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Abstract

The stress-strength model is a basic tool used in evaluating the reliability
(R). It shows that a component or system with stress (Y) and strength (X)
will fail if the stress exceeds the strength, and its counterpart allows it to
function. Usually, the statistical independence between X and Y are assumed
and reliability models are extensively developed in the literature. However,
in real life, there are many situations in which the dependence stress-strength
is taken into account. So it is important to consider and model the asso-
ciation between them. In this paper, we estimated R when the stress and
strength parameters are linked by a Fralie-Gumble-Morgenstern copula with
Lindley marginals. The estimates of reliability and dependence parameter are
obtained by using maximum likelihood estimation (MLE), inference function
margins (IFM), and semi parametric (SP) methods. In addition, the length
of the asymptotic confidence interval and the coverage probability of the
dependence parameter are also computed. A simulation study is performed
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to evaluate the effectiveness of the various estimates, and a real data set is
also used for illustrative purposes.

Keywords: Stress-strength reliability, Lindley distribution, Fralie-Gumble-
Morgenstern, maximum likelihood estimation, inference function margins,
semi-parametric method, Monte-Carlo simulation.

1 Introduction

Lindley (1958, 1965) [33, 34] firstly proposed Lindley distribution in the
context of fiducial Bayesian statistics. In the recent years, Lindley distribu-
tion has attracted the researchers due to its dominating characteristics over
exponential and weibull distributions. It has been widely used in several
disciplines like, medical, engineering, finance, etc., where modeling and
analyzing lifetime data are vital. Ghitany et al. (2008) [21] studied several
statistical properties and maximum likelihood estimation of the parameters
of Lindley distribution. Further, they reported that Lindley distribution is a
special mixture of exponential(θ) and gamma(2,θ) and observed that Lindley
distribution is the best fit as compared to exponential distribution for bank
service time data. Mazucheli and Achcar (2011) [35] analyzed competing
risk lifetime data using the Lindley distribution. Gupta and Singh (2013) [22]
investigated the hybrid censored lifetime data by using classical and Bayesian
techniques on the assumption that lifetime follows the Lindley distribution.

Many researchers worked on modifications of Lindley distribution by
combining it with other life distributions to make it more flexible to model
time to failure data. For instance, weighted Lindley distribution by Ghitany
et al. (2011) [20], extended Lindley distribution proposed by Bakouch et al.
(2012) [5], the exponential Poisson Lindley distribution by Barreto- Souza
and Bakouch (2013) [8] and quasi Lindley distribution introduced by Shanker
and Mishra (2013) [47]. Recently, a new unit-improved second-degree Lind-
ley distribution was introduced by Altun and Cordeiro (2020 [3], XLindley
distribution by Sarra and Zeghdoudi (2021) [44] and Odd Lindley Burr XII
Model proposed by Korkmaz and Hamedani (2018) [38].

In this article, we use the two-parameter Lindley distribution introduced
by Shanker et al. (2013) [48], to estimate the stress-strength reliability using
copula function. The motivation behind to assume Lindley distribution is
that because it is quite suitable to model real data than the other well
known life distributions. The probability density function (p.d.f) and cumu-
lative distribution function (c.d.f) of two-parameter Lindley distribution are
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given by

fX(x;α, θ) =
θ2

θ + α
(1 + αx)e−θx, x > 0, θ > 0, α > −θ, (1)

FX(x;α, θ) = 1− θ + α+ αθx

θ + α
e−θx, x > 0, θ > 0, α > −θ. (2)

When α = 1, then the distribution in (1) and (2) reduces to the corre-
sponding p.d.f and c.d.f of one parameter Lindley distribution and α = 0 it
reduces to exponential distribution.

The above p.d.f can be expressed as

fX(x;α, θ) = pf1(x) + (1− p)f2(x), (3)

where f1(x) = θe−θx and f2(x) = θ2xe−θx. Thus two parameter Lindley
distribution is a mixture of exponential (θ) and gamma (2, θ) with mixing
proportions p = θ

θ+α and (1− p) = α
θ+α respectively.

In reliability analysis, stress-strength models usually describes to access
the impact of two quantities on a electrical or electronic system. The system
reliability under stress-strength setup is defined by R = P (Y < X),
which measures the system’s probability of performing its intended function.
The idea of stress-strength reliability has been widely applied in several
disciplines. For example, in engineering sciences, stress-strength reliability
models are used to estimate the system reliability R. In medical sciences, R
can be used to estimate the amount (effect) of drug administered between
two population groups. In addition to this, it is also used extensively in eco-
nomics, sociology, psychology, behavioural sciences, agricultural sciences,
aeronautical and military sciences. Basically, the problem of stress-strength
reliability estimation was initiated around seven decades ago see, Birnbaum
and McCarty (1958) [10] and later, the idea of stress-strength has been
gradually spread over all the important disciplines of science and humanities
till the twenty first century, since it has potential to measure of distinguish
between more than two population distributions.

In literature, a reasonable amount of work in this direction has been
attempted by several authors by considering both stress and strength follow
some well-known either same or different families of univariate life distri-
butions, whereas stress (Y) and the strength (X) are assumed independent
and identically distributed (i.i.d) as well as independent and non-identically
distributed random variables. Al-Mutairi et al. (2013) [2] attempted the esti-
mation of stress-strength reliability for Lindley variables with different shape
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parameters by adopting UMVUE, MLE, and Bayes approach. Asymptotic
confidence interval, bootstrap confidence intervals, and Credible interval of
R has been proposed. Singh et al. (2014) [50] have proposed estimation
of system reliability for generalized Lindley stress-strength model. Ghitany
et al. (2015) [19] discuss the point and interval estimation of R for power
Lindley distribution based on MLE, nonparametric and bootstrap methods.
Sharma et al. (2015) [49] described stress-strength reliability model for
inverse Lindley distribution with applications to head and neck cancer data.
Khan and Jan (2015) [27] considered the MLE of R by assuming strength
follows a finite mixture of two-parameter Lindley and stress follows expo-
nential distributions. Biswas et al. (2021) [11] drawn inferences on R with
log-Lindley distribution under both classical and Bayesian set-up, and an
application to insurance and financial credibility is discussed. A complete
review on stress-strength reliability modelling is given in Kotz and Pensky
(2003) [29]. Some of very recent contributions in this direction are, Kundu
and Raqab (2015) [31], Rostamian and Nematollahi (2019) [42], Chandra and
Rathaur (2020) [13], Baro-Tijerina et al. (2020) [7] and references therein.
In aforesaid attempts, the prime reason for choosing independence between
these two variables is its mathematical and computational simplicity.

Later, some amount of work on estimation of stress-strength reliability
of multi-component system is available in the literature by assuming either
dependent stresses with common strength or otherwise for bivariate types of
life distributions (e.g., exponential, normal, log-normal, Pareto and gamma
margins) see, Gupta and Subramanian (1998) [23], Chandra and Pandey
(2012) [12] and references therein. These attempts have focused only on esti-
mating reliability rather than exploring the different forms of the dependence
relationship between the stresses or strengths or otherwise and estimating the
dependence parameter.

However, in real life, there are situations in which the dependence
between stress-strength is taken into account. Some real life scenarios are:

1. In engineering application, an electric or electronic supersonic system
is configured (desired strength) with the desired number of subsystems
or components. Assume each of these components is associated and
functioning. If one of the components is disconnected or weaker, then
the system lacks full performance. Hence it is important to measure
the level of dependence among the components in terms of stress and
strength variables.
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2. In medical application, a pharmaceutical manufacturing company pro-
duces new drugs, a proportion of several substances are mixed for a
desired capacity of a drug (in mg) to resist(strength) the effect on
diseases to kill off the harmful viruses(stress) in the individual body,
where each of substances used in a drug are chemically associated in
performing their combined effect.

3. In social and political system, a political ruling party may run the stable
government and have inherent bureaucratic and constitutional power
(strength) for better survival for a desired period but government may
fail to survive if they fail to address the challenges in different sectors
of humanities. Where failure of internal social security issues, dispute
of neighbor states/countries, strikes, war, terrorist attacks, cyber-attacks
etc. are various kinds of sensitive issues may becomes stresses for ruling
party.

So it is therefore important to consider and model the association between
stress (Y) and the strength (X). One way to model the dependence between
X and Y is using copulas when marginal distributions are known. But until
now, only very few works cited in the literature on the estimation of stress-
strength reliability in a dependence setup. Domma and Giordano (2013) [16]
considered Farlie–Gumbel–Morgenstern (FGM) and generalized FGM cop-
ula to estimate R with Burr system of margins. Vaidyanathan and Sharon
(2016) [53] derived the expression of stress-strength reliability when X and
Y follow one parameter Lindley distribution. Ahmed et al. (2020) [1] studied
the estimation of R based on MLE, IFM and Bayesion estimation approach.
A very recent development on independent and dependent stress-strength
reliability model for the multi-state system is referred to Bai et al. (2021) [4].
Some more work about dependent stress-strength reliability using copula
function may refer to Patil and Naik-Nimbalkar (2017) [41], Barbiero (2017)
[6] and Domma and Giordano (2012) [15].

