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Abstract

For a Family of lifetime distributions proposed by Chaturvedi and Singh
(2008) [6]. The problem of estimatingR(t) = P (X > t), which is defined as
the probability that a system survives until time t andR = P (Y > X), which
represents the stress-strength model are revisited. In order to obtain the maxi-
mum likelihood estimators (MLE’S), uniformly minimum variance unbiased
estimators (UMVUS’S), interval estimators and the Bayes estimators for the
considered model. The technique of transformation method is used.

Keywords: Family of lifetime distributions, uniformly minimum vari-
ance unbiased estimator, maximum likelihood estimator, confidence interval,
bayes estimator.

1 Introduction

The reliability of an item or system can be defined as a function of
time ‘t’ i.e, R(t) = P (X > t), which defines the failure free opera-
tion of items/components until time ‘t’. One another important measure of
reliability under the stress-strength model is R = Pr(Y > X), which
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represents the reliability of an item or system for the random strength Y and
random stress X.

A lot of work has been done in the literature on the point estiamtion of
R. For a brief review literature one may refer to Pugh (1963) [12], Basu
(1964) [3], Church and Harris (1970) [8], Enis and Geisser (1971) [10],
Downton (1973) [9], Tong (1974) [19], Kelly et al. (1976) [11], Sinha
and Kale (1980) [15], Sathe and Shah (1981) [14], Chao (1982) [4],
Awad and Gharraf (1986) [2], Chaturvedi and Surinder (1999) [7], Rezaei
et al. (2010) [13], Chaturvedi and Pathak (2012) [5], Surinder and
Mayank(2014) [18], Surinder and Mukesh (2015) [16] and Surinder and
Mukesh (2016) [17].

2 The Family of Lifetime Distributions

Chaturvedi and Singh (2008) [6] derived a family of lifetime distributions
with the help of Weibull distribution. Let the random variable X follows a
family of lifetime distributions, then the pdf is presented as

f(x; a, λ, θ) =
G′(x; a, θ)

λ
exp

(
−G(x; a, θ)

λ

)
; x > a ≥ 0, λ > 0

(1)

Here,G(x; a, θ) is a function of x and may also depend on the parameters
a and θ. θ may be vector valued. G′(x; a, θ) represents the derivative of
G(x; a, θ) with respect to x.

The presented model (1) covers the following lifetime distributions as
specific cases:

1. For G(x; a, θ) = x and a=0, we get the one-parameter exponential
distribution.

2. For G(x; a, θ) = xp, (p > 0) and a=0, we get the Weibull distribution.
3. For G(x; a, θ) = x2 and a=0, we get the Rayleigh distribution.
4. For G(x; a, θ) = log(1 + xb), b > 0 and a=0, we get the Burr

distribution.
5. For G(x; a, θ) = log(xa ), we get the Pareto distribution.
6. For G(x; a, θ) = log(1 + x

ν ), ν > 0 and a=0, we get the Lomax
distribution.

7. For G(x; a, θ) = log
(

1 + xb

ν

)
, b > 0, ν > 0 and a=0, we get the Burr

distribution with scale parameter ν(> 0).
8. ForG(x; a, θ) = xγexp(νx), γ > 0, ν > 0 and a=0, we get the modified

Weibull distribution.
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9. For G(x; a, θ) = (x − a) + ν
λ log

(
x+ν
a+λ

)
, ν > 0, λ > 0, we get the

generalised Pareto distribution.
10. For G(x; a, θ) = bx + θ

2x
2, θ > 0, b > 0 and a=0, we get the linear

exponential distribution.
11. For G(x; a, θ) = (1 + xb)θ − 1, θ > 0, b > 0 and a=0, we get the

generalised power Weibull distribution.
12. ForG(x; a, θ) = β

b (ebx−1), β > 0, b > 0 and a=0, we get the Gompertz
distribution.

