγ+αγi−1xr+αγ+αγi−1dx,

=
2αγ

e− 1

∞∑
i=0

1

i!

∫ 1

0
(xr+αγ+αγi−1 − xr+αγ+αγi)(2− x)αγ+αγi−1dx

using the expansion of series,

(2− x)A = 2A
(

2− x
2

)A
= 2A

(
1− x

2

)A
= 2A

∞∑
j=0

(
−1

2

)j (
A
j

)
(x)j
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where,A = αγ+αγi−1 (as per the situation) and then by further simplifying
it, we get

E(Xr) =
2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

(
αγ+αγi− 1

j

)

×
(

1

r + αγ + αγi+ j
− 1

r + αγ + αγi+ j + 1

)
.

Using Theorem 3.1, we can derive the expressions of mean, variance,
skewness and kurtosis by putting the respective values of r.

3.2 Conditional Moments

The rth conditional moments of the proposed distribution can be derived
using the given theorem.

Theorem 3.2

E(Xr|X > t) =
2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

(
αγ+αγi− 1

j

)

× (1− t)
(

1

r + αγ + αγi+ j
− 1

r + αγ + αγi+ j + 1

)
.

(8)

Proof. To prove the above theorem, we proceed through the same way as
mentioned in Theroem 3.1.

E(Xr|X > t)

=

∫ 1

t
xrf(x)dx,

=

∫ 1

t
xr

2αγxα−1(1− x)(2− x)α−1(xα(2− x)α)(γ−1)e(xα(2−x)α)γ

e− 1
dx,

=
2αγ

e− 1

∞∑
i=0

1

i!

∫ 1

t
(1− x)(2− x)αγ+αγi−1xr+αγ+αγi−1dx,

=
2αγ

e− 1

∞∑
i=0

1

i!

∫ 1

t
(xr+αγ+αγi−1 − xr+αγ+αγi)(2− x)αγ+αγi−1dx
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E(Xr|X > t)

=
2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

(
αγ+αγi− 1

j

)
(1− t)

×
(

1

r + αγ + αγi+ j
− 1

r + αγ + αγi+ j + 1

)
.

3.3 Quantile Function

To obtain the pth quantile function (denoted by Q(p)), we solve the equation
F (Q(p)) = p. Hence from Equation (3), we get

{Q(p)}2 − 2Q(p) + {ln(1 + p(e− 1))}
1
αγ . (9)

This equation can be further solved using the quadratic formula or by
numerical methods. We have also explored the changing behavior of median
with varying values of parameters α and γ. Thus, we put p = 0.5 in
Equation (9), where Q(p) denotes the median. We get,

{Q(p)}2 − 2Q(p) + {ln(0.5(e+ 1)}1/αγ .

The nature of median with respect to changing parameters is visualized
in Figure 3.

explored the changing behavior of median with varying values of parameters 𝛼 and 𝛾. Thus, we put 𝑝 =
0.5 in equation (9), where Q(p) denotes the median. We get, 

 {𝑄(𝑝)} − 2𝑄(𝑝) + {𝑙𝑛(0.5(𝑒 + 1)} / . 
 The nature of median with respect to changing parameters is visualized in Figure 3.  

 
Figure  3: Variation in median with respect to changing parameters (𝛼, 𝛾). 

 
3.4  Order Statistics  

In this section, we obtain the probability density and cumulative distribution functions of the rth 
order statistics, which refers to the rth sample point in the sample of total n points, when arranged in 
ascending order.  

Let 𝑋 , 𝑋 , … , 𝑋  be a random sample of size 𝑛, from the proposed GMTL distribution where we 
re-arange all the sample points in ascending order. We denote, 𝑋 : < 𝑋 : < ⋯ < 𝑋 : as the 
corresponding order statistics. The pdf 𝑓 (𝑥) of 𝑟 (for 𝑟 = 1,2, … , 𝑛) order statistics 𝑋 : is given as,  

 𝑓 (𝑥) =
!

( )!( )!
𝐹 (𝑥)[1 − 𝐹(𝑥)] 𝑓(𝑥) 

 =
!

