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Abstract

Estimation of parameters of Poisson Nadarajah-Haghighi (PNH) distribution
from the frequentist and Bayesian point of view is discussed in this article.
To this end, we briefly described ten different frequentist approaches, namely,
the maximum likelihood estimators, percentile based estimators, least squares
estimators, weighted least squares estimators, maximum product of spacings
estimators, minimum spacing absolute distance estimators, minimum spacing
absolute-log distance estimators, Cramér-von Mises estimators, Anderson-
Darling estimators and right-tail Anderson-Darling estimators. To assess the
performance of different estimators, Monte Carlo simulations are done for
small and large samples. The performance of the estimators is compared
in terms of their bias, root mean squares error, average absolute difference
between the true and estimated distribution functions, and the maximum
absolute difference between the true and estimated distribution functions
of the estimates using simulated data. For the Bayesian inference of the
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unknown parameters, we use Metropolis—Hastings (MH) algorithm to cal-
culate the Bayes estimates and the corresponding credible intervals. Results
from the simulation study suggests that among the considered classical meth-
ods of estimation, weighted least squares and the maximum product spacing
estimators uniformly produces the least biases of the estimates with least root
mean square errors. However, Bayes estimates perform better than all other
estimates. Finally, we discuss a practical data set to show the application of
the distribution.

Keywords: Exponential distribution, hazard rate, lifetime data, maximum
likelihood method, Bayesian estimation, Nadarajah-Haghighi distribution,
Poisson distribution.

1 Introduction

Although there are many continuous and discrete distributions in statistics
literature, the exponential distribution enjoys a special place due to its
memory-less and constant hazard rate properties. Thus, it is used as a bench-
mark model in the reliability analysis. To overcome constant hazard rate,
many extensions of the exponential distribution have been introduced in the
literature, for example, exponentiated-exponential (EE) (Gupta and Kundu,
1999) and beta-exponential (BE) (Nadarajaha and Kotz, 2006), among many
others. Nadarajah and Haghighi (2011) introduced a new extension of the
exponential and to define it, let Z have the Nadarajah-Haghighi (NH for
short) distribution, say Z ~ NH(a, A). The cumulative distribution function
(cdf) of NH distribution is given by

G(z) = 1 —el~(1HA2)" (1)

where A > 0 is the scale parameter and « > 0 is the shape parameter. The
NH distribution reduces to exponential distribution assuming o = 1. The
probability density function (pdf) corresponding to (1) is given by

g(z) = aX (1+ Az)* Lel (A" 50, (2)

Nadarajah and Haghighi (2011) pointed out that the density function
(2) always has zero mode. Additionally, the hazard rate function (hrf) of
the NH distribution can be increasing, decreasing, and constant. It is noted
by Nadarajah and Haghighi (2011) that the NH density function can be
monotonically decreasing and yet increasing hrf. Also, if Y is a Weibull
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random variable with the shape parameter o and scale parameter A, then
the density (2) has the same as that of the random variable Z = Y — A1
truncated at zero, i.e., the NH distribution can be interpreted as the truncated
Weibull distribution.

Recently, Mansoor et al. (2020a) proposed the Poisson Nadarajah-
Haghighi (PNH) model to model reliability systems. To this end, consider
a company formed by N systems functioning independently at a given time,
where N is a zero-truncated Poisson (ZTP) random variable (rv) with the
probability mass function (pmf)

077,
P(N =n) = (@ —1) n=12,....

Next, suppose that each system consists of 3 parallel units. The system
will fail if all units fail and assume that the failure times of the units for the
ith system, say Z; 1, ..., Z; g are independent and identically NH random
variables with scale parameter A and shape parameter «. Let Y; denote the
failure time of the ith system and X represents the time to failure of the first
of the N functioning systems. Then, one can write X = min(Yy,...,Yn)
and the conditional cdf of X given N is

FX|N)=1-PW >N =1-1-P(Z11<t,...,Z5 <XV
=1- [1 - {1 — e1*(1+/\w)a}6}N.
Hence, the unconditional cdf of X is given by

1-— exp{ —0 {1 - 61’(1+AI)Q}B }

Fla) = 1—e?

For simplicity, let @ = 1. Then,

B 1 —exp (—{1 — el (A2 }5)

F(z) = T 3)
and the pdf corresponding to (3) is given by
aX (1+ Az a—1 el=(1+Az)% 1 _ (1-(1+A2)*"18-1
fla) = EOA AT { S

1—e!

x exp (—{1—el-1HAD"}7). 5)
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Figure1 Plots of the PNH (a) density and (b) hazard rate for some selected parameter values.

Hereafter, a random variable X with cdf (3) is called the Poisson
Nadarajah-Haghighi (PNH) distribution and denoted by X ~ PNH(/3, i, A).
Clearly, if o = 1, the PNH distribution reduces to the Poisson-exponential
(PE) distribution. This distribution is introduced by Mansoor et al. (2020a),
however, many properties, especially a comparison of different estimation
methods has not been considered in the literature. The survival function (sf)
and hrf of X are given by

exp ({1 - eI1FAN}A) et

S(x) = T (6)

and

 BaX(1+ Agp)a*1 el—(1+A2)” {1- el—(1+A2)” }5_1

1—exp (— [1— {1 — e~ (HAx)"}A]) @

h(z)

respectively. Figures 1(a) and 1(b) display some plots of the density and
hrf of X for different values of «, 8 and \. Figure 1(a) reveals that the PNH
density has decreasing and unimodal (right-skewed) shape, whereas Figure
1(b) indicates that the PNH hazard rate is decreasing, increasing, bathtub
(BT) and up-side bathtub (UBT).

