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Abstract

In the present piece of work, we are going to propose a new trigonometry
based transformation called PCM transformation. We have been obtained its
various statistical properties such as survival function, hazard rate function,
reverse-hazard rate function, moment generating function, median, stochastic
ordering etc. Maximum Likelihood Estimator (MLE) method under classical
approach and Bayesian approaches are tackled to obtain the estimate of
unknown parameter. A real dataset has been applied to check its fitness on
the basis of fitting criterions Akaike Information criterion (AIC), Bayesian
Information criterion (BIC), log-likelihood (-LL) and Kolmogrov-Smirnov
(KS) test statistic values in real sense. A simulation study is also being
conducted to assess the estimator’s long-term attitude and compared over
some chosen distributions.
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1 Introduction

From many years ago, we are seeing a race is continued for establishing,
proposing and generalizing distributions and researchers are showing their
keen interest to propose new distribution which are more flexible, applicable
in real life scenario, till now this become a major challenge for us. So, to beat
such challenges young researchers are proposing a series of new distributions
day-by-day and checking their superiority, flexibility and applicability to real
life problems. Hazard rate is quite useful tool for identifying the nature of
chosen lifetime models and projects various patterns like- increasing failure
rate (IFR), decreasing failure rate (DFR), upside-down bathtub (UBT) and
bath-tub shape (BT) and for elaborative study readers may refer Glaser
(1980). Exponential distribution plays very constructive role in studying the
lifetime phenomena but use of distribution is quite restrictive due to its
constant hazard rate nature. So, to overcome it, Weibull distribution and
gamma distribution are widely used and usually preferred. Weibull distri-
bution also plays a key role in non-constant hazard rate model, for this
pertinence Mudholkar and Srivastava (1993), Xie and Lai (1996), and Xie
et al. (2002) introduced three parameter generalization of Weibull distribution
for analyzing bathtub shaped failure rate pattern. Lifetime distributions are
the basis for analyzing and judging the real life problems. There are many
researchers which have proposed many new distributions those are suitable
for the study in various fields like Medical, Biology, Demography, Insur-
ance, Engineering, Finance, Economics etc. There is no any model to be
globally acceptable model, to deal such situations, there is need to develop
new model(s)/distribution(s). Datasets are also important for checking the
suitability and flexibility of the considered model. Here, we have used com-
plete datasets only. Recent studies are demonstrating great interest in the
continuous distributions, few of them are circular Cauchy distribution given
by Kent and Tyler (1988), Abate et al. (1995) proposed the weighted-cosine
exponential distribution, Nadarajah and Kotz (2006) proposed the beta-type
distribution, Al-Faris and Khan (2008) proposed the sine square distribution
and Sinha (2012) proposed the Sinoform distribution. As we all know that
there is a shortfall of trigonometric transformations and plethora of other than
trigonometric type transformations in the statistical literature. Therefore, we
are keen interested to propose a new trigonometric transformation and also
check its flexibility.

In Statistical literature no. of transformations are available to produce new
CDF corresponding to a given CDF. Suppose, we have a CDF F (x), then the
associated proposed CDF will be Gi(x).
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• The most popular among them is the power transformation initiated by
Gupta et al. (1998) having the form

G1(x) = [(F (x)]α; α > 0

• Quadratic rank transformation map (QRTM) proposed by Shaw and
Buckley (2009) having the form

G2(x) = (1 + λ)F (x)− λF 2(x); |λ| ≤ 1

• DUS transformation proposed by Kumar et al. (2015) having the form

G3(x) =

(
eF (x) − 1

e− 1

)
; e = exp(1)

• SS-transformation proposed by Kumar et al. (2015) having the form

G4(x) = sin
(π

2
F (x)

)
• Minimum Guarantee (MG)-distribution proposed by Kumar et al. (2017)

having the form

G5(x) = e
1− 1

F (x)

• log-transformation proposed by Maurya et al. (2016) and having the
form

G6(x) = 1− ln(2− F (x))

ln 2
• Transformation based on the generalization of Kumar et al. (2015) called

GDUS transformation proposed by Maurya et al. (2017) having the form

G7(x) =

(
eF

α(x) − 1

e− 1

)
; α > 0

• New Sine-G family based on Kumar et al. (2015) proposed by Mahmood
and Chesneau (2019) with its nice form