( )!( )!
∑ (−1)

𝑛 − 𝑟
𝑙

𝐹 (𝑥)𝑓(𝑥) 

where,f(x) and F(x) denote the pdf and the cdf of the population. 
And the cdf of𝑟  order statistics 𝑋 : ,𝐹 (𝑥), is given as as  

 𝐹 (𝑥) = ∑
𝑛
𝑗 𝐹 (𝑥)[1 − 𝐹(𝑥)]  

 = ∑ ∑
𝑛
𝑗

𝑛 − 𝑗
𝑙

(−1) 𝐹 (𝑥). 

Thus, by using equations (3) and (4) the pdf 𝑓 (𝑥) and cdf 𝐹 (𝑥) of the 𝑟  order statistics based on a 
random sample of size 𝑛 from the proposed distribution is derived as follows- 

 

 𝑓 (𝑥) =
! ( )( )( ( ) ) ( )

( )!( )!
∑ ∑

( )

( )  (10) 

×
𝑛 − 𝑟

𝑙
𝑟 + 𝑙 − 1

𝑘
𝑒 ( ) ( ) 

 and  

 𝐹 (𝑥) = ∑ ∑ ∑
n
j

n − r
l

j + 1
k

( )

( )
𝑒 ( )

( )

. (11) 

3.5  Mean Deviation  
The mean deviation about mean is defined by,  

Figure 3 Variation in median with respect to changing parameters (α, γ).
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3.4 Order Statistics

In this section, we obtain the probability density and cumulative distribution
functions of the rth order statistics, which refers to the rth sample point in
the sample of total n points, when arranged in ascending order.

Let X1, X2, . . . , Xn be a random sample of size n, from the proposed
GMTL distribution where we re-arange all the sample points in ascending
order. We denote, X1:n < X2:n < · · · < Xn:n as the corresponding order
statistics. The pdf fr(x) of rth (for r = 1, 2, . . . , n) order statistics Xr:n is
given as,

fr(x) =
n!

(r − 1)!(n− r)!
F r−1(x)[1− F (x)]n−rf(x)

=
n!

(r − 1)!(n− r)!

n−r∑
l=0

(−1)l
(
n− r
l

)
F r+l−1(x)f(x)

where, f(x) and F(x) denote the pdf and the cdf of the population.
And the cdf of rth order statistics Xr:n, Fr(x), is given as

Fr(x) =
n∑
j=r

(
n
j

)
F j(x)[1− F (x)]n−j

=
n∑
j=r

n−j∑
l=0

(
n
j

)(
n− j
l

)
(−1)lF j+l(x).

Thus, by using Equations (3) and (4) the pdf fr(x) and cdf Fr(x) of the
rth order statistics based on a random sample of size n from the proposed
distribution is derived as follows –

fr(x) =
n!2αγxα−1(1− x)(2− x)(xα(2− x)α)α(γ−1)

(r − 1)!(n− r)!

×
n−r∑
l=0

∞∑
k=0

(−1)2r+3l−k−2

(1− e)r+l

×
(
n− r
l

)(
r + l − 1

k

)
e(x(2−x))αγ(r+l−k−1) (10)
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and

Fr(x) =

n∑
j=r

n−j∑
l=0

∞∑
k=0

(
n
j

)(
n− r

l

)(
j + 1

k

)
(−1)2j+3l−k

(1− e)j+l
e(x(2−x))αγ(j−k+l) .

(11)

3.5 Mean Deviation

The mean deviation about mean is defined by,

δ1(X) =

∫ 1

0
|x− µ|f(x)dx,

where µ refers to the mean.
The above expression can be simplified as follows

δ1(X) =

∫ µ

0
(µ− x)f(x)dx+

∫ 1

µ
(x− µ)f(x)dx.