Parameter estimation plays a vital role in statistics and the maximum
likelihood estimation is generally a starting point to estimate parameters. The
popularity of this method is due to its simple and intuitive formulation. For
example, estimators obtained by this method are asymptotically consistent
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and normally distributed (Lehmann and Casella, 2003). However, there are
other estimation methods in the literature, which are commonly used. For
example, Kundu and Raqgab (2005) for generalized Rayleigh distributions,
Teimouri et al. (2013) for Weibull distribution, Ali et al. (2020b) for two-
parameter logistic-exponential distribution, Dey et al. (2014, 2015, 2016,
2017b,a,c,d) for the two-parameter Rayleigh, weighted exponential, two-
parameter Maxwell, exponentiated-Chen, Dagum, transmuted-Rayleigh, two
parameter exponentiated-Gumbel, new extension of generalized exponential
and NH distributions. Recent literature in this direction may be seen in
Alizadeh et al. (2020), Eliwa et al. (2020), Tahir et al. (2018), Ali et al.
(2020c), Mansoor et al. (2020b), Ali et al. (2020a), Shafgat et al. (2020)
and references cited therein. These methods are the method of moment
estimation, method of L-moment estimation, method of probability weighted
moment estimation, method of least-squares estimation, method of weighted
least-square estimation, method of maximum product spacing estimation and
method of minimum distance estimation and so on.

The aim of this study is to provide a comprehensive comparison of
different frequentist methods of estimation for the PNH distribution. To
this end, we assume different sample sizes and different combination of
parameter values. We focus on the maximum likelihood estimators, percentile
based estimators, maximum product of spacings estimators, least-squares
estimators, weighted least-squares estimators, Cramér-von-Mises estimators,
Anderson-Darling estimators and right-tail Anderson-Darling estimators. As
it is difficult to compare the performances of different methods theoret-
ically, extensive simulations are performed to compare the performances
of the different estimators based on their relative bias, root mean squares
error, the average absolute difference between the true and estimated dis-
tribution functions, and the maximum absolute difference between the true
and estimated distribution functions of the estimates. The originality of
this study comes from the fact that there has been no previous work
comparing all of these estimation methods for the PNH distribution. Fur-
ther, we also consider the Bayesian estimation of the unknown parameters
under the assumptions of independent gamma priors on the scale and
shape parameters, respectively. We present a Metropolis-Hastings (MH)
algorithm to compute the Bayes estimates and the associated credible inter-
vals. A real life data set is also analyzed for illustrative purposes. Thus,
the study will be a guideline for choosing the best estimation method for
the PNH distribution, which we think would be interesting for applied
statisticians.
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The rest of the paper is organized as follows. Section 2 presents the
quantile function, moments and shapes of the pdf and hrf for the proposed
model. Section 3 describes ten different frequentist methods of estimation.
In Section 4, a simulation study is carried out to compare the performance
of different methods of estimation for the proposed model. In Section 5,
Bayesian analysis is conducted using the Metropolis-Hastings (MH) algo-
rithm. In Section 6, the usefulness of the PNH distribution is illustrated using
a real dataset. Finally, Section 7 offers some concluding remarks.

2 Basic Statistical Properties of PNH Distribution

This section discusses some basic statistical properties of the PNH distribu-
tion.

2.1 Quantile function
To generate random variables from the PNH distribution, we invert Equa-

tion (3) as X = F~1(u), where u ~ Uniform(0, 1). The explicit form of the
PNH quantile is

X =F(u)
= % [{1 —In (1 —(-In{l—-u(1- exp(—l))})l/ﬁ> }l/a — 1] . (8)

Further, the quantile function can be used to investigate the skewness and
kurtosis measures. For example, the Bowley skewness (Kenney and Keeping,
1962) based on quantiles is given by

F~Y3/4)+ F~Y(1/4) —2F~1(2/4)

b= F-1(3/4) — F~1(1/4)

Similarly, the Moors’ kurtosis (Moors, 1988) is

F~Y3/8) — F~Y(1/8) + F~(7/8) — F~1(5/8)

M= F1(6/8) — F-1(2/5)

2.2 Moments

Many properties of a distribution can be studied using moments, e.g., ten-
dency, dispersion, skewness, and kurtosis. The nth moment expression of
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PNH is given by
2 - ()R exp (i + 1)
I
Fn = Xn1 —exp(— Z Z 1)k/2+1
z,y:O k=0
,+ 1) —1
(mHj) ><Z> T (k/2+1,i+1),

where I'(a, z) denotes the incomplete gamma function defined as I'(a, z) =
X 4a—1
[t exp(—t)dt.

The graphical depiction of the mean, variance, skewness, and kurtosis
is given in Figure 2. It is noticed that the mean and variance decreased by
increasing A while increased by increasing 3. Similarly, the skewness and
kurtosis decreased by decreasing /3, and A is not significant as observed in
the cases of mean and variance.