13. For G(x; a, θ) = (ex
b −1), b > 0 and a=0, we get the Chen distribution.

14. For G(x; a, θ) = (x − a), we get the two-parameter exponential
distribution.

3 MLE of R = Pr(Y > X)

In the following theorem, MLE of R is derived through the transformation
method

Theorem 1: The MLE of R is

R̈ =
T (y)

T (y) + T (x)
(2)

where, T (y) =
1

n2

∑n2
j=1H(yj ; a2, θ2) and T (x) =

1

n1

∑n1
i=1G(xi; a1, θ1)

Proof: Let the random variable X follows a Family of lifetime distribution
with pdf

f(x; a1, λ1, θ1) =
G′(x; a1, θ1)

λ1
exp

(
−G(x; a1, θ1)

λ1

)
;

x > a1 ≥ 0, λ1 > 0 (3)

For the given equation (3), let us consider the transformation
G(x; a1, θ1) = t. Then the distribution become

f(t;α) =
1

α
exp

(
−t
α

)
(4)

where, α = λ1.
Now, let us consider Y be a random variable with pdf

f(y; a2, λ2, θ2) =
H ′(y; a2, θ2)

λ2
exp

(
−H(y; a2, θ2)

λ2

)
;

y > a2 ≥ 0, λ2 > 0 (5)
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Similarly, let us take the transformation z = H(y; a2, θ2) and β = λ2,
we get

f(z;β) =
1

β
exp

(
− z
β

)
(6)

Let t and z be two independent random variable which follows expo-
nential distribution (4) and (6) with parameters α and β, respectively, where
t = G(x; a1, θ1) and z = H(y; a2, θ2). The relaibility model is

R = Pr(z > t) =

∫ ∞
z=0

∫ ∞
t=0

f(t;α)f(z;β)dtdz

=

∫ ∞
z=0

[
1− exp

(
− z
α

)] 1

β
exp

(
− z
β

)
dz

After solving, we get

R =
β

β + α
(7)

On replacing the α and β by their MLE’S i.e, α̈ = t and β̈ = z. The MLE
of R = Pr(z > t) is

z

z + t

where, t = 1
n1

∑n1
i=1 ti and z = 1

n2

∑n2
j=1 zj . Finally, MLE of R is

R̈ =
T (y)

T (y) + T (x)

where, T (y) = 1
n2

∑n2
j=1H(yj ; a2, θ2) and T (x) = 1

n1

∑n1
i=1G(xi; a1, θ1).

Hence, the theorem follows.

1. Implication
Here, we consider the different cases for the distributions to obtain the MLE
of R = Pr(Y > X) given in (2)

Values of parameters for The MLE of R = Pr(Y > X)
Distributions Values of Parameter

The one-parameter
exponential
distribution

T (y) = 1
n2

∑n2
j=1 yj and T (x) = 1

n1

∑n1
i=1 xi
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Weibull distribution T (y) = 1
n2

∑n2
j=1 y

p
j and

T (x) = 1
n1

∑n1
i=1 x

p
i for p > 0

Rayleigh distribution T (y) = 1
n2

∑n2
j=1 y

2
j and T (x) = 1

n1

∑n1
i=1 x

2
i

Burr distribution T (y) = 1
n2

∑n2
j=1 log(1 + ybj) and

T (x) = 1
n1

∑n1
i=1 log(1 + xbi)

for b > 0

Pareto distribution T (y) = 1
n2

∑n2
j=1 log

(
yj
a2

)
and

T (x) = 1
n1

∑n1
i=1 log

(
xi
a1

)
Lomax distribution T (y) = 1

n2

∑n2
j=1 log

(
1 +

yj
ν

)
and

T (x) = 1
n1

∑n1
i=1 log

(
1 + xi

ν

)
for ν > 0

Burr distribution with
scale parameter
ν(> 0)

T (y) = 1
n2

∑n2
j=1 log

(
1 +

ybj
ν

)
and

T (x) = 1
n1

∑n1
i=1 log

(
1 +

xbi
ν

)
for b > 0, ν > 0

The modified Weibull
distribution

T (y) = 1
n2

∑n2
j=1 y

γ
j exp(νyj) and

T (x) = 1
n1

∑n1
i=1 x

γ
i exp(νxi)

for γ > 0, ν > 0

The generalised T (y) = 1
n2

∑n2
j=1

[
(yj − a2) + ν

λ2
log
(
yj+ν
a2+λ2

)]
Pareto distribution T (x) = 1

n1

∑n1
i=1

[
(xi − a1) + ν

λ1
log
(
xi+ν
a1+λ1

)]
for λ1, λ2 > 0, ν > 0

The linear
exponential
distribution

T (y) = 1
n2

∑n2
j=1

[
byj + θ2

2 y
2
j

]
T (x) = 1

n1

∑n1
i=1

[
bxi + θ1

2 x
2
i

]
for θ1, θ2 > 0 and b > 0
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The generalised
power Weibull
distribution