Using integral by parts and putting E(X) =
∫ 1

0 xf(x)dx = µ, it
simplifies to

δ1(X) = 2µF (µ)− 2µ+ 2

∫ 1

µ
xf(x)dx,

where F (·) denotes the proposed cdf.
By Theorem 3.2,∫ 1

µ
f(x)dx =

2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

and thus,

δ1(X) = 2µF (µ)− 2µ

+
2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

(
αγ+αγi− 1

j

)
(1− µ)

×
(

1

r + αγ + αγi+ j
− 1

r + αγ + αγi+ j + 1

)
. (12)
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The mean deviation about median is defined as

δ2(X) =

∫ 1

0
|x−M |f(x)dx

=

∫ M

0
(M − x)f(x)dx+

∫ 1

M
(x−M)f(x)dx,

where M refers to the median.
Ater simplying the above expression by putting F (M) = 1

2 , we get

δ2(X) = −µ+ 2

∫ 1

M
xf(x)dx.

By Theorem 3.2,∫ 1

M
xf(x)dx =

2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

×
(
αγ+αγi− 1

j

)
(1−M)

×
(

1

r + αγ + αγi+ j
− 1

r + αγ + αγi+ j + 1

)
.

Thus,

δ2(X) = −µ+
2αγ

e− 1

∞∑
i=0

∞∑
j=0

1

i!
(−1)j2αγ+αγi−j−1

×
(
αγ+αγi− 1

j

)
(1−M)

×
(

1

r + αγ + αγi+ j
− 1

r + αγ + αγi+ j + 1

)
. (13)

3.6 Entropy

Entropy of a random variable measures the average level of information or
uncertainty inherent in the variable’s possible outcomes in this section, we
present the expression of Reńyi entropy (see [13]) which generalizes the
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Hartley and Shannon entropies. Let X has the pdf f(x) then Reńyi entropy
is defined as,

JR(β) =
1

1− β
log

[∫
fβ(x)dx

]
where β > 0 and β 6= 1.

From Equation (4) we get,∫ 1

0
fβ(x)dx =

∫ 1

0

[
2αγ

e− 1
(1− x)(x(2− x))αγ−1e(x(2−x))αγ

]β
dx,

and after simplification∫ 1

0
fβ(x)dx =

[
2αγ

e− 1

]β ∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)j+k(2)αβγ+αβγi−β

×
(
αβγ + αβγi−β

j

)(
β
k

)
×
(

1

αβγ + αβγi− β + j + k + 1

)
.

Hence we get

JR(β) =
β

1− β
log

(
2αγ

e− 1

)

+
1

1− β
log

{ ∞∑
i=0

∞∑
j=0

∞∑
k=0

(−1)j+k(2)αβγ+αβγi−β

×
(
αβγ+αβγi−β

j

)(
β
k

)
×
(

1

αβγ + αβγi− β + j + k + 1

)}
.

(14)

3.7 Stress-Strength Reliability

The stress-strength reliability is used in reliability theory as a measure of
the performance of the system in consideration under stress. In terms of
probability, the stress-strength reliability can be obtained as

R = P [X > Y ],
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where,X refers to the strength of the system and Y refers to the stress applied
on the system.

The probability R can be used to compare two random variables that
come across in various disciplines.

The stress-strength reliability,R for GMTL random variables whereX ∼
GMTL(α1, γ1) and Y ∼ GMTL(α2, γ2) (where the parameters may or may
not be equal) is given by

R =

∫ 1

0

(∫ x

0
fY (y, α2, γ2)dy

)
fX(x, α1, γ1)dx

R =

∫ 1

0
fX(x, α1, γ1)FY (x, α2, γ2)dx

on simplifying, we have,

R =
2α1γ1

(e− 1)2

[
Γ( α1γ1

α1γ1+α2γ2
)− Γ( α1γ1

α1γ1+α2γ2
,−1)

2(α1γ1 + α2γ2)(− 1)
α1γ1

α1γ1+α2γ2

− e− 1

2α1γ1

]
(15)

where, Γ· represents gamma integral and Γ(·, ·) represents incomplete gamma
integral.

3.8 Identifiability

A family of distributions is said to be identifiable in parameters if the distri-
bution of two members of the family are equal, i.e. f1(x,Θ1) = f2(x,Θ2),
then Θ1 = Θ2 for all values of x.