2.3 Shapes of the Density and Hazard Rate Functions of PNH
Model

To study the shapes of the density and the hrf, we determine critical points of
the PNH density by 01n f(x)/0x = 0, which are the roots of the following
equation.

(a—=1)A
(1 —Inw)l/e

(B — DAa(Inw) —ew
1—w

aX(1 —Inw) Ve 4

—afA1 —Inw) V(1 —w)Pt = 0. )

The critical points of the PNH hrf can be obtained from the following
equation
(a—1)A
(1 —Inw)t/e

(B — DAa(Inw)=Vew
1—-w

— a1 —Inw) "V 4

B afA(1 —Inw) ~Vow(1 — w)b-1 exp(—1— (1 —w)”)
1 —exp(—(1—(1—w)?))
—0, (10)

where w = exp(l - (1+ /\x)a). One can examine numerically the local
maximum, minimum and inflexion points of Equations (9) and (10).
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Figure 2 Plots of the PNH (a) Mean (b) Variance (c) Skewness, and (d) Kurtosis for some
selected parameter values.

Another property to characterize the distribution is the log-concave, i.e.,
the density is log-concave if d?/dz? log f < 0, otherwise convex. The hazard
would be decreasing if the density is log-concave. For the PNH, it is observed
that the density is log-concave for « > 1 with a fixed A. Moreover, for 8 >
« the density is also observed log-concave. Similarly, hazard rate average

HRA(z) = H) 1 ¥ h(u)du can be used to characterize the distribution

x
whether it is increasing (decreasing) hazard rate IDHR (DIHR) if %M >

0(< 0) for # > 0. The PNH is DIHR for 8 > 1,Y a, A. ’
A density is said to be new-better-than-used (NBU) if A(z,y) =

% > 1, for z,y > 0, otherwise new-worse-than-used (NWU). From

Figure 3, it is clear that the PNH is NBU for o > 1.
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3 Methods of Estimation

This section describes ten classical methods for estimating the parameters,
a, f and X assuming x = (1, ..., z,) a random sample of size n from the
distribution (4) with unknown parameters «, § and A.

3.1 Method of Maximum Likelihood

It is well-known that the method of maximum likelihood is the most pop-
ular method in statistical inference, since it has several attractive properties
(Lehmann and Casella, 2003). @ = (3, a, \) . The log-likelihood for 8 =
(B,,\) T based on a given sample is given by

0(8) = nlog(Ba)) —nlog(l —e™!) + (a—1) Zlog(l + Ax;)

i—1
+ Z(l — (14 Xxy)®)
i=1
+(B-1) ilog [1 — el’(H’\xi)a} — i [1 — el () 5.
i=1 i=1

11

The maximum likelihood estimators (MLEs) of the model parameters can
be obtained by maximizing the log-likelihood function ¢(0) with respect to 6.
There are several routines available for numerical maximization of (11) given
in the R program (optim function), SAS (PROC NLMIXED), Ox (sub-routine
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MaxBFGS). Alternatively, one can differentiate (11) and solve the resulting

nonlinear likelihood equations.
The partial derivatives of (@) with respect to the parameters are given by

0U8) _n < -
M—ﬁﬂL;log[l—el (1+A }

- zn: [1 — el_(1+>\$i)a]5 log [1 _ el_(1+>\$i)a:| :

200) n &
= log[1 — (14 Az;
70 a+i21 og[l — (1 + Azy)]
n el_(l_;’_/\xi)a
(-2 T ai=@aye [(L+Azi)® log(1 + Azi)]
i=1
- Z(l + Az;) log(1 + A\z;) ol—(1+Az;)*
i=1
«18-1 n
[1 — elf(lJr)\wi) ] _ Z(l 4 )\xi)a log(l + )\IL'Z),
i=1
a)\—)\+(a—1);1+)\xi +a(ﬂ—1);

731+ Aay)* Ll (HHAz)”
1= el-(I+Az)®

=1

—a Y (14 Ax)*
=1

The MLE § = (B, a, 5\)T of @ = (B,,\) " can be obtained by solving
simultaneously the following normal equations
0o (7] (7]
(6) _, 018) _ 0u6) _,
ap

(o' D)
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There is no closed-form expressions for ﬁ ,& and A and therefore
numerical computations using nonlinear optimization algorithm, such as the
Newton-Raphson iterative method, should be used.

3.2 Method of Maximum and Minimum Spacing Distance
Estimators

Cheng and Amin (1979) introduced the maximum product of spacings (MPS)
method as an alternative to MLE for the estimation of parameters of con-
tinuous univariate distributions. Ranneby (1984) independently developed
the same method as an approximation to the Kullback-Leibler measure of
information. Let F'(z(;)) denote the distribution function of the ordered
random variables z(;) < w(g) < --- < T(y), Where {z1, 72, -+ , 7, } is a
random sample of size n from the cdf F'(-).