T (y) = 1
n2

∑n2
j=1

[
(1 + ybj)

θ2
]
− 1 and

T (x) = 1
n1

∑n1
i=1

[
(1 + xbi)

θ1
]
− 1

θ1, θ2 > 0 and b > 0

The Gompertz
distribution

T (y) = 1
n2

β
b (ebΠ

n2
j=1yj − 1) and

T (y) = 1
n1

β
b (ebΠ

n1
i=1xi − 1)

β, b > 0

Chen distribution T (y) = 1
n2

∑n2
j=1(ey

b
j − 1) and

T (x) = 1
n1

∑n1
i=1(ex

b
i − 1)

b > 0

The two-parameter
exponential
distribution

T (y) = 1
n2

∑n2
j=1(yj − a2) and

T (x) = 1
n1

∑n1
i=1(xi − a1)

4 UMVUE of R = Pr(Y > X)

In the following theorem, UMVUE of R is derived through the transformation
method

Theorem 2: The UMVUE of R is

Ŕ =



n2−1∑
i=0

(−1)i
Γ(n1)Γ(n2)

Γ(n2 − i)Γ(n1 + i)

(
T (x)

T (y)

)i
; T (x) < T (y)

n1−2∑
i=0

(−1)i
Γ(n1)Γ(n2)

Γ(n2 + i+ 1)Γ(n1 − i− 1)

(
T (y)

T (x)

)i+1

; T (x) ≥ T (y)

(8)

where, T (y) =
∑n2

i=1H(yj ; a2, θ2) and T (x) =
∑n1

i=1G(xi; a1, θ1).

Proof: Considering the transfomationG(x; a1, θ1) = t and z = H(y; a2, θ2),
we have the transform Equations (4) and (6). To obtain the measure of
reliabilIty estimate Pr(z > t), we required to obtain the UMVUE of f(t;α)
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and f(z;β) i.e, f́(t;α) and f́(z;β) respectively, which is given by

f́(t;α) =
(n1 − 1)G′(t; a1, θ1)

n1t

[
1− G(t; a1, θ1)

n1t

]n1−2

;

G(t; a1, θ1) < n1t (9)

and

f́(z;β) =
(n2 − 1)H ′(z; a2, θ2)

n2z

[
1− H(z; a2, θ1)

n2z

]n2−2

;

H(z; a2, θ1) < n2z (10)

Now to obtain UMVUE of R we have,

Ŕ = Pr(z > t)

=

∫ ∞
t=0

∫ ∞
z=t

f́(t;α)f́(z;β)dzdt

using (9) and (10)

Ŕ =

∫ n1t

t=0

∫ n2z

z=t

(n1 − 1)(n2 − 1)H ′(z; a2, θ2)G′(t; a1, θ1)

n1n2tz[
1− G(t; a1, θ1)

n1t

]n1−2 [
1− H(z; a2, θ1)

n2z

]n2−2

dzdt

let
[
1− H(z;a2,θ1)

n2z

]
= w

=

∫ min(n1t,n2z)

t=0

(n1 − 1)(n2 − 1)G′(t; a1, θ1)

n1t

[
1− G(t; a1, θ1)

n1t

]n1−2

[
wn2−1

n2 − 1

]1−H(t;a2,θ1)
n2z

0

dt

=

∫ min(n1t,n2z)

t=0

(n1 − 1)G′(t; a1, θ1)

n1t

[
1− G(t; a1, θ1)

n1t

]n1−2

[
1− H(t; a2, θ1)

n2z

]n2−1

dt
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=

∫ min(n1t,n2z)

t=0

(n1 − 1)G′(t; a1, θ1)

n1t

[
1− G(t; a1, θ1)

n1t

]n1−2

n2−1∑
i=0

(−1)i
(
n2 − 1

i

)[
H(t; a2, θ1)

n2z

]i
dt

Now consider the case n1t < n2z. Let 1− G(t;a1,θ1)

n1t
= u, for solving the

integral assuming G(t; a1, θ1) = H(t; a2, θ2) i.e., a1 = a2 and θ1 = θ2.