In order to prove our results based on identifiability, we use Theorem 1
given by [2]. It states that the density ratio, f1(x,Θ1)

f2(x,Θ2) , of two distinct (unequal
parameters) members of the family defined on the interval (a, b), either
converges to 0 or diverges to ∞, as x → a. For the GMTL distribution,
we have,

lim
x→0

f1(x, α1, γ1)

f2(x, α2, γ2)
=
α1γ1

α2γ2
(x(2− x))α1γ1−α2γ2e(x(2−x))α1γ1−(x(2−x))α2γ2

lim
x→0

f1(x, α1, γ1)

f2(x, α2, γ2)
=


0 if α1γ1 > α2γ2

∞ if α1γ1 < α2γ2

1 if α1γ1 = α2γ2

(16)
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This limit can be equal to 1 if α1γ1 = α2γ2. It is possible that this limit
is 1 even if the parametrs are not equal to each other.

Thus, the GMTL distribution is not indentifiable as the multiplication of
the two parameters may be the same for the distinct parameter values. If we
parameterise the distribution using c = αγ and α = c/γ, the limiting cases
of the ratio of density, from Equation (16) an be given as

lim
x→0

f1(x, c1, γ1)

f2(x, c2, γ2)
=


0 if c1 > c2

∞ if c1 < c2

1 if c1 = c2

(17)

Thus, the GMTL parameters, α and γ are identified if two members of
the GMTL family have same densities with same γ for different values of c
(i.e. αγ).

3.9 Stochastic Ordering

A random variable X is said to be stochastically greater (X≥stY ) than Y if
FX(x) ≥ FY (x) for all x. In a similar manner, X is said to be greater than Y
in the

• hazard rate order (X≥hrY ) if hY (x) ≥ hX(x) for all x
• mean residual life order (X≥mlrY ) if mX(x) ≥ mY (x) for all x
• likelihood ratio order (X≥lrY ) if fX(x)

fY (x) is an increasing function of x

Theorem 3.3 Letus have two independent random variables X and Y, such
that X ∼ GMTL(α1, γ1) and Y ∼ GMTL(α2, γ2). Then, we have the
following conditions

1. For γ1 = γ2 = γ and α1 ≥ α2, (X≥lrY ), (X≥mlrY ), (X≥hrY ) and
(X≥stY ) for all x.

2. For α1 = α2 = α and γ1 ≥ γ2, (X≥lrY ), (X≥mlrY ), (X≥hrY ) and
(X≥stY ) for all x.

Proof. The likelihood ratio of two independent random variables X and Y is
given by

fX(x;α1, γ1)

fY (x;α2, γ2)
=
α1γ1

α2γ2
(x(2− x))α1γ1−α2γ2e(x(2−x))α1γ1−(x(2−x))α2γ2
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We first consider Case I, γ1 = γ2 = γ and differentiate the above
likelihood ratio with respect to x. It gives

d

dx

(
fX(x;α1, γ)

fY (x;α2, γ)

)
=

2α1γ

α2

(α1 − α2)(1− x)(x(2− x))(α1−α2)γ

x(2− x)
. (18)

For α1 > α2, d
dx(fX(x;α1,γ)

fY (x;α2,γ) ) > 0, for all x. Thus, the likelihood ratio
increases as the value of x increases (increasing function of x). Hence, for
γ1 = γ2 = γ, (X≥lrY ). Now, by the result provided by [16], (X≥lrY ) ⇒
(X≥hrY )(X≥mlrY ) and (X≥stY ). Similarly, we consider the Case II,
α1 = α2 = α, and proceed in a similar way as above

d

dx

(
fX(x;α, γ1)

fY (x;α, γ2)

)
=

2γ1α

γ2

(γ1 − γ2)(1− x)(x(2− x))(γ1−γ2)α

x(2− x)
. (19)

For γ1 > γ2, d
dx(fX(x;α,γ1)

fY (x;α,γ2) ) > 0, for all x. Thus, the likelihood ratio
increases as the value of x increases (increasing function of x). Hence, for
α1 = α2 = α, (X≥lrY ). Now, by the result provided by [16], (X≥lrY ) ⇒
(X≥hrY )(X≥mlrY ) and (X≥stY ).

3.10 Ordinary Differential Equations for Density and Survival
Functions

We obtain the first order differential equations of density and survival func-
tions of the proposed GMTL distribution. It is done by calculating the first
derivatives of density and survival functions with respect to x.