Let define the uniform spacings of a random sample from the PNH
distribution distribution as

Di(&,ﬂ, )‘) = F(zln ‘ Oé,,@,)\) - F(xi—ltn | O[,ﬁ, )‘)7

where F(xo,, | «,8,\) = 0 and F(zpy10 | «,8,\) = 1. Clearly,
Z:‘L:Jrll Di(av /85 )‘) =1

Following Cheng and Amin (1983), the maximum product of spacings
estimators &/ pg, 5 v ps and h) M ps of the parameters «, 3 and A are obtained
by maximizing the geometric mean of the spacings with respect to «, 5 and A

1

n+1 ey
G(a, B,A) = [H Di(e, B, A)] : (12)
i=1
or, equivalently, by maximizing the function
1 n+1
H(a,8,)\) = m;logDi(a,ﬂ,)\). (13)

The estimators apsps, Sarps and Ayspg of the parameters «, 8 and A
can also be obtained by solving the nonlinear equations

1 n+1

1
n+1 Z Di(a, B, N)

=1

0
%H (a)ﬁv)‘) =

[Al(xi:n’aa B) )‘) - Al(iﬁi,l:n)|0é7 67 A)] = Oa (14)
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5 1 n+1 1
%H (04)57)‘) = n—+1 ZZ; Di(ayﬂv)‘)
[Ag(zin|a, B, ) — Ag(xi—1m)|a, B, A] =0, as)
5 1 n+1 1
51{ (@757)‘) = n+1 ; Di(a7/87)\)

[Az(zim)|a, B, A) — Ag(i—1:m)|o, B,A)] =0, (16)

where
At (im0 8, 0) = T [Be e 1 e
log(1 4 Azip e~ (1FATEn) (1 _ 1= (4 Azim)* )51
(17)
B (i | @, 8,3) = e 1T g
log(1 — ' ~(HAzin)y] (18)

and

)a—16—[1—81_(1"'“%:70&]5

1
AS ($1n ‘ «, Ba )\) = ?[aﬁxi:n(l + )\'fzn

1 _
(1 _ 617(14,/\337;:”)0‘)ﬁflelf(l‘i’)\xi:n)a)]. (19)

Cheng and Amin (1983) showed that maximizing H as a method of
parameter estimation is as efficient as the MLE estimation. Further, the MPS
estimators are also consistent under more general conditions than the MLE
estimators.

Similarly, the minimum spacing distance estimators of Qp;sapE,

B\MSADE and XMSADE of a, B and A are obtained by minimizing

n+1

7080 =3k (Dilasn) . ). 0)
i=1

where h(z,y) is an appropriate distance. Some choices of h(x,y) are |x — y|
and |logz — logy|, which are called absolute and absolute-log distance,
respectively. These estimators are called the minimum spacing absolute
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distance estimator (MSADE) and the minimum spacing absolute-log dis-
tance estimator (MSALDE). This method was originally proposed by Torabi
(2008). The MSADE and MSALDE of parameters «, 5 and A can be obtained

by minimizing

n+1

1
and
n+1
T(a,5,0) =) _ llog Di(e, 5, A) — log —— 1. (22)

i=1
with respect to «, 8 and A respectively.

The estimators &p;sapE, Bvmsape and S\MSADE of , 5 and A can be
obtained by solving the following nonlinear equations

o W Dia, BN —
50 (0, B,0) = > =
i—1 ’Di(a767)‘) s

[Al (xzn | aaﬁv )‘) - Al (l‘iflin | Q, B? )\)] =0
0 ntd Di<aaﬁ7)‘> -
7T(O&,ﬁ,)\) =
8’8 ’Lzz; ’Di(a767)‘)_%+1

[Ag (w3 | o, B, A) = Ao (Ti—1:m | o, B,A)] =0,
0 & Die, 8,0 — 77
7T(O‘7ﬁa)‘) = —
2 ’Lzz; ’Di(a767A)_%ﬂ

[A3 (J:Zn | a, Ba )\) - A3 (xiflzn | «, By >\)] = 07

_1
n+1

where Dj(, 8,A) # .
The estimators &prsar.pE, Bmsarpe and Ayrsarpg of a, 5 and A can
be obtained by solving the nonlinear equations

0 w logDi(a)/Bv)‘)_log 1 1

—T(a, B, A) = n+l
O ; llog Di(ax, 8, A) — log | Pile 8:)
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[Al (xln ‘ O[767 A) - A1 (gji—l:n | «, B7 )‘)] =

O I(a f) & log Di(e, B, A) — log iy 1
Aot &, O, =
0B i1 llogDi(a,ﬁ,)\) —logn%rl‘ Di(a, B,7)

[Ag (@i | o, B, A) — Ao (xi—1m | @, B,A)] =0,

QT(O{ 50— 1 log Dy(a, B, ) — logn%rl 1
A i=1 ‘logDi(a B, \) —logn%rl‘ Di(e, B, )

[As (@i | o, B, A) — Az (@i—1m | @, B,A)] =0,

where log D;(a, 3, \) # log %—i—l

3.3 Methods of Ordinary and Weighted Least Squares

The least squares and weighted least squares estimators were proposed by
Swain et al. (1988) to estimate the parameters of beta distribution (Swain
et al., 1988). It is well known that

i

E[F(xln | Oé,ﬁ,)\)] = n+1

and

e _ i(n—1+1)
V[F(@in | o, B, )] 1)’ (nt2) (23)