The main objective of this study is to estimate the dependence stress-
strength reliability R by considering both stress (Y) and the strength (X)
follow independent and non-identical two-parameter Lindley distribution.
Further, a Farlie-Gumble-Morgenstern Bivariate Lindley (FGMBL) distri-
bution is proposed and several statistical properties of FGMBL distribution
are derived. We investigated the expression of stress-strength reliability R
and dependence parameter τ of FGMBL distribution by using three different
estimation methods namely, MLE, IFM, and SP methods.
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The remaining Sections of the paper are arranged as follows. Section 2
gives a small review on copula function. In Section 3, FGMBL distribution
is proposed. In Section 4, we derived some statistical properties of FGMBL
distribution. The dependence stress-strength reliability and associated prop-
erties are derived in Section 5. In Section 6, Parameter Estimation of R and τ
are carried out through MLE, IFM and SP. Asymptotic confidence interval of
dependence parameter is presented in Section 7. A Monte-Carlo simulation
study is performed in Section 8. A real data set is analysed in Section 9.
Finally, the study is concluded in Section 10.

2 Copulas

A copula is a statistical approach that establishes the relationship between
random variables. It is a function that connects the marginal distributions to
the joint distribution function and models the association between them. Sklar
(1973) [51] developed the theory of copula function by formulating a result in
which any multivariate distribution function can be represented by using its
marginal distributions and an appropriate copula function, which we briefly
review below

Let F be a joint distribution function with margins F1, F1 . . . , Fd. Then
there exists a copula C : [0, 1]d → [0, 1] such that, for all x1, x2 . . . , xd in R̄,

F (x1, x2. . ., xd) = C(F1(x1). . ., Fd(xd)). (4)

If the margins are continuous, then C is unique otherwise C is uniquely
determined onRan(F1)×· · ·×Ran(Fd), where Ran(Fi) denoting the range
of Fi. Conversely, if C is a copula and F1, . . ., Fd are univariate c.d.f.s, then
the function F defined in (4) is a joint c.d.f. with margins F1, . . ., Fd.

An important feature of the this result is that the marginal distributions
need not be in the same class of distributions. This flexibility of copu-
las makes them potentially useful when building multivariate models. A
detailed introduction to copulas including their mathematical and statistical
foundations is provided by Nelsen (2007) [39].

3 FGM Bivariate Lindley Distribution

Farlie-Gumbel-Morgenstern family of distributions proposed by Morgenstern
(1956) [37], which is one of most commonly used family of copula in
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practice. The c.d.f of Morgenstem family of bivariate distributions is given by

F(X,Y )(x, y) = FX(x)GY (y)(1 + τ(1− FX(x))(1−GY (y))),

−1 ≤ τ ≤ 1, (5)

where FX and GY denote the marginal c.d.f’s with dependence parameter
τ . When τ = 0, then X and Y reduce to the independent situation. Then
corresponding p.d.f is given as

f(X,Y )(x, y) = fX(x)gY (y)(1 + τ(1− 2FX(x))(1− 2GY (y))),

−1 ≤ τ ≤ 1, (6)

where fX and gY are the marginal p.d.f’s of X and Y respectively.
We assume that both the random variables X and Y are independent but

not identically follow Lindley distribution and their marginal c.d.fs are given
by

FX(x;α1, θ1) = 1− θ1 + α1 + α1θ1x

θ1 + α1
e−θ1x, x > 0, θ1 > 0, α1 > −θ1,

(7)

GY (y;α2, θ2) = 1− θ2 + α2 + α2θ2y

θ2 + α2
e−θ2y, y > 0, θ2 > 0, α2 > −θ2.

(8)

and the corresponding p.d.f’s are

fX(x;α1, θ1) =
θ2

1

θ1 + α1
(1 + α1x)e−θ1x, x > 0, θ1 > 0, α1 > −θ1, (9)

gY (y;α2, θ2) =
θ2

2

θ2 + α2
(1 + α2y)e−θ2y, x > 0, θ2 > 0, α2 > −θ2.

(10)

Further, the joint c.d.f and p.d.f of FGMBL distribution are obtained as

F(X,Y )(x, y) =

[
1− θ1 + α1 + α1θ1x

θ1 + α1
e−θ1x

] [
1− θ2 + α2 + α2θ2y

θ2 + α2
e−θ2y

]
.{

1 + τ
(θ1 + α1 + α1θ1x)(θ2 + α2 + α2θ2y)e−θ1x−θ2y

(θ1 + α1)(θ2 + α2)

}
,

− 1 ≤ τ ≤ 1, x, y > 0, θ1, θ2 > 0, α1 > −θ1, α2 > −θ2,
(11)
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Figure 1 Plot of FGMBL distribution for θ1 = 0.8, α1 = 0.3, θ2 = 0.1, α2 = 0.3 and
τ = 0.9.

and

f(X,Y )(x, y) =
θ2

1θ
2
2(1 + α1x)(1 + α2y)e−θ1x−θ2y

(θ1 + α1)(θ2 + α2){
1 + τ

[
2(θ1 + α1 + α1θ1x)

θ1 + α1
.e−θ1x − 1

]
[

2(θ2 + α2 + α2θ2y)

θ2 + α2
e−θ2y − 1

]}
,

− 1 ≤ τ ≤ 1, x, y > 0, θ1, θ2 > 0,

α1 > −θ1, α2 > −θ2. (12)

A plot of p.d.f and c.d.f of FGMBL distribution for different choices of
parameter values are given in the following Figures 1 and 2 respectively.

4 Some Properties of FGM Bivariate Lindley Distribution

In this Section, we have derived some important statistical properties of
FGMBL distribution, such as the conditional distribution, moment generating
function, and positive quadrant dependence.

4.1 Conditional Distribution

The conditional c.d.f of X given Y = y of FGMBL distribution is given by

FX/Y (x/y) =

(
1− τ [

2(θ2 + α2 + α2θ2y)

(θ2 + α2)
e−θ2y − 1]

)
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Figure 2 Plot of FGMBL distribution for θ1= 0.8, α1 = 0.3, θ2 = 0.1, α2 = 0.3 and
τ = −0.9. (

1− (θ1 + α1 + α1θ1x)

(θ1 + α1)
e−θ1x

)
+ τ

(
2(θ2 + α2 + α2θ2y)

(θ2 + α2)
e−θ2y − 1

)
(

1− (θ1 + α1 + α1θ1x)2

(θ1 + α1)2
e−2θ1x

)
,

(13)

and the corresponding p.d.f is given as

fX/Y (x/y) =
θ21(1 + α1x)e−θ1x

(θ1 + α1)

[
1 + τ

(
2(θ1 + α1 + α1θ1x)

(θ1 + α1)
e−θ1x − 1

)
.

(
2(θ2 + α2 + α2θ2y)

(θ2 + α2)
e−θ2y − 1

)]
. (14)

Next the conditional expectation of X given Y = y is obtained as

E[X/Y = y] =
1

θ1(θ1 + α1)

[
2α1 + θ1 − τ

(
2(θ2 + α2 + α2θ2y)

(θ2 + α2)
e−θ2y − 1

)
.(

3α2
1 + 6α1θ1 + 2θ21

4(θ1 + α1)

)]
. (15)

Similarly, we can derive the expressions of FY/X(y/x), fY/X(y/x) and
E[Y/X = x].
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4.2 Moment Generating Function

Let (X,Y) be a two-dimensional random variable with joint p.d.f f(X,Y )(x, y),
then the moment generating function (m.g.f) of (X,Y) is defined as

M(X,Y )(t1, t2) = E(et1xet2y)

=

∫ ∞
0

∫ ∞
0

et1xet2yf(XY )(x, y)dydx, (16)

where (t1, t2) are real parameters.
Using (16) and (12), the m.g.f of FGMBL distribution is obtained as

M(X,Y )(t1, t2) = M + τ
2∏
i=1

Ki(θi, αi, ti), (17)

where

M =
θ2

1(θ1 − t1 − α1)

(θ1 + α1)(θ1 − t1)2

θ2
2(θ2 − t2 − α2)

(θ2 + α2)(θ2 − t2)2
,

Ki(θi, αi, ti) =
2θ2
i

(θi + αi)2(2θi − ti)3
(t2i (θi + αi)− ti(4θ2

i + 6θiαi + α2
i )

+ 4θ3
i + 8αiθ

2
i + 4θiα

2
i )−

θ2
i (θi − ti + αi)

(θi + αi)(θi− ti)
, i = 1, 2.

4.3 Positive Quadrant Dependence(PQD)

The Positive quadrant dependence property was proposed by Lehmann
(1966) [32] and in the bivariate case, it is defined as follows:

PQD(X,Y ) = P (X > x, Y > y) ≥ P (X > x)P (Y > y), ∀ x, y. (18)

A reverse inequality of (18) defines negative quadrant dependence
(NQD). Then the following theorem gives us a condition for the FGMBL
to be positive (negative) quadrant dependent.

Theorem 1 FGMBL distribution is PQD (NQD) for positive (negative) value
of θ.