The first order derivative of the pdf is

f ′(x) =

(
2αγ

e− 1

)
(x(2− x))αγ−1(1− x)e(x(2−x))αγ

×
[

2αγ(x(2− x))αγ(1− x)2 + (2αγ − 1)(1− x)2 − 1

x(2− x)(1− x)

]
.

Thus, the first order ODE for density function, by re-arranging the above
expression into a more meaningful form, is

y′ −
[

2αγ(x(2− x))αγ(1− x)2 + (2αγ − 1)(1− x)2 − 1

x(2− x)(1− x)

]
y = 0. (20)
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Table 1 Ordinary differential equations of GMTL density
First Order

α γ First Order ODE

1 1 y′ −
{
2(x(2− x))(1− x)2 + (1− x)2 − 1

x(2− x)(1− x)

}
y = 0

2 1 y′ −
{
4(x(2− x))2(1− x)2 + 3(1− x)2 − 1

x(2− x)(1− x)

}
y = 0

3 1 y′ −
{
6(x(2− x))3(1− x)2 + 5(1− x)2 − 1

x(2− x)(1− x)

}
y = 0

Table 2 Ordinary differential equations of GMTL survival function
First Order

α γ First Order ODE
1 1 z′ + 2(1− x)log[(1− z)(e− 1) + 1][(1− z)(e− 1) + 1] = 0

2 1 z′ + 4(1− x)log[(1− z)(e− 1) + 1][(1− z)(e− 1) + 1] = 0

3 1 z′ + 6(1− x)log[(1− z)(e− 1) + 1][(1− z)(e− 1) + 1] = 0

where, y = f(x) and y′ = df(x)
dx . We present the first order ODEs of the pdf,

for some considered parameters, in Table 1.
The survival function of the GMTL distribution given by z = SX(x) =

1− e(x(2−x))
αγ−1

e−1 .
On differentiating it w.r.t. x, we have

z′ = −2αγ(1− x)(x(2− x))αγe(x(2−x))αγ

Thus, on simplifying the above expression and re-arranging it we have,

z′ + 2αγ(1− x)log[(1− z)(e− 1) + 1][(1− z)(e− 1) + 1] = 0 (21)

where, z = SX(x) and z′ = dSX(x)
dx . For some considered values of the

parameters, first order ODEs of the survival function are presented in Table 2.

4 Maximum Likelihood Estimation and Simulation

4.1 Point Estimation

We obtain the maximum likelihood estimators of the parameters α and γ by
maximising the likelihood or log-likelihood function with respect to x. The
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log-likelihood function from the proposed distribution usig a sample of size
n is given by,

logL = nlog
2

e− 1
+ nlog(α) + nlog(γ) +

n∑
i=1

log(1− xi) + (αγ − 1)

×
n∑
i=1

log(xi(2− xi)) +

n∑
i=1

(xi(2− xi))αγ (22)

Differentiating it with respect to the both parameters separately we get,

dlogL

dα
=
n

α
+ γ

n∑
i=1

log(xi(2− xi))

+ γ
n∑
i=1

(xi(2− xi))γαlog(xi(2− xi))

and

dlogL

dγ
=
n

γ
+ α

n∑
i=1

log(xi(2− xi))

+ α
n∑
i=1

(xi(2− xi))γαlog(xi(2− xi)).

In order to get the point estimates, we equate both the equations to zero.
We get the MLEs α̂ and γ̂ of parameters α and γ respectively.

We obtain the MLEs α̂ and γ̂ of the parameters α and γ respectively
by equating the above equations to zero and solving the two non-linear
equations. These equations may not be solved by any analytical methods.
Thus, use of numerical methods is required. We recommend the use of
Newton Raphson method where the initial choice of roots might be obtained
using the contour plots.

4.2 Asymptotic Confidence Intervals

In this section, we obtain the confidence intervals of the parameters on the
basis of the asymptotic properties of the maximum likelihood estimators. We
use the diagonal elements of the Fisher information matrix I−1(α̂, γ̂) and use
the estimators of its elements to obtain the estimated asymptotic variance for
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the parameters α and γ respectively. As this is an asymptotic propery, it is
only valid for large sample problems.