Ŕ =

∫ 1

0
(n1 − 1)

n2−1∑
i=0

(−1)i
(
n2 − 1

i

)[
n1t(1− u)

n2z

]i
un1−1du

=

n2−1∑
i=0

(−1)i
Γ(n1)Γ(n2)

Γ(n2 − i)Γ(n1 + i)

(
n1t

n2z

)i
In a same manner, we tackle the case when n1t > n2z:

Ŕ =

n1−2∑
i=0

(−1)i
Γ(n1)Γ(n2)

Γ(n2 + i+ 1)Γ(n1 − i− 1)

(
n2z

n1t

)i+1

The UMVUE of R = Pr(Y > X) is obtained by substituting n2z =
T (y) =

∑n2
j=1H(yj ; a2, θ2) and n1t = T (x) =

∑n1
i=1G(xi; a1, θ1).

Hence, the theorem follows.

2. Implication
Here, we consider the different cases for the distributions to obtain the
UMVUE of R = Pr(Y > X) given in (8)

Values of parameters for The UMVUE of R = Pr(Y > X)
Distributions Values of Parameter

The one-parameter exponential
distribution

T (y) =
∑n2

j=1 yj and
T (x) =

∑n1
i=1 xi

Weibull distribution T (y) =
∑n2

j=1 y
p
j and

T (x) =
∑n1

i=1 x
p
i for p > 0
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Rayleigh distribution T (y) =
∑n2

j=1 y
2
j and

T (x) =
∑n1

i=1 x
2
i

Burr distribution T (y) =
∑n2

j=1 log(1 + ybj) and

T (x) =
∑n1

i=1 log(1 + xbi)
for b > 0

Pareto distribution T (y) =
∑n2

j=1 log
(
yj
a2

)
and

T (x) =
∑n1

i=1 log
(
xi
a1

)
Lomax distribution T (y) =

∑n2
j=1 log

(
1 +

yj
ν

)
and

T (x) =
∑n1

i=1 log
(
1 + xi

ν

)
for ν > 0

Burr distribution with scale
parameter ν(> 0)

T (y) =
∑n2

j=1 log

(
1 +

ybj
ν

)
and

T (x) =
∑n1

i=1 log
(

1 +
xbi
ν

)
for b > 0, ν > 0

The modified Weibull distribution T (y) =
∑n2

j=1 y
γ
j exp(νyj) and

T (x) =
∑n1

i=1 x
γ
i exp(νxi)

for γ > 0, ν > 0

The generalised Pareto distribution T (y) =∑n2
j=1

[
(yj − a2) + ν

λ2
log
(
yj+ν
a2+λ2

)]
T (x) =∑n1

i=1

[
(xi − a1) + ν

λ1
log
(
xi+ν
a1+λ1

)]
for λ1, λ2 > 0, ν > 0

The linear exponential distribution T (y) =
∑n2

j=1

[
byj + θ2

2 y
2
j

]
T (x) =

∑n1
i=1

[
bxi + θ1

2 x
2
i

]
for θ1, θ2 > 0 and b > 0
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The generalised power T (y) =
∑n2

j=1

[
(1 + ybj)

θ2
]
− 1 and

T (x) =
∑n1

i=1

[
(1 + xbi)

θ1
]
− 1

Weibull distribution θ1, θ2 > 0 and b > 0

The Gompertz distribution T (y) = β
b (ebΠ

n2
j=1yj − 1) and

T (x) = β
b (ebΠ

n1
i=1xi − 1)

β, b > 0

Chen distribution T (y) =
∑n2

j=1(ey
b
j − 1) and

T (x) =
∑n1

i=1(ex
b
i − 1)

b > 0

The two-parameter exponential
distribution

T (y) =
∑n2

j=1(yj − a2) and
T (x) =

∑n1
i=1(xi − a1)

5 Confidence Interval of R = Pr(Y > X)

In the following theorem, confidence interval of R is derived through the
transformation method

Theorem 3: The confidence interval of R = Pr(Y > X) is

P

(
n2R̃c

n1(1− R̃)(1− c) + n2R̃c
<R<

n2R̃d

n1(1− R̃)(1− d) + n2R̃d

)
= 1− σ

(11)

where, R̈ =
z

z + t
and 0 < c < d.