G8(x) = sin
(π

4
F (x) (F (x) + 1)

)
∀x ∈ <

• New transformation initiated by Kyurkchiev (2017) to develop a sigmoid
family of functions for Verhulst Logistic function is

G9(x) =
2F (x)

1 + F (x)



376 D. Kumar et al.

• Cosine-Sine (CS) transformation proposed by Chesneau et al. (2018)
and its nice form is

G10(x) =
(α+ γ) sin

(
π
2F (x)

)
α+ β cos

(
π
2F (x)

)
+ γ sin

(
π
2F (x)

)
+θ sin

(
π
2F (x)

)
cos
(
π
2F (x)

) ; ∀x ∈ <

Where α ≥ 0, β ≥ 0, γ ≥ 0, θ ≥ 0 are parameters with α + β > 0,
α+ γ > 0.

In this continuation, after taking ideas and motivations from the above
discussed transformations, we have decided to propose a new transformation
commonly known as PCM transformation given below

G(x) = tan
(π

4
F (x)

)
(1)

Where, G(x) and F (x) are the CDFs of the proposed transformation and
baseline distribution. By definition, we get (1) is the CDF because it satisfies
the following properties-

(i) G(−∞) = 0, G(∞) = 1
(ii) G(x)is monotonic increasing function of x.

(iii) G(x)is right continuous.
(iv) 0 ≤ G(x) ≤ 1

On differentiating (1) w.r.t. x, we get the PDF g(x) and is given by

g(x) =
π

4
f(x) sec2

(π
4
F (x)

)
; x > 0 (2)

To illustrate the usefulness of this new transformation (1), we are con-
sidering exponential distribution with mean 1

θ as a baseline distribution. The
CDFG(x) and corresponding PDF g(x) of the new lifetime distribution using
PCM transformation, viz. (1) and (2) are obtained as follows

G(x) = tan
(π

4

(
1− e−θx

))
⇒ G(x) =

1− tan
(
π
4 e
−θx)

1 + tan
(
π
4 e
−θx
) ∀x > 0, θ > 0 (3)

and

g(x) =
π

4
θe−θx sec2

(π
4

(
1− e−θx

))
∀x > 0, θ > 0 (4)
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Figure 1 PDF and Survival plots of PCME(θ)-distribution for different choices of θ.

The novelty of the article is that the proposed transformation is parsimo-
nious in parameter. Also, this gives a single parameter distribution having
increasing, decreasing and bath-tub shape hazard rate nature for different
choices of parameter which seems rarely in some distributions only.

The rest of the article is arranged as follows, statistical measures has
been discussed in Section 2, estimation of parameter has been carried out in
Section 3, real data application has been shown in Section 4, simulation study
have been discussed in Section 5 and concluding remarks has been elaborated
in Section 6.

2 Statistical Measures

In this section, we are interested in obtaining the expressions for survival
function, hazard rate function, reverse-hazard rate function, moment generat-
ing function (MGF), quantile function, sample generation, median, stochastic
ordering of PCME(θ)-distribution.

2.1 Survival Function

The survival function is the likelihood of any lifetime entity living past a
certain age x and is denoted by S(x) and defined as

S(x) = 1−
1− tan

(
π
4 e
−θx)

1 + tan
(
π
4 e
−θx
) =

2 tan
(
π
4 e
−θx)

1 + tan
(
π
4 e
−θx
) (5)

2.2 Hazard Rate Function

This is the instantaneous failure rate or force of mortality and is the rate at
which any life testing item will stop to work and is denoted by h(x) and
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Figure 2 Plots of hazard rate function of PCME(θ)-distribution for different choices of θ.

defined as the ratio of the PDF to the survival function and is

h(x) =
π

8

(
θe−θx sec2

(
π
4

(
1− e−θx

)) (
1 + tan

(
π
4 e
−θx))

tan
(
π
4 e
−θx
) )

(6)

And the respective hazard rate plots for different choices of parameter θ
are shown in Figure 2.