Thus, two sided 100(1 − β)% confidence interval of α and γ can be
defined as α̂ ± Zβ/2

√
var(α̂) and γ̂ ± Zβ/2

√
var(γ̂) respectively. Where

Zβ/2 denotes the upper β/2% point of standard normal distribution. Fisher
Information matrix can be estimated by,

I(α̂, γ̂) =


−d2log L

dα2

−d2log L

dαdγ

−d2log L

dαdγ

−d2log L

dγ2


(α̂,γ̂)

(23)

where,

d2logL

dα2
=
−n
α2

+ γ2
n∑
i=1

(xi(2− xi))γα [logxi(2− xi)]2

d2logL

dγ2
=
−n
γ2

+ α2
n∑
i=1

(xi(2− xi))γα [logxi(2− xi)]2

d2logL

dαdγ
=

n∑
i=1

log(xi(2− xi))

+
n∑
i=1

(xi(2− xi))αγ log(xi(2− xi))[log(xi(2− xi))αγ + 1]

4.3 Random Number Generation

The steps to generate random numbers from the proposed GMTL(α, γ)
distribution are –

1. Select n, α and γ.
2. Generate a standard uniform random number, u ∼ U(0, 1).
3. Using the quantile function, compute

x = 1−
√

1− {log(1 + u(e− 1))}1/αγ .

4. Repeat the steps 2 and 3, n times to get a sample of size n,
{x1, x2, . . . , xn} from GMTL(α, γ).



GDUS-Modified Topp-Leone Distribution 317

Illustration:

1. We fix n = 10, α = 2 and γ = 3.
The random sample generated is: {0.7575, 0.7344, 0.9391, 0.7976,
0.6713, 0.8507, 0.4252, 0.7743, 0.7354, 0.7549}

2. We fix n = 20, α = 5 and γ = 1.

The random sample generated is: {0.5901, 0.6160, 0.8302, 0.7302,
0.7026, 0.3785, 0.4896, 0.6976, 0.4615, 0.7156, 0.5139, 0.8669, 0.8872,
0.7725, 0.5092, 0.7548294 0.5602, 0.5448, 0.8950, 0.3764}

4.4 Simulation Study

In order to prove the consistency of the maximum likelihood estimators, of
the parameters, we conduct an extensive simulation study. In this study, we
simulate 10000 samples for the given value of parameters for increasing val-
ues of n (i.e., n = 20,40,. . . 200). We then compute MSE and mean absolute
bias of the MLEs on the basis of these samples and study the performance
of mean squared error and mean absolute bias as a function of sample size.
The MSE and mean absolute bias (AB) are computed using the following
formulae,

MSE (α̂) =
1

10000

10000∑
j=1

(α̂j − α)2, AB(α̂) =
1

10000

10000∑
j=1

|α̂j − α|,

MSE (γ̂) =
1

10000

10000∑
j=1

(γ̂j − γ)2, AB(γ̂) =
1

10000

10000∑
j=1

|γ̂j − γ|.

We present the results of simulation study for parameters, (α, γ)=
(0.5,1.5) in Table 3 and the results are visualized in Figure 4.

From Figure 4, it can be concluded that the mean squared error and mean
absolute bias decrease as the sample size (n) increases for 10000 simulated
samples. This proves that the maximum likelihood estimators are consistent.

5 Real Data Fitting

In this section, we analyze a real dataset in order to illustrate the performance
of the proposed GMTL(α, γ) distribution. The GMTL distribution is fitted to
the data of recovery rates of CD34+ cells after peripheral blood stem cell
(PBSC) transplants. The study was conducted with 239 patients between
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Table 3 Mean squared error and mean absolute bias for (α, γ) for simulated samples
(α, γ) = (0.5, 1.5)

Sample Size MSE(α̂) AB(α̂) MSE(γ̂) AB(γ̂)
20 0.0165 0.0966 0.0013 0.0292
40 0.0071 0.0653 0.0006 0.0203
60 0.0045 0.0525 0.0004 0.0169
80 0.0034 0.0461 0.0003 0.0157
100 0.0026 0.0404 0.0002 0.0135
120 0.0021 0.0369 0.0002 0.0122
140 0.0019 0.0345 0.0002 0.0114
160 0.0016 0.0319 0.0001 0.0105
180 0.0014 0.0302 0.0001 0.0100
200 0.0012 0.0284 0.0001 0.0094