Proof: From the Theorem 1, the MLE of R is β
β+α or z

z+t
. As we know

n1t and n2z follows Gamma distribution with parameters (α, n1) and
(β, n2), respectively. For Confidence Interval of R, we must obtain the exact
distribution of the variable

δ =
αn1t

αn1t+ βn2z
(12)
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Let ρ = αn1t and % = βn2z and observe that ρ and % have gamma
distribution with the parameters (1, n1) and (1, n2) respectively. New set of
varible is δ = ρ

ρ+% .
On taking ψ = % and expressing the old variable in terms of new ones

ρ = δψ
(1−δ) . The Jacobian of transformation is J = (1− δ)−2ψ. The joint pdf

of δ and ψ

Pr(δ, ψ) =
e−( ψ

1−δ )ψn1+n2−1δn1−1

Γ(n1)Γ(n2)(1− δ)n1+1
(13)

Intergrating out ψ, we have the maginal distribution of δ

Pr(δ) = [B(n1, n2)]−1 δn1−1(1− δ)n2−1; 0 < δ < 1

Here, δ has a beta distribution with the known parameters n1 and n2. So
we have, for any 0 < c < d

Pr(c < δ < d) = Id(n1, n2)− Ic(n1, n2) (14)

where, Ix(n1, n2) = [B(n1, n2)]−1 ∫ x
0 z

n1−1(1−z)n2−1dz is the incomplete
beta function. After calculation for the conection of δ and R̈, we have the
pivotal quantity

δ =

[
1 +

n2R̈(1−R)

n2R(1− R̈)

]−1

where, R = β
β+α and R̈ = z

z+t
.

If c and d in (14) are such that for a given σ

Id(n1, n2)− Ic(n1, n2) = 1− σ

then,

P

c < [1 +
n2R̈(1−R)

n2R(1− R̈)

]−1

< d

 = 1− σ (15)

After solving the equation (15) for R.

P

(
n2R̃c

n1(1− R̃)(1− c) + n2R̃c
<R<

n2R̃d

n1(1− R̃)(1− d) + n2R̃d

)
= 1− σ

The above equation is valid for any values of n1 and n2, large or small.
Hence the theorem follows.
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3. Implication
Here, we consider the different cases for the distributions to obtain the
Confidence Interval of R = Pr(Y > X) given in (11)

Values of parameters for The Confidence Integral of R = Pr(Y > X)
Distributions Values of Parameter

The one-parameter
exponential distribution

R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 yj and

T (x) = 1
n1

∑n1
i=1 xi

Weibull distribution R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 y

p
j and

T (x) = 1
n1

∑n1
i=1 x

p
i ,

p > 0

Rayleigh distribution R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 y

2
j and

T (x) = 1
n1

∑n1
i=1 x

2
i

Burr distribution R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 log(1 + ybj) and

T (x) = 1
n1

∑n1
i=1 log(1+xbi), b > 0

Pareto distribution R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 log

(
yj
a2

)
and

T (x) = 1
n1

∑n1
i=1 log

(
xi
a1

)
, b > 0

Lomax distribution R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 log

(
1 +

yj
ν

)
and
T (x) = 1

n1

∑n1
i=1 log

(
1 + xi

ν

)
, for

ν > 0
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Burr distribution with scale
parameter ν(> 0)

R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 log

(
1 +

ybj
ν

)
and

T (x) = 1
n1

∑n1
i=1 log

(
1 +

xbi
ν

)
, ν >

0 and b > 0

The modified Weibull
distribution

R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1 y

γ
j exp(νyj) and

T (x) = 1
n1

∑n1
i=1 x

γ
i exp(νxi), ν > 0

and γ > 0

The generalised Pareto
distribution

R̃ = T (y)

T (y)+T (y)
∀ T (y) = 1

n2

∑n2
j=1[

(yj − a2) + γ
λ2
log
(
yj+ν
a2+λ2

)]
and

T (x) = 1
n1

∑n1
i=1[

(xi − a1) + γ
λ1
log
(
xi+ν
a1+λ1

)]
, ν > 0

and γ > 0

The linear exponential
distribution

R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1

[
byj + θ2

2 y
2
j

]
and

T (x) =
1
n1

∑n1
i=1

[
bxi + θ1

2 x
2
i

]
, θ1, θ2 > 0

and b > 0

The generalised power R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1

[
(1 + ybj)