2.3 Reverse-Hazard Rate Function

The reverse-hazard rate function, which is defined as the ratio of PDF to CDF,
is another measure that can be used in place of the hazard rate function

r(x) =
π

4

(
θe−θx sec2

(
π
4

(
1− e−θx

)) (
1 + tan

(
π
4 e
−θx))

1− tan
(
π
4 e
−θx
) )

(7)
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2.4 Quantiles

The pth quantile of PCME(θ)-distribution can be obtained by the solution
of the equation

G(xp) = p

⇒ xp = −1

θ
ln

(
1− 4

π
tan−1 p

)
(8)

2.5 Median

Median is the most basic measure of central tendencies; it’s the quantity that
divides total likelihood into two equal portions that can be obtained by the
relation G(M) = 0.5 ⇒ M = G−1(0.5). Thus, on putting p = 0.5 in
(8), we get the required expression for median of PCME(θ)-distribution as
follows

M = −1

θ
ln

(
1− 4

π
tan−1 0.5

)
(9)

2.6 Sample Generation

The simple and most popular method to generate a sample is the inverse
CDF transformation method. If X is U(0, 1) with CDF F (x), then by the
transformation, we generate the sample from the equation G(x) = U ⇒ x =
G−1(U) of PCME(θ)-distribution

x = −1

θ
ln

(
1− 4

π
tan−1 U

)
(10)

2.7 Stochastic Ordering

Let us take the random variables X1 and X2 having CDFs G1(x) and G2(x)
with parameters θ1 and θ2 respectively, then by definition, we can say that the
variable X1 is stochastically greater than X2, if G1(x) ≤ G2(x) (See Gupta
et al. (1998)).

Now, if random variables X1 and X2 following PCME(θ)-distribution,
then for θ1 < θ2

G1(x)

G2(x)
=

(
1 + tan

(
π
4 e
−θ2x

)) (
1− tan

(
π
4 e
−θ1x

))(
1 + tan

(
π
4 e
−θ1x

)) (
1− tan

(
π
4 e
−θ2x

)) ≤ 1

⇒ G1(x) ≤ G2(x) ∀x
So, we say that X1 is stochastically greater than X2 for θ1 < θ2.
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2.8 Moment Generating Function

The Moment Generating Function (MGF) of r.v. X is denoted by MX(t),
if it exists for every t in some interval containing zero i.e. t ∈ (−h, h) and
defined as

MX(t) =

∫ ∞
0

etxg(x)dx

=

∫ ∞
0

etx × π

4
θe−θx sec2

(π
4

(
1− e−θx

))
dx

=

∫ π/4

0

t/θ(
π

π − 4k

)
︸ ︷︷ ︸

w(x)

sec2 k︸ ︷︷ ︸
φ(x)

dk
[
∵
π

4

(
1− e−θx

)
= k

]

Now, for checking the convergence of the integral, we follow the test as
mentioned below,

Abel’s Test
If
∫ b
a w(x)dx is convergent and φ(x) is bounded and monotonic in (a, b), then∫ b

a w(x)φ(x)dx also convergent.
It is obvious that sec2 k is monotonically increasing function and bounded

in (0, π/4).

Now, our aim is to check the convergence of
∫ π/4
0

(
π

π−4k

)t/θ
dk.

So,∫ π/4

0

(
π

π − 4k

)t/θ
dk

=
π

2

∫ π/2

0
sin1−2t/θ p× cos pdp

[
∵ 4k = π cos2 p

]
=
π

4

Γ
(
1− t

θ

)
Γ(1)

Γ
(
2− t

θ

) ∀ t < θ[
∵
∫ π/2

0
sinm(p)× cosn(p)dp =

Γ
(
m+1
2

)
Γ
(
n+1
2

)
2Γ
(
m+n+2

2

) ]
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Hence, by Abel’s test
∫ π/4
0

(
π

π−4k

)t/θ
sec2 kdk converges ∀t < θ. This

shows that MGF exists ∀t < θ.

3 Estimation of Parameter

In this section, we are going to obtain the estimate of unknown parameter θ
involved in the PCME(θ)-distribution by considering the classical as well as
Bayesian Paradigm.