Using the same notatlons as subsectlon 3.2, the ordinary least squares
estimators a&orsg, 60 LsE and )\OLSE of the parameters «, 5 and A\ are
obtained by minimizing the function:

n

. 2
S(a,ﬁ,/\):Z[F(mm\04,6,)\)— : ] (24)

pt n+1

These estimators can also be obtained by solving the following non-linear
equations:

n

S| i ) = ] i a8 o,

i=1
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n

[F(rnmm,/i A - ]Ammaﬁ, ) =0,

+1

=1

M-

[F(azm @, 8,0) - ]Ag (vin | @ B,2) =

i=1 +1

where Aj(.|a, B, A), Ao(.|la, B,A) and As(.|a, B, \) are given by Equa-
tions (17), (18) and (19), respectively. R R
The weighted least-squares estimators ay rsg, Bwrse and A\wpsg of
the parameters «, 3 and A are obtained by minimizing the function:
2

=+ (n+2) | i
W(a,ﬁ,A)—; it D) [F(:cmm,ﬁ,A)nH . 29

The WLSE can be obtained by solving the following non-linear equa-
tions:

n 2 r .
Z(”Z,(*nllfﬁ)m F (@i | 0, B,A) = ——| Ay (@in | 0, B,0) = 0,
=1 - -

(26)

n 1 2 2) T .
3 (nizrnzi(iif) V| F (i |0, B, 0) — — [ B2 @i @8N =0,
=1 - 4

27

n

1)2 2) [ ‘
Z(ni—('—nzi(i—il_)) F (@in | 008,0) = 5| B (oim | 08, 3) =0,
=1 - -

(28)

3.4 Method of Percentiles

Since the PNH distribution has an explicit distribution function, the unknown
parameters «, S and A can be estimated by equating the sample percentile
points with the population percentile points. This method is known as the
percentile method (Kao, 1958, 1959). If p; denote the estlmate of F(xm |

a, 3, \), then the percentile estimators & p¢ EB pcr and by pcg of the param-
eters «, § and \ can be obtained by minimizing the function P(«, 8, \) with
respect to «, B and A:

n
P(O"Bv )‘) = Z[xln - F_l(pi‘au B’ )\)]25

=1
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where p; = nil is the unbiased estimator of F'(x;,, | «,fB,)) and

F~Y(p;s|a, B, ) is defined in (8).

3.5 Methods of the Minimum Distances

This section considers three estimation methods by minimization of the
goodness-of-fit statistics, i.e., minimizing the distance between the theoretical
and empirical cumulative distribution functions, with respect to «, 5 and A.

3.5.1 Method of Cramér-von-Mises

To motivate our choice of Cramér-von Mises type minimum distance esti-
mators, MacDonald (1971) provided empirical evidence that the bias of the
estimator is smaller than the other migirnum distAance estimators. Thus, the
Cramér-von Mises estimators &g, Sonv e and Aoy g of the parameters «,
(3 and \ are obtained by minimizing C'(«, 3, A) with respect to «, 3 and A:

1 | < 2i —1\?
O(a,&M:m+Z(F<zmra,ﬁ,A>— 5 ) @)
i=1

The estimators can be obtained by solving the following non-linear
equations:

n

Z(F(x2n|aaﬁa)‘)_ 2Z_1>Al(gjln|a’ﬁ,)\):0’

- 2n
=1

n

Z (F(xzn | aaﬁa)\) - 2Z_1> AQ(xi:n | 04767)\) =0

. 2n
=1
n

> (Fon [0080) = 250 ) Aa (o [ 0,8.0) =0,

. 2n
=1

where A1 (. | o, B, A), Aa(. | a, B, A) and As(. | «, B, A) are given by (17),
(18) and (19), respectively.

3.5.2 Methods of Anderson-Darling and Right-tail
Anderson-Darling

Anderson and Darling ?? introduced a test as an alternative to statistical tests

for detecting sample distributions departure from the normal distribution.

This method is used here to obtain the Anderson-Darling estimators, @ 4pg,

B ApE and h) ApE of the parameters «, 8 and A, by minimizing the function
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A(a, B, \) with respect to «, 8 and X respectively.

n

A(a,B,A):—n—%Z(Qi—l)

=1
{log F (ziun | o, B,A) +10g F (zn41—in | @, B,A)} . (30)

The estimators can be obtained by solving the following non-linear
equations:

n ) A
Z(%—l) Al(xz.n|aaﬁa>\) 1( n+12n|a67 ) =0,
=1 F(mzn | O‘vﬁaa) F(l'nJrl in | (0% ﬁv )

n ) A

Z(Ql—l) A2(-Tz.n|67/3a9) 2( n+1 1n’a ’ ) :0’
=1 F(xzn ‘ 05757)\) F($n+1 in | « 5) )

n A
223_1 xzn’a/@a) 3(n+12n|aﬁ’) —0.
i1 xzn‘cﬁ7 ) F(I’n+1 zn‘a 67 )

The right-tail Anderson-Darling estimators agrApE, B rrADE and
ArrADE of the parameters «, /3 and \ are obtained by minimizing R(«, 3, \)
with respect to «, 8 and A. The right-tail Anderson-Darling is defined as

(aﬁa _7_2ZF xln’a/BJ )

1< —
- > (20— 1D)1ogF (Tpi1-im | @, 8,2). (1)
=1

The estimators can also be obtained by solving the following non-linear
equations.