θ2 − 1
]

and
Weibull distribution T (x) =

1
n1

∑n1
i=1

[
(1 + xbi)

θ1 − 1
]
, θ1, θ2 > 0

and b > 0
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The Gompertz distribution R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1

[
β
b (ebyj − 1)

]
and

T (x) = 1
n1

∑n1
i=1

[
β
b (ebxi − 1)

]
, β >

0 and b > 0

Chen distribution R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1(ey

b
j − 1) and

T (x) = 1
n1

∑n1
i=1(ex

b
i − 1), b > 0

The two-parameter
exponential distribution

R̃ = T (y)

T (y)+T (x)

∀ T (y) = 1
n2

∑n2
j=1(yj − a2) and

T (x) = 1
n1

∑n1
i=1(xi − a1), a1, a2 > 0

6 Bayes Estimator of R = Pr(Y > X)

In the following theorem, Bayes estimator of R is derived through the
Transformation method

Theorem 4: The Bayes estimator of R is

Ř =


µ∗

ξ∗+µ∗

(
η∗

ω∗

)−µ∗
2F1(µ∗ + ξ∗, µ∗ + 1, µ∗ + ξ∗ + 1;B), for B < 1

µ∗

ξ∗+µ∗

(
ω∗

η∗

)−ξ∗
2F1(µ∗ + ξ∗, ξ∗, µ∗ + ξ∗ + 1; B

1−B ), for B < −1

(16)
where 2F1(a, b, c; z) is the hypergeometric series and B = ω∗−η∗

ω∗ < 1.

Proof: Let us consider t and z be the independent samples from the pdfs (4)
and (6). Here considering the conjugate prior, inverse gamma distributions
for α and β with the parameters µ, η, and ξ, ω, respectively. Prior is

π(α, β) ∝ α−µ−1e(−
η
α)β−ξ−1e

(
−ω
β

)
; µ, η, ξ, β > 0 (17)

The likelihood is

L(α, β|t, z) = α−n1β−n2 exp

[
−

(∑n1
i=1 ti
α

+

∑n2
j=1 zj

β

)]
(18)
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Applying Bayes formula and using (17) and (18). The posterior density
of (α, β) is

π(α, β|t, z) ∝ α−µ−n1−1e−
(η+n1t)

α β−ξ−n2−1e
− (ω+n2z)

β (19)

Evidently the posterior risk is also the product of gamma pdfs with the
updated parameters

µ∗ = −(n1 + µ), η∗ = η + n1t, ξ∗ = −(ξ + n2), ω∗ = ω + n2z

where, t and z are the sample means.

For posterior pdf of R, we consider a one-to-one transformation F : R =
β

β+α , ϑR = α + β with the inverse Q : α = RϑR, β = R(1 − ϑR). The
Jacobian of transformation is ϑR. The joint posterior density of R and ϑR
becomes

π∗(R,ϑR|t, z) ∝ Rµ
∗−1(1−R)ξ

∗−1 ϑR
µ∗+ξ∗−1e−ϑRω

∗(1−BR);

0 < R < 1, ϑR > 0 (20)

where B = ω∗−η∗
ω∗ < 1.

Intergrating the (20) for ϑR

πR(R|t, z) = CRR
µ∗−1(1−R)ξ

∗−1(1−BR)−(µ∗+ξ∗); 0 < R < 1

(21)

where, CR is the normalizing coefficient. For the Baye estimator we have

Ř =

∫
RπR(R|t, z)dR (22)

Using the (21) and solving (22), we obtain the bayes estimator of R

Ř =


µ∗

ξ∗+µ∗

(
η∗

ω∗

)−µ∗
2F1(µ∗ + ξ∗, µ∗ + 1, µ∗ + ξ∗ + 1;B), for B < 1

µ∗

ξ∗+µ∗

(
ω∗

η∗

)−ξ∗
2F1(µ∗ + ξ∗, ξ∗, µ∗ + ξ∗ + 1; B

1−B ), for B < −1

where, 2F1(a, b, c; z) =
∑∞

j=1
a(a+1)...(a+j−1)b(b+1)...(b+j−1)

c(c+1)...(c+j−1)
zj

j! is the hyper-
geometric series.
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For the Bayes estimator R̈, replacing the parameters as

µ∗ = −(n1+µ), η∗ = η+n1T (x), ξ∗ = −(ξ+n2), ω∗ = ω+n2T (y)

Hence, the theorem follows.