3.1 Maximum Likelihood Estimator

This is the most popular and extensively used method initiated by C.F.
Gauss and elaborative study initiated by Prof. R. A. Fisher to obtain the
estimator of the unknown parameter of the distribution. If X1, X2, . . . , Xn

be a set of random observations from the population PCME(θ)-
distribution having PDF g(x; θ), then its likelihood function will be as
follows

L =
n∏
i=1

π

4
θe−θxi sec2

(π
4

(
1− e−θxi

))
Taking natural logarithm on both sides, we get

S = ln(L) = C + n ln(θ)− θ
n∑
i=1

xi + 2
n∑
i=1

ln
(

sec
(π

4

(
1− e−θxi

)))
;

C =
(π

4

)n
(11)

On differentiating (11) with respect to the parameter θ and equating the
resultant to 0, we have

dS

dθ
=
n

θ
−

n∑
i=1

xi +
πθ

2

n∑
i=1

e−θxi tan
(π

4

(
1− e−θxi

))
= 0 (12)

Above Equation (12) is not solvable analytically. So, we impose nlm()
function by using R software to solve it numerically to obtain the estimate
θ̂M of θ.
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3.2 Bayes Estimator

Another branch of drawing inferences about the population parameters is the
Bayesian Paradigm. Under this setup the unknown parameter(s) is/are not
taken as constant but will be a random variable and having a distribution
called prior distribution. With the help of prior distribution our next step is to
obtain the posterior distribution which can easily be obtained after the prior
information. The important part of Bayesian paradigm is to choose an appro-
priate loss function, which is not an easy job. Some important loss functions
are squared error loss function (SELF), General entropy loss function (GELF)
and LINEX loss function are usually preferred. For the extensive study about
the suitable loss function and Bayesian estimation readers may refer to Singh
(2011), Singh et al. (2011), Singh et al. (2013), Kumar et al. (2019), Ali
et al. (2019), Yousaf et al. (2020), Shajid et al. (2020), Ali et al. (2020),
Mansoor et al. (2020) and Dey et al. (2020). For the study, we are choosing
the γ(a, b)-distribution as a prior information having PDF of the form

τ(θ) =
abe−aθθb−1

Γb
(13)

Here, a > 0, b > 0 are the hyper-parameters and can be obtained
when prior mean and prior variance will be known. These hyper-parameters
can be obtained, if we have two independent informations available on θ,
information can be obtained from prior mean and prior variance readers may
see Singh (2011). For (13) prior mean and variance are M = b

a and V = b
a2

,

respectively and gives a = M
V and b = M2

V . Also, (13) will behave like
non-informative prior for any finite value of M and V be sufficiently large.

The PDF of posterior distribution corresponding to the prior distribution
γ(a, b), viz. φ(θ|X) for a given sample X = (x1, x2, . . . , xn) is obtained as
follows

φ (θ|X) =
θn+b−1e−θ(a+

∑n
i=1 xi)

∏n
i=1 sec2

(
π
4

(
1− e−θxi

))∫∞
0 θn+b−1e−θ(a+

∑n
i=1 xi)

∏n
i=1 sec2

(
π
4 (1− e−θxi)

)
dθ

(14)

Here we observed that, (14) cannot be solved analytically and hence
Bayes estimators under considered loss function cannot be solved analyti-
cally. Therefore, we propose to use some numerical approximation technique
to solve them approximately.
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Now, we will consider squared error loss function (SELF) and general
entropy loss function (GELF) to obtain Bayes estimator of θ, which are
defined as

LS(θ̂S , θ) = (θ̂S − θ)2 (15)

LG(θ̂G, θ) =

(
θ̂G
θ

)δ
− δ ln

(
θ̂G
θ

)
− 1 (16)

and the corresponding Bayes estimators are

θ̂S = E(θ|X) =

[∫∞
0 θn+be−θ(a+

∑n
i=1 xi)

∏n
i=1 sec2

(
π
4

(
1− e−θxi

))
dθ∫∞

0 θn+be−θ(a+
∑n
i=1 xi)

∏n
i=1 sec2

(
π
4 (1− e−θxi)