—QZ Al :CZTL | « /67 ) + l = (2@ o 1) él (‘/L‘n+lf’i:n ’ Oé,ﬁ, )\)
F xzn ’ a 57 ) n i—1 F(Ccn—i—l—i:n ’ a,ﬁ,)\) ’
Az (Tin | o, B, A) 1 & . AV ($n+17¢»n |, B, >\)
2 + - 2Z - 1 — - = 07
Z xzn | a, B3, ) n ;( ) F(xn—l—l—i:n | O[,B,)\)
_22 A3 xln | «Q 67 ) + l = (22 _ 1) 63 (wn+l—i:n ’ 04,,3, )\)
xln | (64 67 ) n =1 F(:L'nJrlfi:n | Oé,ﬁ,)\) ’
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where Ai(- | «a,B,A), Aa(- | a,B,A) and As(- | a, 8, A) are given by
Equations (17), (18) and (19), respectively.

4 Simulation Study

This section discusses Monte Carlo simulation studies to assess the perfor-
mance of the frequentist estimators mentioned in the previous section. In
particular, we used bias, root mean squared error, the average absolute dif-
ference between the theoretical and the empirical estimate of the distribution
functions, and the maximum absolute difference between the theoretical and
the empirical distribution functions as the performance assessment criteria.
For comparison, we considered the following sample sizes: n = 20, 40, 60,
80, 100. Ten thousand independent samples of the aforementioned sample
sizes were generated from PNH distribution with parameters (o, 3, A) =
{(0.5,0.5,0.5), (3.5,3.5,3.5)}. It is observed that 10,000 repetitions are
sufficiently large to have stable results. For all the methods considered in this
study, first we have estimated the parameters using the method of maximum
likelihood and used them as the initial values for the rest of the methods. Also,
the same randomly generated samples are used to compute the simulation
summaries of different estimation methods. The results of the simulation
studies are tabulated in Tables 1-2.

For each estimate we calculate the bias, root mean-squares error (RMSE),
the average absolute difference between the theoretical and the empirical
estimate of the distribution functions (Dg;s), and the maximum absolute
difference between the theoretical and the empirical distribution functions
(Dmagz)- The statistics are obtained using the following formulae:

R R
Bias(d) = % ;(a@ —a), Bias()\) = % ;(Xi -\ (32)
1 & 1 &
RMSE(é) = | D (@i —a)?, RMSE(N) =,|=> (Ai—X)2 (33)
=1 =1
1 R n .
Dype(@) o0 > | F(wijla, A) = F(wij]é, A (34)
i=1 j=1
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Simulated bias, RMSE, D,p, Dmax for the estimates are listed in
Tables 1-2. The row with label > Ranks shows the partial sum of the ranks
and superscript indicates the rank of each of the estimators among all the
estimators for that metric. For example, Table 1 shows the bias of MLE(&) as
0.414% for n = 20. This indicates, the bias of & obtained using the method of
maximum likelihood ranks 4th among all other estimators.

The following observations can be drawn from the Tables 1-2.

1. All the estimators show the property of consistency, i.e., the RMSE
decreased as sample size increased.

2. The bias of & decreased by increasing n for all the method of estima-
tions.

3. The bias of 3 decreased by increasing n for all the method of estima-
tions.

4. The bias of \ decreased by increasing n for all the method of estimations
but for small sample size, the estimate of A is highly biased.

5. The bias of MSALDE increased by increasing n as compared to the
other methods.

6. D, 1s smaller than Dy, for all the estimation techniques. Again, the
statistics get smaller with the increase of sample size.

7. In terms of performance of the methods of estimation, it is observed that
the WLS and MPS estimators uniformly produce the least biases of the
estimates with least RMSE for most of the configurations considered in
our studies.

5 Bayesian Estimation

This section presents the Bayesian inference of the unknown parameters of
the PHN distribution. It is needless to mention that, if all the parameters
of the model are unknown, a joint conjugate prior for the parameters does
not exist. For this, we assume piecewise independent priors and the proposed
priors for the parameters «, 5 and A may be taken as &« ~ Gamma(a,b), 5 ~
Gamma(c,d) and A ~ Gammal(e, f). The joint prior distribution of «, 3
and \ can be written as p(a, 3, \) o< a® 1IN exp(—ba — dB — f)).
We assume 0 = (o, 3,\), ¢ = (x1,22, -+ ,2n), P(0) denote the joint
posterior and L(0;x) is the likelihood function. For the PN H (x|a, 3, \),
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the likelihood function can be written as

L(6;x) x(aB) ”H (1 4+ Axy)® exp<— Z(l—{—)\xi)a)
=1

=1

(i aormr)}

=1

con( -3l an(i-wonnr))) oo

i=1
Therefore, we write the joint posterior as

P(Oé /8 )\|QZ) O(O[n—i-a—lﬁn—&—c—l)\n—&—e—l

exp(-afb - gmu +a) })

_ ‘nl 1n{1 . exp<1 —(1+ /\mi)"‘> }) exp(—Af)

exp i{l - exp<1 —(1+ )\a:i)a> }B> (37)

(

exp (—B{d - ZZZ;IH [1 - exp<1 -+ A”J")a)] }>
(
(-

P(a, B, Nx) <P, <n +a,b— Z In(1 + A\z;)|x, A) P(\za, B)
i=1
Pj <n +c,d— Zln[l - exp<1 -1+ )\:ri)O‘)} |:1:,a,)\)
i=1
(38)
where P, and Pg are the gamma densities, and P(A|xw,() =