Proof. Consider

S(x, y)− S(x)S(y)
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= P (X > x, Y > y)− P (X > x)P (Y > y)

=
(θ1 + α1 + α1θ1x)e−θ1x(θ2 + α2 + α2θ2y)e−θ2y

(θ1 + α1)(θ2 + α2)

τ

(
1− (θ1 + α1 + α1θ1x)e−θ1x

(θ1 + α1)

)(
1− (θ2 + α2 + α2θ2y)e−θ2y

(θ2 + α2)

)
= τφ(x, y), (19)

where S(x,y) be the bivariate survival function and

φ(x, y) =
(θ1 + α1 + α1θ1x)e−θ1x(θ2 + α2 + α2θ2y)e−θ2y

(θ1 + α1)(θ2 + α2)
.(

1− (θ1 + α1 + α1θ1x)e−θ1x

(θ1 + α1)

)(
1− (θ2 + α2 + α2θ2y)e−θ2y

(θ2 + α2)

)
= S(x)S(y)F (x)G(y) ≥ 0; S(.), F (.) ≥ 0, ∀ x, y ≥ 0,

and thus the following inequalities of τφ(x, y) is given by

τφ(x, y)

{
≥ 0; τ > 0,∀ x, y ≥ 0,

≤ 0; τ < 0,∀ x, y ≥ 0,
(20)

which implies the condition given in (20). Hence FGMBL distribution is
PQD (NQD) for positive (negative) values of τ . Thus FGMBL distribution
possesses both positive and negative quadrant dependence.

5 Reliability Measures

In this section, we derived some important reliability characteristics of
FGMBL distribution, which includes dependence stress-strength reliability,
hazard rate function, Clayton-Oakes association measure, mean residual life,
vitality function, totally positive of order 2 or reverse rule of order 2(TP2 or
RR2), right-tail increasing, left-tail decreasing and mean time to failure.

5.1 Reliability for Dependence Stress and Strength

In this section, we assume that stress (Y) and strength (X) are jointly dis-
tributed according to FGMBL distribution with dependence parameter τ , then
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the corresponding R is derived as

R = P (Y < X) =

∫ ∞
0

∫ x

0
f(X,Y )(x, y)dydx

= 1− 1

(θ1 + α1)(θ2 + α2)(θ1 + θ2)3

(
θ2

1((θ2
1 + 2θ2

2 + 3θ1θ2

+ (θ1 + 3θ2)α1)α2 + α1(θ1θ2 + θ2
2) + θ3

2 + 2θ1θ
2
2 + θ2θ

2
1)

)
+ τ

(
1

(θ1 + α1)(θ2 + α2)(θ1 + θ2)3

[
θ2

1((θ2 + α2)θ2
1 + (2θ2

2 + 3θ2α2

+ 2α1θ2 + α1α2)θ1 + θ3
2 + 3θ2

2α2 + 3α1α2θ2)

]
− θ2

1

(θ1 + α1)(θ2 + α2)2(2θ2 + θ1)3

[
(2θ2 + θ1)3(θ2 + α2)2

+ (2θ2 + θ1)2[(θ2 + α2)2α1 + 2α2θ
2
2 + 2θ2α

2
2] + 4α1(2θ2 + θ1)

(α2θ
2
2 + θ2α

2
2) + 6α1θ

2
2α

2
2

]
− 2θ2

1

(θ1 + α1)(θ2 + α2)(θ1 + θ2)3

[
((θ2 + α2)θ2

1 + (2θ2
2 + 2θ2α2

+ 3α1θ2 + α1α2)θ1 + θ3
2 + 3θ2

2α2 + 3α1α2θ2) +
1

(θ1 + α1)

((θ1 + θ2)3(θ1 + α1)(θ2 + α2) + (θ1 + θ2)2[(θ2 + α2)α2
1

+ (α2θ2 + 2θ1θ2 + 2θ1α2)α1 + θ1θ2α2] + (θ1 + θ2)[3θ1θ2α1α2

+ (2α2θ2 + θ1θ2 + α2θ2)α2
1] + 4θ1θ2α

2
1α2))

]
+

2θ2
1

(θ2 + α2)2(θ1 + α1)(2θ2 + θ1)3[
(2θ2 + θ1)3(θ2 + α2)2 + (2θ2 + θ1)2
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[(θ2 + α2)2α1 + 2α2θ
2
2 + 2θ2α

2
2] + 4α1(2θ2 + θ1)(α2θ

2
2 + θ2α

2
2)

+ 6α1θ
2
2α

2
2 −

1

(θ1 + α1)(2θ2 + θ1)2
[(2θ2 + θ1)4(θ1 + α1)

(θ2 + α2)2 + ((2θ2 + θ1)3((2θ2α
2
2 + 2α2θ

2
2)(θ1

+ α1) + α1θ1(θ2 + α2)2)

+ α1(α1 + θ1)(α2 + θ2)2)] + (2θ2 + θ1)2[2θ2
2α

2
2(θ1

+ α1) + 2α1θ1(2θ2
2α2 + 2α2

2θ2) + 2α1(θ1 + α1)(2θ2
2α2 + 2α2

2θ2)

+ 2α2
1θ1(θ2 + α2)2]− (2θ2 + θ1)[6θ2

2α
2
2α1θ1 + 6θ2

2α
2
2α1(θ1 + α1)

+ 6α2
1θ1(2α2θ

2
2 + 2θ2α

2
2)]− 24θ2

2α
2
2α

2
1θ1

])
, (21)

when the dependence parameter τ = 0, then the stress-strength reliability
given in (21) applies in the case where X and Y are independent. Moreover,
the estimates of R can be obtained by substituting the estimates of parameters
in (21).

5.2 Hazard Rate Function

Basu (1971) [9] suggested the bivariate hazard rate function of the form

h(x, y) =
f(x, y)

S(x, y)
, (22)

substituting S(x, y) = (1− FX,Y (x, y)) from (11) and fX,Y (x, y) from (12)
in (22), the hazard rate function of FGMBL distribution is obtained as

h(x, y) =

(
(1 + α1x)(1 + α2y)θ2

1θ
2
2

(θ1 + α1 + θ1α1x)(θ2 + α2 + θ2α2y)

)
.(

1 + τ(2(θ1+α1+θ1α1x)
θ1+α1

e−θ1x − 1)(2(θ2+α2+θ2α2y)−1
θ2+α2

e−θ2y)

)
(

1 + τ(1− θ1+α1+θ1α1x
θ1+α1

e−θ1x)(1− θ2+α2+θ2α2y
θ2+α2

e−θ2y)

) .

(23)
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Further, Johnson and Kotz (1975) [26] defined a hazard rate function in
a vector form, as shown below

hV (x, y) =

(
−∂lnS(x, y)

∂x
,
−∂lnS(x, y)

∂y

)
, (24)

where S(x, y) is the bivariate survival function. Then the vector components
of hazard rate function are given as follows

−∂lnS(x, y)

∂x
=

θ2
1(1 + α1x)

(θ1 + α1 + θ1α1x)

−
τθ2

1(1 + α1x)
(
1− θ2+α2+θ2α2y

θ2+α2
e−θ2y

)
e−θ1x

(θ1 + α1)J(x, y)
, (25)

−∂lnS(x, y)

∂y
=

θ2
2(1 + α2y)

(θ2 + α2 + θ2α2y)

−
τθ2

2(1 + α2y)
(
1− θ1+α1+θ1α1x

θ1+α1
e−θ1x

)
e−θ2y

(θ2 + α2)J(x, y)
. (26)

where

J(x, y) =

(
1 + τ

(
1− θ1 + α1 + θ1α1x

θ1 + α1
e−θ1x

)
(

1− θ2 + α2 + θ2α2y

θ2 + α2
e−θ2y

))
.

When the dependence parameter τ = 0 the components of hv(x, y)
reduces to the marginal hazard rate function of X and Y respectively as

−∂lnS(x, y)

∂x
=

θ2
1(1 + α1x)

(θ1 + α1 + θ1α1x)
, (27)

and
−∂lnS(x, y)

∂y
=

θ2
2(1 + α2y)

(θ2 + α2 + θ2α2y)
. (28)

Further, the following theorem proves that FGMBL distribution has
increasing hazard rate (IHR) (decreasing hazard rate (DHR)) for positive
(negative) values of τ .

Theorem 1. FGMBL distribution have IHR (DHR) for positive (negative)
values of τ .
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Proof To prove FGMBL distribution is IHR for positive values of τ , it is
sufficient to show that (25) and (26) are increasing functions in x and y
respectively. Consider

−∂lnS(x, y)

∂x
= − ∂

∂x
ln(F̄X ḠY [1 + τFXGy]),where F̄ = 1− F

= − ∂

∂x
lnF̄X −

∂

∂x
lnḠY −

∂

∂x
ln(1 + τFXGY )

= hX [1− (F̄−1
X [(τGY )−1 + 1]− 1)−1],

where hX is the hazard rate function of X given in (27) distribution. For 0 ≤
τ ≤ 1, τ−1 ≥ 1 which implies ((τGY )−1 + 1) > 1, because (GY )−1 ≥ 1.
Therefore [1− (F̄X)−1[(τGY )−1 + 1]− 1)−1] is positive increasing function
in x because Fx is an increasing function in x. Further, the hX is an increasing
function in x. Hence −∂lnS(x,y)

∂x is an increasing function in x. In a Similar
way, we can prove that FGMBL distribution is DFR for negative values of τ .