In order to prove the consistency of the maximum likelihood estimators, of the parameters, we 
conduct an extensive simuationstudy. In this study, we simulate 10000 samples for the given value of 
parameters for increasing values of n (i.e., n=20,40,…200). We then compute MSE and mean absolute 
bias of the MLEs on the basis of these samples and study the performance of mean squared error and 
mean absolute bias as a function of sample size. The MSE and mean absolute bias (AB) are computed 
using the following formulae, 

𝑀𝑆𝐸(𝛼) =
1

10000
(𝛼 − 𝛼) , 𝐴𝐵(𝛼) =

1

10000
|𝛼 − 𝛼|, 

𝑀𝑆𝐸(𝛾) =
1

10000
(𝛾 − 𝛾) , 𝐴𝐵(𝛾) =

1

10000
|𝛾 − 𝛾|. 

We present the results of simulation study for parameters, (𝛼, 𝛾)= (0.5,1.5) in Table 3 and the results are 
visualized in Figure 4.  

Table  3: Mean squared error and mean absolute bias for (𝛼, 𝛾) for simulated samples 
(𝛼, 𝛾) = (0.5,1.5) 

Sample Size MSE(𝛼) AB(𝛼) MSE(𝛾) AB(𝛾) 
20 0.0165 0.0966 0.0013 0.0292 
40 0.0071 0.0653 0.0006 0.0203 
60 0.0045 0.0525 0.0004 0.0169 
80 0.0034 0.0461 0.0003 0.0157 
100 0.0026 0.0404 0.0002 0.0135 
120 0.0021 0.0369 0.0002 0.0122 
140 0.0019 0.0345 0.0002 0.0114 
160 0.0016 0.0319 0.0001 0.0105 
180 0.0014 0.0302 0.0001 0.0100 
200 0.0012 0.0284 0.0001 0.0094 

 
 

 
Figure  4: MSE and Mean Absolute Bias of 𝛼 and 𝛾 for simulated samples with 𝛼 = 0.5 and 𝛾 = 1.5 

From Figure 4, it can be concluded that the mean squared error and mean absolute bias decrease as the 
sample size (n) increases for 10000 simulated samples. This proves that the maximum likelihood 
estimators are consistent.  

Figure 4 MSE and mean absolute bias of α̂ and γ̂ for simulated samples with α = 0.5 and
γ = 1.5.

2003 and 2008 at the Edmonton Hematopoietic Stem Cell Lab in Cross
Cancer Institute-Alberta Health Services. The data is present in R package
{simplexreg} (refer R Core Team (2013) [14]), by the title sdac. The recovery
rates can be extracted using the command sdac$rcd. We have used α = 5 and
γ = 2 as initial values of the iterative algorithm. Thus, the obtained MLEs of
the parameters of the GMTL distribution are: α̂ = 5.1644 and γ̂ = 2.4269.

Figure 5 gives the fitting of different models that are considered over the
given data set (refer Sharma(2020) [18]). The K-S statistic for the fitting is
0.0544, with p-value 0.8713. It suggests that the proposed GMTL distribution
is quite suitable for fitting of this data.
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Figure  5: Fitting of different models on the given dataset 

 
Table  4: Maximum value of log(L), MLEs, AIC, BIC, K-S statistics and p-values for various fitted 

models 
Comparison of Distributions 

  Model 𝑙𝑜𝑔(𝐿) MLEs AIC BIC K-S statistic p-value 
GMTL(𝛼, 𝛾)  192.8600 (5.1644,2.4269) -381.7200 -374.7671 0.0544 0.8713 
Beta(𝛼, 𝛽) 191.8672 (8.6671,2.2859) -379.7345 -372.7816 0.0669 0.6578 
Kumaraswamy (𝛼, 𝛽) 190.7640 (6.6942,2.4535) -379.5280 -370.5751 0.0753 0.5067 
Unit-Gamma(𝛼, 𝛽)  191.8867 (2.2808,9.2516) -379.7734 -372.8205 0.1380 0.0210 
Unit-Weibull(𝛼, 𝛽) 192.0157 (8.0559,1.6181) -380.0314 -373.0785 0.0585 0.8068 