4. Implication
Here, we consider the different cases for the distributions to obtain the Bayes
estimators of R = Pr(Y > X) given in (16)

Values of parameters for The Bayes estimators of R = Pr(Y > X)
Distributions Values of Parameter

The one-parameter exponential µ∗ = −(n1 + µ), η∗ = η + n1x,
distribution ξ∗ = −(ξ + n2), ω∗ = ω + n2y

Weibull distribution µ∗ = −(n1+µ), η∗ = η+
∑n1

i=1 x
p
i ,

ξ∗ = −(ξ + n2), ω∗ =
ω +

∑n2
i=1 y

p
j , p > 0

Rayleigh distribution µ∗ = −(n1+µ), η∗ = η+
∑n1

i=1 x
2
i ,

ξ∗ = −(ξ + n2), ω∗ =
ω +

∑n2
i=1 y

2
j , p > 0

Burr distribution µ∗ = −(n1 + µ), η∗ =
η +

∑n1
i=1 log(1 + xbi),

ξ∗ = −(ξ + n2), ω∗ =
ω +

∑n2
i=1 log(1 + ybj), b > 0

Pareto distribution µ∗ = −(n1 + µ), η∗ =

η +
∑n1

i=1 log
(
xi
a1

)
,

ξ∗ = −(ξ + n2), ω∗ =

ω +
∑n2

i=1 log
(
yj
a2

)
, a1, a2 > 0

Lomax distribution µ∗ = −(n1 + µ), η∗ =
η +

∑n1
i=1 log

(
1 + xi

ν

)
,

ξ∗ = −(ξ + n2), ω∗ =
ω +

∑n2
i=1 log

(
1 +

yj
ν

)
, ν, b > 0
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Burr distribution with scale
parameter ν(> 0)

µ∗ = −(n1 + µ), η∗ =

η +
∑n1

i=1 log
(

1 +
xbi
ν

)
,

ξ∗ = −(ξ + n2), ω∗ =

ω +
∑n2

i=1 log

(
1 +

ybj
ν

)
, ν, b > 0

The modified Weibull distribution µ∗ = −(n1 + µ), η∗ =
η +

∑n1
i=1 x

γ
i exp(νxi) ,

ξ∗ = −(ξ + n2), ω∗ =
ω +

∑n2
i=1 y

γ
j exp(νyj), γ, ν > 0

The generalised Pareto distribution µ∗ = −(n1 + µ), η∗ = η +∑n1
i=1

[
(xi − a1) + ν

λ1
log
(
xi+ν
a1+λ1

)]
,

ξ∗ = −(ξ + n2), ω∗ = ω +∑n2
i=1

[
(yj − a2) + ν

λ2
log
(
yj+ν
a2+λ2

)]
,

γ, ν > 0

The linear exponential distribution µ∗ = −(n1 + µ), η∗ =

η +
∑n1

i=1

[
bxi + θ1

2 x
2
i

]
,

ξ∗ = −(ξ + n2), ω∗ =

ω +
∑n2

i=1

[
byj + θ2

2 y
2
j

]
, b > 0

The generalised power µ∗ = −(n1 + µ), η∗ =
η +

∑n1
i=1

[
(1 + xbi)

θ1 − 1
]
,

Weibull distribution ξ∗ = −(ξ + n2), ω∗ =

ω +
∑n2

i=1

[
(1 + ybj)

θ2 − 1
]
, b > 0

The Gompertz distribution µ∗ = −(n1 + µ), η∗ =

η +
∑n1

i=1

[
β
b (ebxi − 1)

]
,

ξ∗ = −(ξ + n2), ω∗ =

ω +
∑n2

i=1

[
β
b (ebyj − 1)