5.3 The Clayton-Oakes Association Measure

[40] defined the association measure for bivariate survival function as

θ(x, y) =
F̄ F̄(12)

F̄(1)F̄(2)

,

where F̄ = F̄ (x, y) is the survival function , F̄(12) = ∂2F̄ (x,y)
∂x∂y , F̄(1) =

∂
∂x F̄ (x, y) and F̄(2) = ∂

∂y F̄ (x, y).
Clayton (1978) [14] obtained the above association measure, deriving

from Cox’s model, in a study of association between the life spans of fathers
and their sons, as

θ(x, y) =
r(x|Y = y)

h1(x, y)
= 1−

∂
∂yh1(x, y)

h1(x, y)h2(x, y)
= 1−

∂
∂xh2(x, y)

h1(x, y)h2(x, y)
,

where h1(x, y) = − ∂
∂x lnF̄ (x, y) is the hazard rate of X given Y > y.

Similarly h2(x, y) = − ∂
∂y lnF̄ (x, y) is the hazard rate of Y given X > x.

It can be proved that X and Y are independent iff θ(x, y) = 1.
Harris (1970) [24] suggested the following definition of right corner set

increasing.
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Definition 1. The random variable (X,Y) with p.d.f f(X,Y )(x, y) is said to be

right corner set increasing (RCSI) if P (X > x, Y > y|X > x
′
, Y > y

′
)

is increasing in x
′

and y
′ ∀ x,y. The opposite inequality is applicable for left

corner set decreasing (LCSD).

Remark 1. Shaked (1977) [45] shown that the following results equivalent to:
(i) (X,Y) is RCSI, (ii) ∂

∂yh1(x, y) < 0, (iii) θ(x, y) > 1.

Remark 2. It has been shown by Shaked (1977) [45] that if f(X,Y )(x, y) is
TP2, then r(x|Y = y) is decreasing in y and (X, Y ) is RCSI.

Therefore the association measure for FGMBL distribution is obtained as

θ(x, y) = 1 +

(
τe−θ1xθ21(1+α1x)e−θ2yθ22(1+α2y)

(θ1+α1)(θ2+α2)

)
(
1 + τFX(x)GY (y))

)2
h1(x, y)h2(x, y)

, (29)

where h1(x, y) and h2(x, y) are the vector components of hazard function
X given Y>y and Y given X>x defined in (25) and (26) respectively and
FX(x) and GY (y) are defined in (10) and (11) respectively. It is clear from
(29) that θ(x, y) > (<)1 whenever τ > (<) 0. Hence (X,Y) is right corner
set increasing when τ > 0.

5.4 Mean Residual Life

Bivariate mean residual life (m.r.l) function suggested by Shanbhag and Kotz
(1987) [46] is of the form

r(x, y) = (r1(x, y), r2(x, y)), (30)

where
r1(x, y) = E(X − x|X ≥ x, Y ≥ y), (31)

and
r2(x, y) = E(Y − y|X ≥ x, Y ≥ y). (32)

The expression for r1(x, y) and r2(x, y) of FGMBL distribution is
obtained as

r1(x, y) =

(θ1+2α1+θ1α1x)e−θ1x

θ1

(θ1 + α1 + θ1α1x)e−θ1x[1 + τFX(x)GY (y)]

+
τ(1− (θ1+α1+θ1α1x)

θ1+α1
e−θ1x)A(θ1, α1, x)

(θ1 + α1 + θ1α1x)e−θ1x[1 + τFX(x)GY (y)]
, (33)
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and

r2(x, y) =

(θ2+2α2+θ2α2y)e−θ2y

θ2

(θ2 + α2 + θ2α2y)e−θ2y[1 + τFX(x)GY (y)]

+
τ(1− (θ2+α2+θ2α2y)

θ2+α2
e−θ2y)B(θ2, α2, y)

θ2 + α2 + θ2α2y)e−θ2y[1 + τFX(x)GY (y)]
, (34)

where

A(θ1, α1, x) =
(θ1 + 2α1 + θ1α1x)e−θ1x

θ1

− (α2
1(3 + 2θ1x) + 2α1(θ1 + θ1x+ 1) + 2θ1)e−2θ1x

4θ1(θ1 + α1)
.

and

B(θ2, α2, y) =
(θ2 + 2α2 + θ2α2y)e−θ2y

θ2

− (α2
2(3 + 2θ2y) + 2α2(θ2 + θ2y + 1) + 2θ2)e−2θ2y

4θ2(θ2 + α2)

Substituting (33) and (34) in (30), give the expression of m.r.l for FGMBL
distribution.

5.5 Vitality Function

Let (X,Y) be a two-dimensional random vector with survival function S(x,y),
then the bivariate vitality function proposed by Sankaran and Nair (1991) [43]
is given by

V(x, y) = (V1(x, y), V2(x, y)) , (35)

where

V1(x, y) = E[X|X ≥ x, Y ≥ y], (36)

V2(x, y) = E[Y |X ≥ x, Y ≥ y], (37)

where X and Y represents the life time of a two-component system and
V1(x, y) measures the expected life time of first component given that first
component survived at age x and second component survived at age y. A
similar interpretation can be given to V2(x, y).
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Further, the bivariate vitality function Vi(x, y) is related to the mean
residual life function ri(x, y) with the following relation as

Vi(x, y) = x+ ri(x, y), i = 1, 2. (38)

V1(x, y) and V2(x, y) of FGMBL distribution is obtained as

V1(x, y) = x+

(θ1+2α1+θ1α1x)e−θ1x

θ1

(θ1 + α1 + θ1α1x)e−θ1x[1 + τFX(x)GY (y)]

+
τ(1− (θ1+α1+θ1α1x)

θ1+α1
e−θ1x)A(θ1, α1, x)

(θ1 + α1 + θ1α1x)e−θ1x[1 + τFX(x)GY (y)]
, (39)

and

V2(x, y) = y +

(θ2+2α2+θ2α2y)e−θ2y

θ2

(θ2 + α2 + θ2α2y)e−θ2y[1 + τFX(x)GY (y)]

+
τ(1− (θ2+α2+θ2α2y)

θ2+α2
e−θ2y)B(θ2, α2, y)

θ2 + α2 + θ2α2y)e−θ2y[1 + τFX(x)GY (y)]
, (40)

where A(θ1, α1, x) and B(θ2, α2, y) are defined in Section (5.4). Hence the
vitality function of FGMBL distribution can be obtained by substituting (39)
and (40) in (35).

5.6 Totally Positive of Order 2 or Reverse Rule of Order 2 (TP2 or
RR2)

Let (X,Y) be a two dimensional continuous random variable with joint p.d.f
f(X,Y )(x, y) is said to be TP2 or RR2 if

f(x, y)f(u, v) ≥ (≤)f(x, v)f(u, y), x < u, y < v. (41)

Then the local dependence function of (X,Y) is defined as

rf (x, y) =
∂2

∂x∂y
lnf(X,Y )(x, y)

=
4τ

θ21θ
2
2(1+α1x)(1+α2y)

(θ1+α1)(θ2+α2) e−θ1x−θ2y

(1 + τ(2 (θ1+α1+θ1α1x)
θ1+α1

e−θ1x − 1)(2 (θ2+α2+θ2α2y)
θ2+α2

e−θ2y − 1))2
.

(42)
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which is≥ (≤) 0 according as τ ≥ (≤) 0. Thus f(X,Y )(x, y) is TP2 (RR2)
if τ ≥ (≤)0.

The following results are applicable to FGMBL distribution due to
Shaked (1977) [45].

Remark 3. If FGMBL distribution is TP2(RR2), then

1. The conditional failure rate of X given Y = y (r(x|Y = y)) is
decreasing (increasing) in y.

2. The conditional failure rate of X given Y > y is decreasing (increasing)
in y.

3. The mean residual life function of X given Y > y is increasing
(decreasing) in y.

5.7 Right Tail Increasing and Left Tail Decreasing

Let (X,Y) be a bivariate random vector with c.d.f F(X,Y )(x, y) and Y is right-
tail increasing (RTI) in X if

RTI(Y |X) = P (Y > y|X > x) =
F (X,Y )(x, y)

FX(x)
↑ x ∀y,

(43)

where F (X,Y )(x, y) = 1− F(X,Y )(x, y) and FX(x) = 1− F (x).
For FGMBL distribution,

P (Y > y|X > x) =

(
θ2 + α2 + θ2α2y)

θ2 + α2
e−θ2y(

1 + τ

(
1− (θ1 + α1 + θ1α1x)

θ1 + α1
e−θ1x

)
.(

1− (θ2 + α2 + θ2α2y)

θ2 + α2
e−θ2y

))
, (44)

it is clear that P (Y > y|X > x) > 1 for τ > 0 which implies RTI(Y |X).
Similarly, Y is left-tail decresing (LTD) in X if

LTD(Y |X) = P (Y ≤ y|X ≤ x) =
F(X,Y )(x, y)

FX(x)
↓ x ∀y.