NFelexp(—= S0 In{1 —exp(1 — (1 + Az;)*)}) exp(—Af) exp(— >y
{1 —exp(1 — (14 Az;)*)}?) exp(— Y1, In(1 + Az;)). It is not difficult to
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show that P(A|zx, a, B) is log-concave for 5 > 2 and o < 1 and thus, the
idea of Devroye (1986) can be used. Here, we will implement the Metropolis
Hastings (MH) (Metropolis et al., 1953) algorithm to compute the estimators.
The MH algorithm is a powerful Markov Chain Monte Carlo algorithm.
To this end, we assume gamma density as transition kernel g(A®|\(*)) for
sampling value of \. The choice of gamma distribution has been considered
purely for illustration purpose, and other suitable distributions can be used.
After generating the marginal densities, the next step is to calculate the
posterior summaries, E(0|x) = [, OP(60|x). The steps to calculate the Bayes
estimates are as follow:

Step 1: Take some initial guess values of «, 5 and A, say ag, 8o and Ag,
respectively;

1. To generate ), evaluate the acceptance probability by k()\(i), )\(*)) =

min(1, ?Eiit; HQZ((/)\‘((: R((;) )) ), where P(\|x) has been defined above.
2. Generate a random numbers u from Uni form(0,1)

3. I k(AD, NH)) > 4, AGHD) = &) otherwise A1) = (),

Step 2: Suppose at the ith step, «, 5 and A take the values «;, 8; and \;. Now
we can generate P(\i1|a, Bi, @), P(air1|Ai, ) and P(Bit1| i, Aiy )3

Step 3: Repeat the above step N times;

Step 4: Calculate the Bayes estimator of i (v, A) by 17 ZiJiMH h(ai, A),
where M denote the number of burn-in sample.

For the Bayesian analysis, we generated 12,000 samples for «, 5 and
A, and the Bayes estimates with other posterior summaries, like MCMC
error, median, 95% Bayesian intervals have been tabulated in Table 3 for
the above mentioned parameter combinations and sample sizes. To compute
the posterior summaries, we selected the hyperparameters in such a way
that mean of the priors equal to the nominal parameter values with large
variances. Moreover, we have used M = 2,000 as the burn-in period for
our calculations. From Table 3, it is noticed that as the sample size increases,
the Bayes estimates approaches to the nominal values and the Bayesian
intervals become tighter for large sample sizes. Furthermore, the MCMC
error decreases with the increase of sample sizes.
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Table 3 Monte Carlo Markov Chain results for Bayesian analysis
Parameter =~ n  Estimate SD MC error 95% CI Median
a=0.5 20 0.5044  0.5101 0.0060 (0.0128,1.88)  0.3504

40 0.5051  0.5085 0.0036 (0.0127,1.855)  0.3464
60 0.4999  0.5005 0.0014 (0.0128,1.833)  0.3468
80 0.501 0.5006 0.0012 (0.0129,1.824)  0.3464
100 0.5001  0.5002 0.0004 (0.0127,1.804)  0.3468
B=05 20 0.4974  0.5037 0.0048 (0.0123,1.919)  0.3402
40 0.4997  0.5035 0.0033 (0.0119,1.893)  0.3447
60 0.5008  0.5019 0.0014 (0.0128,1.856)  0.3467
80 0.5011 0.5014 0.0010 (0.0132,1.849)  0.3475
100 0.5001  0.5004 0.0004 (0.0127,1.846)  0.3469
A=0.5 20 0.4986  0.4993 0.0045 (0.0124,1.845)  0.3458
40 0.503 0.5119 0.0031 (0.0116,1.897)  0.3489
60 0.4996  0.4989 0.0014 (0.0129,1.836)  0.3466
80 0.4974  0.4942 0.0011 (0.0131,1.811)  0.346
100 0.4991  0.4982 0.0004 (0.0128,1.804)  0.3467
a=35 20 3.506 1.329 0.0057 (1.426,6.574) 3.332
40 3.477 1.302 0.0054 (1.429,6.445) 3.31
60 3.502 1.33 0.0034 (1.402,6.541) 3.326
80 3.503 1.314 0.0032 (1.42,6.477) 3.316
100 3.499 1.302 0.0029 (1.405,6.541) 3.328
B8=35 20 3.498 1.301 0.0059 (1.432,6.529) 3.347
40 3.482 1.329 0.0059 (1.396,6.477) 3.317
60 3.506 1.331 0.0036 (1.404,6.595) 3.347
80 3.502 1.328 0.0035 (1.407,6.536) 3.333
100 3.503 1.328 0.0032 (1.411,6.578) 3.342
A=3.5 20 3.498 1.326 0.0063 (1.403,6.532) 3.323
40 3.511 1.328 0.0059 (1.404,6.582) 3.348
60 3.501 1.322 0.0038 (1.411,6.514) 3.337
80 3.502 1.324 0.0032 (1.408,6.555) 3.334
100 3.499 1.318 0.0029 (1.41,6.512) 3.337

6 Real Data Application

This section presents a real data set analysis using the PNH distribution
and further compares it with competing models, like the exponentiated-
NH (ENH) (Lemonte, 2013), exponentiated Weibull (EW) (Mudholkar and
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Table 5 Monte Carlo Markov Chain results for the Bayesian analysis of the data set