)
dθ

]
(17)

and

θ̂G = E
(
θ−δ|X

)−1
δ

=

[∫∞
0 θn+b−δ−1e−θ(a+

∑n
i=1 xi)

∏n
i=1 sec2

(
π
4

(
1− e−θxi

))
dθ∫∞

0 θn+b−δ−1e−θ(a+
∑n
i=1 xi)

∏n
i=1 sec2

(
π
4 (1− e−θxi)

)
dθ

]−1
δ

(18)

respectively.
Here, δ is the loss parameter of GELF and for δ = −1, the Bayes

estimator under GELF (18) reduces to Bayes estimator under SELF (17).
Also, the Equations (17) and (18) are not in nice closed form so to solve them
by using Gauss-Laguerre quadrature technique through R software to obtain
the solution approximately.

4 Real Data Illustration

To demonstrate real dataset application of the proposed PCME(θ)-
distribution, we have considered the data set of remission times of 128 blad-
der cancer patients. For assessing superiority of PCME(θ)-distribution on
this data set, we consider Transmuted Inverse Weibull distribution (TIWD),
Inverse Weibull distribution (IWD), Transmuted Inverse exponential dis-
tribution (TIED) and Transmuted Inverse Rayleigh distribution (TIRD) as
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Table 1 AIC, BIC, -LL and KS test values of data of remission times for the chosen
distributions

Distributions AIC BIC -LL KS

PCME(θ) 835.600 838.400 415.300 0.076

TIWD 879.400 879.700 438.500 0.119

IWD 892.000 892.200 444.000 0.131

TIED 889.600 889.800 442.800 0.155

TIRD 1424.400 1424.600 710.200 0.676

rival distributions. The fitting criterions used here are Akaike Information
criterion (AIC), Bayesian Information criterion (BIC), -log likelihood (-LL)
and Kolmogorov-Smirnov (KS)-test statistic. The MLE of parameter θ of
PCME(θ)-distribution based on this data set is obtained as 0.1279712 and
consequently the values of criterions are calculated and shown in Table 1. The
values of the criterions for other considered distributions have been extracted
from Khan and Khan (2014) and are also shown in comparative Table 1.

From comparative Table 1, it is clear that the values of AIC, BIC, -
LL and KS-test statistics of PCME(θ)-distribution is least as compared to
other considered distributions. So, we can say that our proposed distribution
outperforms the other considered distributions TIWD, IWD, TIED and TIRD.

The plot of empirical CDF Fn(x) and fitted CDF G(x) of PCME(θ)-
distribution against the remission times (in months) of 128 bladder cancer
patients data extracted from Lee and Wang (2003) and shown in Figure 3.

5 Simulation Study

In this section, we are trying to know the performance of the estimators
for their long-run use. We have obtained simulated risks under SELF and
absolute relative bias (ARB) of θ̂M , θ̂S and θ̂G on the basis of 5000 simulated
samples of different sample sizes. The simulated risks under SELF will
be the function of n, θ, δ, a and b. We have arbitrarily chosen the values
θ = 0.5, 1.0, 1.5; δ = ±2; a = 4, b = 8 and n = 10, 15, 20, 25, 30, 40, 60.
The results are summarized in Tables 2–4. From all three tables, we see that
as sample size increases, the values of simulated risks and absolute relative
bias (ARBs) decreases.

On the basis of Tables 3 and 4, we found that θ̂M performs better as
compared to θ̂S and θ̂G in the sense of having smallest risks under SELF and
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Figure 3 Plot of ECDF and fitted CDF of PCME(θ)-distribution.