(45)
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For FGMBL distribution,

P (Y ≤ y|X ≤ x)

=

(
1− (θ2 + α2 + θ2α2y)

θ2 + α2
e−θ2y

)
.(

1 + τ
(θ1 + α1 + θ1α1x)(θ2 + α2 + θ2α2y)

(θ1 + α1)(θ2 + α2)
e−θ1x−θ2y

)
, (46)

it is observed from the expression in (46) that P (Y ≤ |X ≤ x) < 1 for τ < 0
which implies LTD(Y |X).

5.8 Mean Time To Failure

Let (X,Y) be a two-dimensional random variable with joint survival function
S(x, y), then the mean time to faliure is defined as

MTTF =

∫ ∞
µ1

∫ ∞
µ2

S(x, y)dydx. (47)

Using (47) the MTTF of FGMBL distribution is obtained as

MTTF =
(θ1 + 2α1)(θ2 + 2α2)

θ1θ2(θ1 + α1)(θ2 + α2)
+ τ

(
2θ2

1 + 6θ1α1 + 3α2
1

4θ1(θ1 + α1)

)
.(

2θ2
2 + 6θ2α2 + 3α2

2

4θ2(θ2 + α2)

)
. (48)

6 Parameter Estimation

In this section, we considered three different estimation procedures which
includes, maximum likelihood estimation (MLE), inference function margin
(IFM) and semi-parametric (SP) method for estimating the model parameters
and reliability.

6.1 Maximum Likelihood Estimation

Consider the random sample (xi, yi), i = 1, 2, . . . , n of size n drawn from
the FGMBL distribution, then the log-likelihood function is given as

log L(Θ) = 2nln(θ1) + 2nln(θ2)− nln(θ1 + α1)− nln(θ2 + α2)
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+

n∑
i=1

ln

(
1 + τ

(
2(θ1 + α1 + α1θ1xi)

θ1 + α1
e−θ1xi − 1

)

(
2(θ2 + α2 + α2θ2yi)

θ2 + α2
e−θ2yi − 1

))
, (49)

where Θ = (θ1, α1, θ2, α2, τ ).
The normal equations of log-likelihood function are given as

∂log L(Θ)

∂θ1
=

2 n

θ1
− n

θ1 + α1
−

n∑
i=1

xi

+
n∑
i=1

τ [
2(θ2 + α2 + θ2α2yi)

θ2 + α2
e−θ2yi − 1]D(θ1, α2, xi) = 0,

(50)

∂log L(Θ)

∂θ2
=

2 n

θ2
− n

θ2 + α2
−

n∑
i=1

yi

+
n∑
i=1

τ [
2(θ1 + α1 + θ1α1xi)

θ1 + α1
e−θ1xi − 1]D(θ2, α2, yi) = 0,

(51)

∂log L(Θ)

∂α1
= − n

θ1 + α1
+

n∑
i=1

xi
1 + α1xi

+

n∑
i=1

τ [
2(θ2 + α2 + θ2α2yi)

θ2 + α2
e−θ2yi − 1]Q(θ1, α2, xi) = 0,

(52)

∂log L(Θ)

∂α2
= − n

θ2 + α2
+

n∑
i=1

yi
1 + α2yi

+

n∑
i=1

τ [
2(θ1 + α1 + θ1α2xi)

θ1 + α1
e−θ1xi − 1]Q(θ2, α2, Yi) = 0,

(53)
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and

∂log L(Θ)

∂τ
=

n∑
i=1

[
2(θ1 + α1 + θ1α1xi)

θ1 + α1
e−θ1xi − 1

]
[

2(θ2 + α2 + θ2α2yi)

θ2 + α2
e−θ2yi − 1

]
1

L(xi, yi)
= 0, (54)

where

D(θ1, α1, xi) =
((1 + α1xi)(θ1 + α1)− (θ1 + α1 + θ1α1xi)(θ1(θ1 + α1)− 1))2e−θ1xi

(θ1 + α1)2L(xi, yi)
,

D(θ2, α2, yi) =
((1 + α2yi)(θ2 + α2)− (θ2 + α2 + θ2α2yi)(θ2(θ2 + α2)− 1))2e−θ2yi

(θ2 + α2)2L(xi, yi)
,

Q(θ1, α1, xi) =
((1 + θ1xi)(θ1 + α1)− (θ1 + α1 + θ1α1xi))2e

−θ1xi

(θ1 + α1)2L(xi, yi)
,

Q(θ2, α2, yi) =
((1 + θ2yi)(θ2 + α2)− (θ2 + α2 + θ2α2yi))2e

−θ2yi

(θ2 + α2)2L(xi, yi)
,

L(xi, yi) =

[
1 + τ(2

(θ1 + α1 + θ1α1xi)

θ1 + α1
e−θ1xi − 1)

(
2
(θ2 + α2 + θ2α2yi)

θ2 + α2
e−θ2yi − 1

)]
.

The likelihood Equations (50)–(54) are not in explicit form and cannot
be solved analytically. We solve the likelihood equations numerically by
using the Nelder-Mead optimization algorithm. Under invariance property,
the MLE R̂ may be obtained by replacing θ1, θ2, α1, α2 and τ by their MLE’s
θ̂1, θ̂2, α̂1, α̂2, and τ̂ , respectively, in (21).

6.2 Estimation by Inference Function Margin

Xu (1996) [54] and Joe (2005) [25] proposed the inference margin
method for a two-stage estimation process in which we estimate the marginal
distribution separately in the first stage.

`1 =
n∑
i=1

lnf(xi, δ1); `2 =
n∑
i=1

lng(yi, δ2), (55)

where δ1 and δ2 be the parameters of marginal distributions.
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Next, according to the previous step, the joint density is optimized by
using the dependence parameter τ by considering the ML estimates obtained
in the previous step of the marginals F̂ (xi, δ1) and Ĝ(yi, δ2). Then the log-
likelihood function of stress random sample (Y) and strength random sample
(X) from two-parameter Lindley distribution are separately obtained as

`1 = 2n ln(θ1)− n ln(θ1 + α1) +

n∑
i=1

ln(1 + α1xi)− θ1

n∑
i=1

xi,

(56)

`2 = 2n ln(θ2)− n ln(θ2 + α2) +
n∑
i=1

ln(1 + α2yi)− θ2

n∑
i=1

yi.

(57)

The MLEs (θ̂1, α̂1, θ̂2, α̂2) are obtained by solving simultaneously the
log-likelihood equations

∂`1
∂θ1

∣∣∣
θ1=θ̂1

= 0,
∂`1
∂α1

∣∣∣
α1=α̂1

= 0,
∂`2
∂θ2

∣∣∣
θ2=θ̂2

= 0,
∂`2
∂α2

∣∣∣
α2=α̂2

= 0,

then

F̂ (x) = 1− θ̂1 + α̂1 + α̂1θ̂1x

θ̂1 + α̂1

e−θ̂1x and

Ĝ(y) = 1− θ̂2 + α̂2 + α̂2θ̂1y

θ̂2 + α̂2

e−θ̂2y.

and considering the previous step, the IFM estimate of a FGMBL distribution
is defined as

`IFM =
n∑
i=1

ln
(

1 + τ(1− 2F̂ (x))(1− 2Ĝ(y))
)
. (58)

The log-likelihood equation with respect to τ is given as

∂`

∂τ
=

n∑
i=1

(
p(xi, yi)

1 + τp(xi, yi)

)
= 0, (59)
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where

p(xi, yi) =

(
2(θ̂1 + α̂1 + α̂1θ̂1xi)

θ̂1 + α̂1

e−θ̂1xi − 1

)
(

2(θ̂2 + α̂2 + α̂2θ̂2yi)

θ̂2 + α̂2

e−θ̂2yi − 1

)
.

The likelihood equation of τ in (59) is not in closed form and cannot
be solved analytically. We solved likelihood equation numerically by using
Nelder-Mead optimization algorithm in R-software. Under invariance prop-
erty, the MLE R̂ may be obtained by replacing θ1, θ2, α1, α2 and τ by their
MLE’s θ̂1, θ̂2, α̂1, α̂2, and τ̂ , respectively, in (21).