Parameter|  Estimate SD MC error 95% CI Median
a 0.7721  0.7783 0.0036 (0.0189,2.863)  0.5339
B 1.666 1.672 0.0078 (0.0420,6.182) 1.152
A 0.2021  0.2017 0.0009 (0.0052,0.7446)  0.1409

Srivastava, 1993), Marshall-Olkin Weibull (MOW) (Ghitany et al., 2005),
BE, NH, EE and Weibull models. We estimate the model parameters by
using the maximum likelihood method and compared the goodness-of-fit of
the models using the Cramér—von Mises (W*) and Anderson-Darling (A*)
statistics, which are described in detail by Chen and Balakrishnan (1995). In
addition, we consider the Kolmogrov-Smirnov (K-S) statistic. In general, the
smaller the values of these statistics, the better the fit to the data. The cdfs of
the ENH, EW, MOW, BE and EE models are given by

a\B
ENH: Fpnp(z; B, a,\) = (1 — el=(1+Az) ) , x,B,a,A >0,
EW: Fpw(x;c,a,A) = (1 — e_(i/)‘)c>a, x,c,o, A >0,
1

MOW: Fasow (w3p, 8,4) = (1= e/ [1 = (1= p)e @]
x7p7 B? A > 07

BE: Fpgp(z;a,b,\) = I,_o-z(a,b), xz,a,b;\> 0,

EE: Fgg(z;a,\) = (1 —e9)%, 2,0, >0,

where I, (a, b) is the incomplete beta function ratio.

The data set has been taken from Lee and Wang (2013) and reproduced
in Table 4, which represents the remission times (in months) of a random
sample of 128 bladder cancer patients.

The box-plot of these observations is displayed in Figure 4(a), which
indicates that the distribution is right-skewed. The TTT plot (Aarset, 1987)
of these data is shown in Figure 4(b) and it is clear that it is first concave
and then convex, which suggests an upside-down bathtub shaped failure rate.
Accordingly, the PNH distribution could, in principle, be appropriate for
modeling the current data set. The MLEs (with SEs in parentheses), A*, W*
and K-S statistics are included in Table 6. All three goodness-of-fit statistics
indicate that the PNH model provides the best fit. Further, the empirical and
estimated survival curves and PP plot are shown in Figures 5(a) and 5(b) and
also support this conclusion.



The Poisson Nadarajah-Haghighi Distribution 443

66900  €IEI'0  €98L°0 (9298°0)98¢G6 =0 (GL90°0)LLVO'T =2 M
STLOO  TTITO0  €£09°0 (CETO0)TIETO =Y  (88FT1°0)6LIT'T =P a4
61600 800110  1¥L9°0 (67€00)9T2T0 =Y  (P1S1°0)9286°0 = © HN
8€L00  TOGIT'O0  ¥SILO (2860°0)90€0°0 = X (90¥2'€1)6090F% =9  (2SET'0)6L8T'T =P ad
16L00  LIFI'O  T1€8°0 (F1#8°0)6776°0 =X (16¥1°0)ePFS0=¢  (118L1)068S €T =d MOW
0S¥0'0  9€v0'0  S88T0 (1168 1)esre e =Y (9292 1)e¥6Lc =0  (9FET°0)G7¢9°0 =2 A
W00 1TH00  6LLTO (CLT0)FPPe0 =Y (cLTIT0)12890="0  (979¢°0)¥889'T = ¢ HNAH
SOY0'0  8S€0°0  TTHTO (2101°0)1102°0 =X  (09S1°0)0¥cL 0 ="  (8660)c9€9T = ¢ HNd

S M N sajewnsy uonnquIsIq

BJEp IOOUERD JOpPeR[q Y} JOJ SONISTIRIS JJ-JO-SSaUP003 pue (sesayjuared ur) SIOII0 pIepue)s I ‘SHTIN 9 d[qRL



444 S. Aliet al.

60
0.6 0.8
1

40
1

T(iin)

04

20
1

0.2

0.0

(a) (b)

Figure 4 (a) Boxplot (b) TTT plot for the bladder cancer data.

Poisson Nadarajah & Haghighi
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Expected

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5 Bladder cancer data (a) empirical survival and estimated PNH survival function;
(b) P-P plot.

7 Conclusion

In this article, we studied some basic statistical properties of the Poisson
Nadarajah-Haghighi (PNH) distribution and estimated its parameters by
eleven different methods of estimation, namely the maximum likelihood
estimators, least squares and weighted least squares estimators, the maxi-
mum product of spacings estimators, the minimum spacing absolute distance
estimators, the minimum spacing absolute-log distance estimators, Cramér-
von-Mises estimators, Anderson-Darling and right-tail Anderson-Darling
estimators and the Bayes estimators. Results of the simulation study showed
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that among frequentist estimators, WLS and MPS perform better than the
other methods. However, the Bayesian is the best method. An application to
areal data set is also presented as an illustration of the potentiality of the new
model as compared to other existing models. It is expected the utility of the
model in different fields, especially in survival analysis when hazard rate is
decreasing, increasing, bathtub and upside-down bathtub shape. Further, it is
also noticed that the performance of the MLEs is quite satisfactory. The use
of the MLEs or Bayes estimators is recommended for practical purposes. In
the future, record values can be analyzed assuming the PNH distribution.
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