Table 2 Simulated risks under SELF and Absolute Relative Bias (ARB) of θ̂M , θ̂S and θ̂G
for the true value of parameter θ = 0.5

Risk ARB

θ̂G θ̂G

n θ̂M θ̂S δ = −2 δ = 2 θ̂M θ̂S δ = −2 δ = 2

10 0.0321 0.1053 0.1171 0.0737 0.2611 0.5260 0.5609 0.4233

15 0.0181 0.0543 0.0599 0.0392 0.1957 0.3759 0.3991 0.3089

20 0.0147 0.0386 0.0422 0.0290 0.1763 0.3132 0.3305 0.2631

25 0.0099 0.0232 0.0252 0.0177 0.1531 0.2352 0.2479 0.2009

30 0.0087 0.0191 0.0207 0.0150 0.1456 0.2166 0.2269 0.1883

40 0.0062 0.0119 0.0128 0.0096 0.1211 0.1676 0.1750 0.1477

60 0.0039 0.0065 0.0069 0.0055 0.0971 0.1258 0.1301 0.1141

ARB for the true values of parameter θ = 0.5, 1.0 while from Table 4, it is
clear that, θ̂G(δ = 2) performs better as compared to θ̂M and θ̂S in the sense
of having smallest values of simulated risks under SELF and ARB both for
θ = 1.5.



386 D. Kumar et al.

Table 3 Simulated risks under SELF and Absolute Relative Bias (ARB) of θ̂M , θ̂S and θ̂G
for the true value of parameter θ = 1.0

Risk ARB

θ̂G θ̂G

n θ̂M θ̂S δ = −2 δ = 2 θ̂M θ̂S δ = −2 δ = 2

10 0.1333 0.1788 0.2038 0.1154 0.2408 0.3288 0.3557 0.2553

15 0.0864 0.1242 0.1387 0.0869 0.2178 0.2773 0.2954 0.2271

20 0.0543 0.0765 0.0846 0.0562 0.1777 0.2114 0.2237 0.1793

25 0.0446 0.0620 0.0679 0.0472 0.1598 0.1895 0.1993 0.1640

30 0.0361 0.0501 0.0544 0.0390 0.1442 0.1715 0.1797 0.1494

40 0.0224 0.0303 0.0326 0.0244 0.1186 0.1349 0.1403 0.1213

60 0.0158 0.0197 0.0208 0.0168 0.0966 0.1073 0.1106 0.0989

Table 4 Simulated risks under SELF and Absolute Relative Bias (ARB) of θ̂M , θ̂S and θ̂G
for the true value of parameter θ = 1.5

Risk ARB

θ̂G θ̂G

n θ̂M θ̂S δ = −2 δ = 2 θ̂M θ̂S δ = −2 δ = 2

10 0.2909 0.1619 0.1889 0.1028 0.2640 0.2082 0.2255 0.1686

15 0.1828 0.1281 0.1447 0.0907 0.2119 0.1815 0.1932 0.1553

20 0.1249 0.0989 0.1099 0.0738 0.1714 0.1574 0.1665 0.1359

25 0.0839 0.0732 0.0804 0.0589 0.1475 0.1383 0.1452 0.1230

30 0.0804 0.0719 0.0780 0.0576 0.1433 0.1357 0.1413 0.1226

40 0.0532 0.0494 0.0526 0.0420 0.1179 0.1138 0.1176 0.1053

60 0.0352 0.0332 0.0346 0.0300 0.0963 0.0923 0.0941 0.0890

6 Concluding Remarks

In this piece of work, we have proposed PCM-transformation in order to get
a parsimonious transformed lifetime distribution of some available baseline
lifetime distribution. PCM-transformation of exp(θ)-distribution has been
considered to check its application to the real problem. Several estimators
such as MLE, Bayes estimators under SELF and GELF of the parameter θ of
PCME(θ)-distribution has been obtained. A real dataset of remission times
of 128 bladder cancer patients has been considered and it was found better fit
by PCME(θ)-distribution as compared to TIWD, IWD, TIED and TIRD in
terms of smallest values of AIC, BIC, -LL and KS-test statistics. Simulation
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study has also been carried out to know the performances of θ̂M , θ̂S and θ̂G
for their long-run use and it has been found that for θ = 0.5, 1.0, θ̂M performs
better as compared to θ̂S and θ̂G, while for θ = 1.5, θ̂G(δ = 2) performs
better as compared to θ̂M and θ̂S in terms of having minimum values of
simulated risks under SELF and ARB.

Therefore, we suggest to use PCM-transformation for getting new parsi-
monious lifetime distribution as well as in order to have flexible distribution.
This distribution may also prefer for the study of incomplete sample data in
future.
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