6.3 Estimation by Semi-parametric Method

Kim et al. (2007) [28] proposed the semi-parametric estimation method.
Which involves in estimating the model parameters of the marginal dis-
tributions non-parametrically by using sample empirical distributions by
transforming the observations into pseudo-observations. The empirical dis-
tribution function is defined as follows

F̃i(x) =

∑n
j=1 I(Xi,j ≤ xi)

n+ 1
; i = 1, 2, (60)

where I is the indicator function.
Then, τ is estimated by the maximizer of the pseudo log-likelihood,

`SP =
n∑
i=1

ln
[
c
(
F̃ (x), G̃(y); τ

)]
, (61)

by considering (61), the log-likelihood function of FGMBL distribution is
given by

`SP =

n∑
i=1

ln
[
1 + τ(1− 2F̃ (x)(1− 2G̃(y)))

]
. (62)

There is no closed-form expression for the MLE τ̂ and hence it is solved
numerically by using Nelder-Mead optimization algorithm.
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7 Asymptotic Confidence Interval

In this section, we propose the asymptotic confidence interval of model
parameter Θ=(θ1,α1,θ2,α2,τ ) using ML, IFM, and SP methods. For this, we
first obtain the observed Fishers information matrix under MLE is given as

IO(Θ̂) = −



∂2`
∂θ2

1

∂2`
∂θ1α1

∂2`
∂θ1θ2

∂2`
∂θ1α2

∂2`
∂θ1τ

∂2`
∂α1θ1

∂2`
∂α2

1

∂2`
∂α1θ2

∂2`
∂α1α2

∂2`
∂α1τ

∂2`
∂θ2θ1

∂2`
∂θ2α1

∂2`
∂θ2

2

∂2`
∂θ2α2

∂2`
∂θ2τ

∂2`
∂α2θ1

∂2`
∂α2α1

∂2`
∂α2θ2

∂2`
∂α2

2

∂2`
∂α2τ

∂2`
∂τθ1

∂2`
∂τα1

∂2`
∂τθ2

∂2`
∂τα2

∂2`
∂τ 2

∣∣∣
(θ̂1,α̂1,θ̂2,α̂2,τ̂)

= −H(Θ)
∣∣∣
Θ=Θ̂

,

(63)

where H is the Hessian matrix.
Our interest is to develop the confidence interval for the dependence

parameter τ , then the hessian matrix under IFM and SP methods is obtained
as

H =
∂2`

∂τ2
. (64)

Hence the 100(1− γ)% confidence interval for τ can be obtained as

τ̂ ± Zγ/2
√
V ar(τ̂),

where V ar(τ̂) is the diagonal entries of the inverse of observed Fisher
information matrix and Zγ/2 is the upper percentile of standard normal
variate.

8 Simulation Study

A numerical study is performed to assess the performance of stress-strength
reliability R and the dependence parameter τ given in the previous Sections.
The main aim of this study is to assess the variation in R in relation to the
variation in the dependent parameter τ . The estimate of τ using MLE in
Equation (54), IFM in Equation (59) and SP in Equation (62) are numerically
computed by with Nelder-Mead method in R software using the maxLik
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and copula packages. A numerical comparison of point estimates of R is
carried out under MLE and IFM methods for different sample sizes based
on Mean Square Error (MSE). Further, a numerical investigation of point
and asymptotic confidence interval estimates of τ are performed under MLE,
IFM, and SP methods for comprehensive comparison purposes. We use the
following steps to generate samples (xi, yi), i = 1, 2, . . . n from FGMBL
distribution with parameters θ1, θ2, α1, α2 and τ .

1. Generate two independent random samples ui and ti for i = 1, 2,. . . , n,
from U(0,1) distribution

2. Compute vi using the equation C(vi|ui) = ti and where C(vi|ui)
represents the conditional copula of FGMBL distrinution.

3. The simulated pairs of data, say (xi, yi)for i = 1, 2,. . . , n, is obtained by
using the following quantiles function of Lindley distributions:

xi = −θ1 + α1

θ1α1
− 1

θ1
W

[
− 1

α1
(1− ui)(θ1 + α1)e

− θ1+α1
α1

]
,

i = 1, 2, . . ., n

yi = −θ2 + α2

θ2α2
− 1

θ2
W

[
− 1

α2
(1− vi)(θ2 + α2)e

− θ2+α2
α2

]
,

i = 1, 2, . . ., n

where W(.) is the Lambert’s W function.
A Monte-Carlo simulation study is performed based on the data sets

generated from the FGMBL distribution for three different sets of chosen
values of parameters within their range

(θ1, θ2, α1, α2) = ((0.8, 0.3, 0.1, 0.5), (0.6, 0.2, 0.3, 0.1), (0.7, 0.3, 0.2, 0.4))

along with each of chosen values of the dependence parameter τ =
(−0.9,−0.5, −0.1, 0.1, 0.5, 0.9) with in the parameter space. For each case,
1000 data sets were simulated with samples sizes n = 50, 100, and 200.
The average estimate and MSE of R are given in Table 1. We computed
the average estimates, MSE, length of the confidence interval (L.CI), and
coverage probability (CP) for the dependence parameter τ are presented in
Table 2. Further, the formula used for computing MSE, CP, and L.CI are
given as follows

MSE =
1

n

n∑
1

(δ̂ − δ)2, (65)
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Table 1 Estimates of R for different choices of parameters
n (θ1, α1, θ2, α2) τ -0.9 -0.5 -0.1 0.1 0.5 0.9

MLE (0.8, 0.3, 0.1, 0.5) 0.7965 0.8041 0.8118 0.8156 0.8232 0.8308
0.7546 0.7866 0.7922 0.7838 0.7941 0.8280
0.0232 0.0216 0.0207 0.0202 0.0205 0.0220

(0.7, 0.3, 0.2, 0.4) 0.7797 0.8014 0.8231 0.8439 0.8756 0.8972
0.7120 0.8108 0.8426 0.8633 0.8694 0.8917
0.0100 0.0167 0.0077 0.0273 0.0159 0.0057

(0.6, 0.2, 0.3, 0.1) 0.8937 0.9119 0.9201 0.9391 0.9573 0.9755
0.8402 0.8667 0.8802 0.9033 0.9142 0.9202
0.0541 0.0456 0.1225 0.0222 0.0221 0.0141

50
IFM (0.8, 0.3, 0.1, 0.5) 0.7965 0.8041 0.8118 0.8156 0.8232 0.8308

0.7656 0.7773 0.8015 0.7972 0.7829 0.8130
0.2019 0.2867 0.5214 0.0662 0.0672 0.0342

(0.7, 0.3, 0.2, 0.4) 0.7797 0.8014 0.8231 0.8439 0.8756 0.8972
0.7068 0.8067 0.8378 0.8493 0.8570 0.8805
0.0791 0.0758 0.0116 0.3210 0.1251 0.0288

(0.6, 0.2, 0.3, 0.1) 0.8937 0.9119 0.9201 0.9391 0.9573 0.9755
0.8547 0.8788 0.8924 0.9187 0.9242 0.9347
0.0102 0.0946 0.0891 0.0151 0.0233 0.0102

MLE (0.8, 0.3, 0.1, 0.5) 0.7965 0.8041 0.8118 0.8156 0.8232 0.8308
0.7716 0.7925 0.7990 0.8039 0.8161 0.8206
0.0156 0.0150 0.0147 0.0149 0.0160 0.0177

(0.7, 0.3, 0.2, 0.4) 0.7797 0.8014 0.8231 0.8439 0.8756 0.8972
0.7721 0.8215 0.8548 0.8749 0.8809 0.9150
0.0078 0.0151 0.0046 0.0044 0.0046 0.0047

(0.6, 0.2, 0.3, 0.1) 0.8937 0.9119 0.9201 0.9391 0.9573 0.9755
0.8578 0.8893 0.9025 0.9104 0.9242 0.9378
0.0028 0.0060 0.0128 0.0117 0.0021 0.0025

100
IFM (0.8, 0.3, 0.1, 0.5) 0.7965 0.8041 0.8118 0.8156 0.8232 0.8308

0.7604 0.7899 0.8035 0.8105 0.8279 0.8303
0.0387 0.1723 0.0295 0.0320 0.1480 0.0289

(0.7, 0.3, 0.2, 0.4) 0.7797 0.8014 0.8231 0.8439 0.8756 0.8972
0.7820 0.8180 0.8465 0.8612 0.8832 0.9020
0.0160 0.0301 0.0056 0.0291 0.0337 0.0051

(0.6, 0.2, 0.3, 0.1) 0.8937 0.9119 0.9201 0.9391 0.9573 0.9755
0.8758 0.8911 0.9139 0.9399 0.9342 0.9458
0.0100 0.0127 0.0202 0.0220 0.0025 0.0098

MLE (0.8, 0.3, 0.1, 0.5) 0.7965 0.8041 0.8118 0.8156 0.8232 0.8308
0.7856 0.8172 0.8267 0.8257 0.8480 0.8526
0.0011 0.0009 0.0015 0.0006 0.0017 0.0010

(0.7, 0.3, 0.2, 0.4) 0.7797 0.8014 0.8231 0.8439 0.8756 0.8972
0.7906 0.8309 0.8737 0.8999 0.9032 0.9386
0.009 0.0019 0.0004 0.0003 0.0002 0.0005

(0.6, 0.2, 0.3, 0.1) 0.8937 0.9119 0.9201 0.9391 0.9573 0.9755
0.8807 0.9021 0.9136 0.9213 0.9558 0.9707
0.0013 0.0008 0.0021 0.0011 0.0009 0.0003