]
, b > 0

Chen distribution µ∗ = −(n1 + µ), η∗ =

η +
∑n1

i=1

[
ex

b
i − 1

]
,
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ξ∗ = −(ξ + n2), ω∗ =

ω +
∑n2

i=1

[
ey
b
j − 1

]
, b > 0

The two-parameter exponential
distribution

µ∗ = −(n1 + µ), η∗ =
η +

∑n1
i=1(xi − a1),

ξ∗ = −(ξ + n2), ω∗ =
ω +

∑n2
i=1(yj − a2), a1, a2 > 0

7 Discussion

The Family of lifetime distribution is used in order to obtained the MLES,
UMVUES, Confidence intervals and Bayes estimators of R for the various
distributions. Initially, the generalized expressions for obtaining the MLES,
UMVUES, Confidence intervals and Bayes estimators of R are obtained, then
the estimator of the corresponding distributions are simply obtained by just
replacing their respective parameters. For example, consider the following
examples:-

Example 1 – Consider the Weibull distribution
Let X1, X2, . . . Xn be a random sample from WE(α, λ1) and Y1, Y2, . . . Ym
be a random sample from WE(α, λ2). Amiri et al. (2013) [1] obtained the
MLE and UMVUE of R for Weibull distribution, which is given as

R̈ =

m∑m
j=1 yj

α

n∑n
i=1 xi

α + m∑m
j=1 yj

α

and the UMVUE of R is

Ŕ =


1−

m−1∑
i=0

(−1)i
Γ(n)Γ(m)

Γ(n+ i)Γ(m− i)

(
t1
t2

)i
; t1 < t2

n−1∑
j=0

(−1)j
Γ(n)Γ(m)

Γ(n− j)Γ(m+ j)

(
t2
t1

)j
; t1 ≥ t2

where, t1 =
∑n

i=1 xi
α and t2 =

∑m
j=1 yj

α are the sufficient statistics for the
λ1 and λ2.
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Example 2 – Consider the Burr distribution
Let X be a Burr random variable with parameters (p, b) and Y is another
Burr random variable with parameters (a, b). Awad and Gharraf (1986) [2]
obtained the MLE and UMVUE of R for Burr distribution, which is given as

R̈ =
1

1 + n
m

∑m
j=1 log(1+yjb)∑n
j=1 log(1+xjb)

and the UMVUE of R is

Ŕ =



m−1∑
j=0

(−1)j
(m− 1)!(n− 1)!

(m− 1 + j)!(n− 1− j)!

m∑
i=1

vi ≤
n∑
i=1

wi(∑m
i=1 vi∑n
i=1wi

)j
;

1−
m−1∑
j=0

(−1)j
(m− 1)!(n− 1)!

(m− 1− j)!(n− 1 + j)!

m∑
i=1

vi >
n∑
i=1

wi(∑n
i=1wi∑m
i=1 vi

)j
;

where,
∑n

i=1wi =
∑n

j=1 log
(
1 + xj

b
)

and
∑m

i=1 vi =
∑m

j=1 log
(
1 + yj

b
)

Example 3 – Consider the generalized Pareto distribution
Suppose X1, X2, . . . Xn be a random sample from GP(α, λ) and
Y1, Y2, . . . Yn be a random sample from GP(β, λ). Rezaei et al. (2010) [13]
obtained the MLE and UMVUE of R for generalized Pareto distribution,
which is given as

R̈ =

m∑m
j=1 ln(1+λyj)

n∑n
i=1 ln(1+λxi)

+ m∑m
j=1 (1+λyj)

and the UMVUE of R is

Ŕ =


1−

∑m−1
i=0 (−1)i

(m− 1)!(n− 1)!

(m− i− 1)!(n+ i− 1)!

(
T1

T2

)i
; T1 ≤ T2∑n−1

i=0 (−1)i
(m− 1)!(n− 1)!

(m+ i− 1)!(n− i− 1)!

(
T2

T1

)i
; T2 ≤ T1

where, T1 =
∑n

i=1 ln(1 +Xi) and T2 =
∑m

i=1 ln(1 + Yi)
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Remarks: All the above Example 1–3 are the specific cases of our gen-
eralized expressions. Thus, in this study we have suggested a very simple
and approved method i.e, transformation method for obtaining the MLES,
UMVUES, Confidence intervals and Bayes estimators of R for the different
distributions.
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