 
 

6  Conclusion 
In this paper, atwo-parameter extension of the J-shaped Topp-Leone distribution called as GDUS-

Modified Topp-Leone (GMTL) distribution is introduced for a possible application of modeling of 
recovery rates of CD34+ cells after peripheral blood stem cell (PBSC) transplants. The proposed 
distribution has an interesting property to accommodate variety of density and hazard rate functions like 

Figure 5 Fitting of different models on the given dataset.

Further, we compare the goodness-of-fit statistics with Beta,
Kumaraswamy, unit-Gamma and unit-Weibull distributions which are also
defined on the unit interval. We use some criteria like- Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) to compare the
models under consideration and identify the best possible model for the
given data set. The model with the smallest values of AIC and BIC statistics
is considered to be the best possible model among the distributions under
comparison. The statistics are computed by

AIC = 2k − 2log(L)

BIC = klog(n)− 2log(L)

where, k is the number of estimated parameters, L is the maximum value
of likelihood function and n is the number of observations. We also use the
K-S statistics and their corresponding p-values for comparison of different
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Table 4 Maximum value of log(L), MLEs, AIC, BIC, K-S statistics and p-values for various
fitted models

Comparison of Distributions

Model log(L) MLEs AIC BIC K-S statistic p-value

GMTL(α, γ) 192.8600 (5.1644,2.4269) -381.7200 -374.7671 0.0544 0.8713
Beta(α, β) 191.8672 (8.6671,2.2859) -379.7345 -372.7816 0.0669 0.6578
Kumaraswamy (α, β) 190.7640 (6.6942,2.4535) -379.5280 -370.5751 0.0753 0.5067
Unit-Gamma(α, β) 191.8867 (2.2808,9.2516) -379.7734 -372.8205 0.1380 0.0210
Unit-Weibull(α, β) 192.0157 (8.0559,1.6181) -380.0314 -373.0785 0.0585 0.8068

models. The model having the smallest value of the K-S statistic is considered
to be the best model amongst all the models under consideration.

Table 4 presents the MLEs, maximum values of log-likelihood functions,
AIC and BIC criteria along with the K-S statistics and the p-values. From the
table, we conclude that the proposed GDUS-Modified Topp Leone (GMTL)
distribution has the highest log (L) value, smallest values of AIC, BIC and
K-S- statistics among the all distributions under consideration. Therefore,
we recommend the use of the proposed GMTL distribution for modelling
the given dataset over the existing datat sets over the unit range which were
considered.

6 Conclusion

In this paper, a two-parameter extension of the J-shaped Topp-Leone dis-
tribution called as GDUS-Modified Topp-Leone (GMTL) distribution is
introduced for a possible application of modeling of recovery rates of CD34+
cells after peripheral blood stem cell (PBSC) transplants. The proposed
distribution has an interesting property to accommodate variety of density
and hazard rate functions like increasing, decreasing, and bathtub shapes. The
expressions of ordinary moments, conditional moments, quantile function,
mean deviation, order statistics, and entropy are discussed. Other important
properties of the proposed distribution like- identifiability, ordinary differ-
ential equations, stochastic orderings, and stress-strength reliability are also
discussed (also refer [19]).

The estimation techniques for the parameters are also discussed. The
simulation study that was conducted proved the consistency of the ML
estimators of the parameters. Further, an algorithm for the generation of a
random sample from the proposed distribution is also given to facilitate future
studies.
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According to the various goodness-of-fit criteria, like AIC, BIC, and K-
S statistics, the proposed GMTL distribution is a better model for fitting
the recovery rates of CD34+ cells data over the Beta, Kumaraswamy, unit-
Gamma, and unit-Weibull distributions (also refer [18]). Summing up, it can
be concluded that the GMTL distribution can be effectively used for modeling
real data defined on the unit interval.
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