200
IFM (0.8, 0.3, 0.1, 0.5) 0.7965 0.8041 0.8118 0.8156 0.8232 0.8308

0.7854 0.8039 0.8227 0.8372 0.8406 0.8650
0.0021 0.0011 0.0011 0.0010 0.0021 0.0021

(0.7, 0.3, 0.2, 0.4) 0.7797 0.8014 0.8231 0.8439 0.8756 0.8972
0.8007 0.8282 0.8529 0.8820 0.8976 0.9250
0.0011 0.0024 0.0015 0.0009 0.0005 0.0010

(0.6, 0.2, 0.3, 0.1) 0.8937 0.9119 0.9201 0.9391 0.9573 0.9755
0.8711 0.9125 0.9243 0.9447 0.9590 0.9611
0.0016 0.0016 0.0056 0.0015 0.0011 0.0016

The values in the first row are true value for R, the values in the second row are
estimates of R and the values in the third row are MSE for R.
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Table 2 Estimates of τ for different choices of parameters
n (θ1, α1, θ2, α2) τ -0.9 -0.5 -0.1 0.1 0.5 0.9

MLE (0.8, 0.3, 0.1, 0.5) -0.9081 -0.4960 -0.0895 0.1450 0.5507 0.9476
0.0229 0.0211 0.0199 0.0188 0.0137 0.0110
1.2496 1.3762 1.4272 1.4218 1.3198 1.1859
0.9690 0.9670 0.9490 0.9564 0.9501 0.9590

(0.7, 0.3, 0.2, 0.4) -0.9130 -0.5088 -0.0963 0.1147 0.5175 0.9148
0.0127 0.0118 0.0125 0.0123 0.0115 0.0128
1.1204 1.1452 1.2556 1.2483 1.1317 0.9705
0.9560 0.9564 0.9522 0.9500 0.9600 0.9562

(0.6, 0.2, 0.3, 0.1) -0.8980 -0.4793 -0.0864 0.1111 0.4952 0.9280
0.0126 0.0238 0.1111 0.0234 0.0122 0.0226
0.9165 1.1655 1.1966 1.0847 1.9730 0.9665
0.9587 0.9432 0.9521 0.9605 0.9517 0.9589

IFM (0.8, 0.3, 0.1, 0.5) -0.9384 -0.4841 0.1832 0.1896 0.5090 0.9557
0.4696 0.2999 0.1681 0.1192 0.0767 0.1006
1.1140 1.1130 1.1010 1.0903 1.0366 0.9760
0.9070 0.9140 0.9190 0.9060 1.0366 0.9130

50 (0.7, 0.3, 0.2, 0.4) -0.9783 0.5390 -0.0624 0.1223 0.6360 0.9115
0.2663 0.1473 0.0987 0.2554 0.0934 0.0769
1.8199 1.2143 1.7092 0.7161 0.9035 0.8280
0.9120 0.9020 0.9080 0.9100 0.9110 0.9150

(0.6, 0.2, 0.3, 0.1) -0.9393 -0.5648 -0.1585 0.0899 0.5218 0.9493
0.1061 0.4563 0.1032 0.0377 0.0874 0.2061
1.0035 1.8638 1.0670 1.8178 1.9143 1.0235
0.9060 0.9105 0.9201 0.9280 0.9180 0.9080

SP (0.8, 0.3, 0.1, 0.5) -0.9204 -0.4947 -0.1064 0.0837 0.4978 0.9355
0.1220 0.1140 0.1110 0.1137 0.1151 0.1285
1.1272 1.2400 1.2905 1.2943 1.2349 1.1305
0.9180 0.9240 0.9330 0.9330 0.9280 0.9030

(0.7, 0.3, 0.2, 0.4) -0.9315 -0.4917 -0.0892 0.0950 0.4953 0.9038
0.0905 0.0506 0.0894 0.0927 0.0799 0.0717
0.9894 1.0541 1.1605 1.1599 1.0581 0.9063
0.9060 0.9100 0.9340 0.9380 0.9350 0.9160

(0.6, 0.2, 0.3, 0.1) -0.9189 -0.5270 -0.1261 0.0957 0.5121 0.9289
0.0667 0.0656 0.0826 0.0663 0.0961 0.0767
0.8553 0.9680 1.0159 1.0203 0.9058 0.8653
0.9120 0.9340 0.9356 0.9460 0.9210 0.9129

MLE (0.8, 0.3, 0.1, 0.5) -0.9083 -0.5071 -0.0998 0.1382 0.5435 0.9456
0.0107 0.0119 0.0106 0.0108 0.0096 0.0062
1.0689 1.1971 1.2411 1.2270 1.1639 0.9897
0.9720 0.9790 0.9510 0.9655 0.9655 0.9622

(0.7, 0.3, 0.2, 0.4) -0.9017 -0.5028 -0.0989 0.1042 0.5037 0.9028
0.0019 0.0014 0.0013 0.0013 0.0099 0.0096
1.0469 1.0878 1.1251 1.1239 1.0807 0.9326
0.9617 0.9602 0.9600 0.9610 0.9730 0.9620

(0.6, 0.2, 0.3, 0.1) -0.8977 -0.4963 -0.0961 0.1294 0.4962 0.9077
0.0044 0.0124 0.058 0.0118 0.0222 0.0149
0.8431 1.0819 0.4921 1.0985 0.9730 0.8131
0.9655 0.9587 0.9650 0.9788 0.9603 0.9605

IFM (0.8, 0.3, 0.1, 0.5) -0.8539 -0.5092 -0.0953 0.1187 0.4883 0.9101
0.1386 0.1025 0.0791 0.0702 0.0776 0.1123
1.0689 1.0195 1.0436 1.0388 1.0112 0.9486

(Continued)
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Table 2 Continued
n (θ1, α1, θ2, α2) τ -0.9 -0.5 -0.1 0.1 0.5 0.9

0.9390 0.9310 0.9350 0.9250 0.9380 0.9370
100 (0.7, 0.3, 0.2, 0.4) -0.9219 -0.4972 -0.0659 0.1168 0.5208 0.9226

0.0582 0.0206 0.0522 0.0409 0.0306 0.0405
0.9688 0.9870 0.9967 0.9852 0.9217 0.8046
0.9230 0.9160 0.9100 0.9240 0.9260 0.9390

(0.6, 0.2, 0.3, 0.1) -0.0801 -0.4934 -0.1194 0.0958 0.5018 0.0901
0.2436 0.0600 0.0552 0.0256 0.0574 0.0636
0.9798 0.8915 0.9028 0.9598 0.9143 0.9598
0.9140 0.9210 0.9302 0.9210 0.9380 0.9150

SP (0.8, 0.3, 0.1, 0.5) -0.9250 -0.5006 -0.0847 0.0987 0.4949 0.9272
0.0994 0.0909 0.0916 0.0922 0.0865 0.0875
0.9973 1.1040 1.1561 1.1561 1.1121 1.0022
0.9220 0.9413 0.9420 0.9470 0.9350 0.9140

(0.7, 0.3, 0.2, 0.4) -0.9214 -0.4971 0.1021 0.0986 0.5104 0.9200
0.0535 0.0419 0.0364 0.0551 0.0411 0.0361
0.9410 1.0124 1.0593 1.0573 1.0097 0.8623
0.9190 0.9230 0.9420 0.9460 0.9490 0.9290

SP (0.6, 0.2, 0.3, 0.1) -0.9090 -0.4988 -0.0944 0.1130 0.5091 0.9150
0.0381 0.0455 0.0582 0.0232 0.0361 0.0381
0.8025 0.9078 0.9479 0.9492 0.9058 0.7925
0.9250 0.9450 0.9438 0.9510 0.9310 0.9270

MLE (0.8, 0.3, 0.1, 0.5) -0.9041 -0.5054 -0.1046 0.1008 0.5026 0.9045
0.0008 0.0011 0.0012 0.0014 0.0013 0.0011
0.6653 0.7878 0.8234 0.8206 0.7755 0.6509
0.9800 0.9810 0.9710 0.9711 0.9721 0.9715

(0.7, 0.3, 0.2, 0.4) -0.9068 -0.5070 -0.1093 0.1096 0.5008 0.9012
0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
0.7238 0.8122 0.8463 0.8447 0.8109 0.7221
0.9782 0.9782 0.9702 0.9750 0.9809 0.9110

(0.6, 0.2, 0.3, 0.1) -0.9011 -0.5047 -0.1084 0.1097 0.5010 0.9011
0.0021 0.0012 0.0012 0.0013 0.0051 0.0012
0.7135 0.8148 0.4170 0.9547 0.8407 0.6135
0.9702 0.9658 0.9721 0.9785 0.9890 0.9702

IFM (0.8, 0.3, 0.1, 0.5) -0.9099 -0.5088 -0.1024 0.1047 0.5088 0.9093
0.0381 0.0142 0.0147 0.0055 0.0148 0.0193
0.6867 0.7909 0.8307 0.8276 0.7937 0.6942
0.9570 0.9560 0.9490 0.9440 0.9450 0.9390

200 (0.7, 0.3, 0.2, 0.4) -0.9045 -0.5094 -0.1031 0.1037 0.5083 0.9060
0.0032 0.0094 0.0163 0.0032 0.0066 0.0260
0.6874 0.7830 0.8228 0.8220 0.7812 0.6832
0.9340 0.9440 0.9480 0.9460 0.9380 0.9450

(0.6, 0.2, 0.3, 0.1) -0.9055 -0.5092 -0.1040 0.1084 0.5046 0.9055
0.0145 0.0017 0.0169 0.0077 0.0132 0.0045
0.6886 0.7864 0.8244 0.8327 0.7953 0.5886
0.9260 0.9300 0.9420 0.9400 0.9340 0.9260

SP (0.8, 0.3, 0.1, 0.5) -0.8979 -0.5046 -0.1093 0.1049 0.5075 0.9017
0.0113 0.0124 0.0141 0.0052 0.0145 0.0081
0.6836 0.7865 0.8253 0.8241 0.7879 0.6867
0.9400 0.9590 0.9620 0.9530 0.9440 0.9290

(0.7, 0.3, 0.2, 0.4) -0.9040 -0.5097 -0.1017 0.1039 0.5083 0.9070
0.0188 0.0023 0.0064 0.0136 0.0170 0.0187
0.6892 0.7849 0.8252 0.8240 0.7841 0.7221
0.9270 0.9400 0.9510 0.9530 0.9560 0.9110

(0.6, 0.2, 0.3, 0.1) -0.9077 -0.5058 -0.1031 0.1099 0.5006 0.9077
0.0084 0.0115 0.0068 0.0068 0.0109 0.0054
0.6866 0.7849 0.8236 0.8227 0.7851 0.5866
0.9340 0.9490 0.9560 0.9640 0.9430 0.9340

Note: The values in the second row are MSE for τ .The values in the third and fourth
row is the length of confidence interval and coverage probability for τ .
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where δ̂ is the estimated value of δ.

L.CI = U(δ̂)− L(δ̂), (66)

where U(δ̂) and L(δ̂) denote the upper and lower confidence interval of δ
respectively.

CP =
1

n

n∑
1

IDi , (67)

where

IDi =

{
1 if δ ∈ [L(δ̂), U(δ̂)],

0 if δ /∈ [L(δ̂), U(δ̂)].
(68)

It is observed from the numerical results presented in Tables 1 and 2 that

• For all approaches examined, the MSEs of the estimates decrease
with increase in the sample sizes. But for estimating the dependence
parameter τ , the MLE method performs better than the other methods.
• With the increase of sample size, the length of the confidence interval

(L.CI) decreases for all of the three methods considered.
• coverage probability (CP) for the estimate of τ increases as sample

size increases in all the considered methods and becomes close to the
significance value.
• With increasing sample sizes, MSEs for R estimates decreases under

both MLE and IFM and MLE provides the better estimate compared to
IFM based on MSEs. Further, we observed that when τ increases, R’s
variation increases and vice versa. This means R and τ have a positive
relationship.

9 Real Data Analysis

In this section, we analyse the data set originally reported by McGilchrist
and Aisbett (1991) [36]. The data represents the recurrence time of infection
for the kidney disease patients using portable dialysis equipment. Turk et al.
(2017) [52] analysed the same data sets to estimate the parameters of
bivariate generalized exponential distribution based on Plackett and FGM
copula using MLE, IFM, and CML approaches. Recently, Ahmed and Mokhli
(2020) [1] modelled this data for Bivariate General Exponential and Bivariate
General Inverse Exponential distributions linked by FGM copula to esti-
mate the parameters and stress-strength reliability R by MLE and Bayesian
methods.



Reliability Charateristics of Bivariate Lindley Distribution 371

Table 3 The correlation coefficient and test of correlation for real data
Correlation Measure Correlation P-value

Pearson’s 0.09014 0.6357

Kendall’s 0.11098 0.3914

Table 4 Goodness of fit test for Lindley distribution
X Y

D (test statistic) P-value AIC BIC D P-value AIC BIC

Lindley 0.13606 0.6352 325.977 328.7795 0.11344 0.8349 318.7947 321.5971

Weibull 0.14541 0.5499 326.9948 329.7972 0.14608 0.5439 317.1133 319.9157

Gen.Exp 0.14454 0.5578 325.69771 328.5001 0.13127 0.6795 316.18948 318.9918

Let X and Y represents the first and second recurrence times, respectively.
The data for the 30 patients are given as follows

X : 8, 23, 22, 447, 30, 24, 7, 511, 53, 15, 7, 141, 96, 149, 536, 17, 185, 292,

22, 15, 152, 402, 13, 39, 12, 113, 132, 34, 2, 130.

Y : 16, 13, 28, 318, 12, 245, 9, 30, 196, 154, 333, 8, 38, 70, 25, 4, 117, 114,

159, 108, 362, 24, 66, 46, 40, 201, 156, 30, 25, 26.

We transformed both the data sets stress (Y) and the strength (X) by
taking the square root of the data and dividing it by 0.1. It is noted that the
resultant data fits quite well with the proposed model.The data is relevant to
the distribution based on FGM copula since the correlation between data is
weak (−1

3 ,1
3 ). The correlation coefficient and test of correlation for the real

data are reported in Table 3.
First, we investigated the validity of the Lindley distribution by fitting it to

X and Y separately. The graph of empirical and theoretical c.d.f and P–P plot
for Lindley with other univariate distributions are given in Figures 3 and 4,
respectively. From these graph, we conclude that Lindley distribution fit these
data sets well. This conclusion is also supported by the Kolmogorov-Smirnov
tests, as given in Table 4.

Further, a Multiplier bootstrap-based goodness–of–fit test introduced by
Genest et al. (2013) [18] is performed to assess the relevance of copulas for
the real data, the results are reported in Table 5.

Finally, the bivariate Lindley distribution based on FGM copula are
fitted to the data set. A comparison study is performed between FGMBL
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Figure 3 The plot of empirical and theoretical c.d.f’s and P–P plot for data X.

Figure 4 The plot of empirical and theoretical c.d.f’s and P–P plot for data Y.

Table 5 Goodness of fit test for FGM copula
Statistic τ̂ P-value

Anderson-Darling-type(Rn) 0.29031 0.46704 0.3981

Table 6 The estimates of the parameters of FGM distributions

Model θ̂1 α̂1 θ̂2 α̂2 τ̂ AIC BIC

FGM-Lindley 0.0232 4.3305 0.0227 2.3709 0.4416 646.3275 653.3335

FGM-Weibull 0.2134 1.4521 0.2168 2.4681 0.4194 864.1584 871.1643

FGM-Gen.Exp 0.4065 0.0056 0.5794 0.0088 0.4528 685.3983 692.4043

distribution, FGMBW (El-Sherpieny et al. (2018) [17]), and FGMBGE (Turk
et al. (2017) [52]) distributions based on Akaike’s Information Criteria (AIC)
and Bayesian Information Criteria (BIC) ( kuha (2004)) [30]). The results are
presented in Table 6.
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Table 7 The estimates, the corresponding standard deviation of the parameters and reliability
parameter of FGMBL distribution

Method Estimate θ̂1 α̂1 θ̂2 α̂2 τ̂ R̂

MLE Mean 0.0232 4.3305 0.0226 2.3709 0.4416 0.9812

(SD) (0.0029) ( 0.4217) (0.0004) (0.0155) (0.5794)

IFM Mean 0.0222 0.5681 0.0125 0.0256 2.2331 0.9996

(SD) (0.0027) (0.0186) (0.0290) (0.1766) (0.5683)

SP Mean – – – – 0.4964 –

(SD) (0.5232)

10 Concluding Remarks

In this article, we studied the estimation of dependent stress-strength reliabil-
ity R based on FGM copula for Lindley marginals. The FGMBL distribution
is proposed and its several statistical properties are derived in a closed-
form. Further, the condition for the FGMBL distribution satisfies the positive
(negative) quadrant dependence property, and the IFR (DFR) distribution for
positive (negative) values of the dependence parameter are also derived.

We estimated the expression of R, by using MLE and IFM methods and
investigated its variation with respect to the dependence parameter τ . From
the simulation results, we found that the estimated values of R and τ are
closer to the true value in all the considered methods. Further, the MLE
method performs better as compared to the other methods for estimating
both the dependence parameter τ and R in terms of MSE. Furthermore, we
observe that the variation of the estimate of R with respect to the variation
of the dependence parameter τ is positive, i.e., the variation in R decreases
(increases) while τ decreases (increases). The length of the asymptotic confi-
dence interval and their associated coverage probability of the estimate of the
dependence parameter τ are also obtained.

Finally, a real data set is considered to demonstrate the application of
the proposed model, and it shows that the FGMBL distribution is the best
choice as compared to FGMBW and FGMBGE distributions based on AIC
and BIC. Therefore, the proposed FGM based bivariate Lindley is best choice
for dependence stress-strength modelling. As for future research perspectives,
asymptotic properties of FGMBL distribution may consider in further. More-
over, different families of stress and strength distributions as well as other
families of copulas can be analyzed and the corresponding value of R and
their associated properties can be derived.
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