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Abstract

Statistical Process Control (SPC) is an efficient methodology for monitoring,
managing, analysing and recuperating process performance. Implementation
of SPC in industries results in biggest benefits, as enhanced quality products
and reduced process variation. While dealing with the theory of control chart
we generally move with the assumption of independent process observation.
But in practice usually, for most of the processes the observations are auto-
correlated which degrades the ability of control chart application. The loss
caused by autocorrelation can be obliterated by making modifications in the
traditional control charts. The article presented here refers to a combination
of EWMA and CUSUM charting techniques supplementing modifications in
the control limits. The performance of the referred scheme is measured by
comparing average run length (ARL) with existing control charts. Also, the
referred scheme is found reasonably well for detecting particularly smaller
displacements in the process.
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1 Introduction

In any manufacturing environment, the probability of two items being exactly
similar is zero. All manufacturing and production processes exhibit variations
which can be grouped into two categories, generally known as common cause
and assignable (special) cause variations. Variations in any process caused
by common cause only, the process is defined to be statistically in-control
process. But, if the disparities in the process are caused by the both (common
and assignable) causes then it gives rise to the statistically out of control
process. SPC tools and procedures are used to control and monitor variations
in process parameters or production method. Among various tools and proce-
dures, control charts are renowned and principal tool of the Statistical Process
Control. Initially in 1920s, Walter A. Shewhart applied control charts in the
field of manufacturing industry to monitor process behavior. The three control
schemes listed below are generally used control schemes in the theoretical
application of SPC.

(i) Shewhart control scheme
(ii) Exponential Weighted Moving Average (EWMA) control scheme

(iii) Cumulative Sum (CUSUM) control scheme.

A primary assumption while exercising with control charts is that the
process observations distributed normally and independently when the pro-
cess under study is statistically in-control. When the above assumptions
are justified, the traditional control charts can be used. But mostly, process
produces observations which does not follow the assumption of independence
observation. Many process observations inherently exhibit autocorrelation or
serial dependence. Even, the lower degree of autocorrelation can retrograde
the properties of standard control schemes. Process exhibiting autocorrelation
ruins the functioning of control chart by producing incessant false signals
or respond gradually to out-of-control state. The consequence of autocor-
relation on different charting techniques have been studied by numerous
researchers.

Johnson and Bagshaw [9] and Bagshaw and Johnson [5] have exam-
ined the run length distribution of the cumulative sum (CUSUM) when
observation possess autocorrelation for autoregressive and moving average
processes of order one. According to them, “the chart is not robust with
respect to departures from independence”. ARL means: “average number of
observations considered before a signal occurs showing the state of process to
out-of-control”. The performance ability of control chart is evaluated by ARL
and in the presence of autocorrelation it is not calculated properly. Harris
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and Ross [7] examined, “the consequence of autocorrelation on the ARL
and median run length (MRL) of CUSUM and EWMA charts”. Alwan [4]
discussed the impact of autocorrelation of the process observation and stated
that presence of autocorrelation can reduce the detection ability of the special
cause by increasing a number of false signals. The major impact of autocor-
relation in quality control is that it gives rise to much tighter control limits
than required.

We have various methods that can be used to get rid of the effect caused
by autocorrelation, A common approach to eliminate the effect of autocorre-
lation is less frequently sampling of observations from the process. But there
is drawback of this approach because with the limited information the process
may not detect changes which can reduce the performance of control charts
(Zhong [26]). Beyond this approach, two general methods in literature are
often used to control the influence of autocorrelation. These two approaches
are modified chart approach and residual chart approach. Former approach
involves the use of control charts with accustomed control limits to neutralize
influence of autocorrelation. Latter approach directs us to employ control
charts to the residuals which we obtained by featuring a time-series model
to process observations possessing autocorrelation.

Alwan and Roberts [3] applied a time-series modelling to the observations
and after obtaining the residuals to which standard control schemes adminis-
tered to reduce the effect of autocorrelation. Harris and Ross [7] mentioned:
“ignoring autocorrelation may malfunction the performance of the chart”.

Lucas [13] states: “Adding Shewhart limits to a CUSUM control scheme
can give an improved ARL curve as the combined scheme can be designed to
detect more quickly large displacements of the mean with only small changes
either in the speed of detecting small displacements or the in the in-control
ARL”. R. Osei-Anning et al. [18] developed: “the mixed EWMA-CUSUM
and mixed CUSUM-EWMA modified charts in presence of autocorrelation
and compared the performance of the proposed scheme to the existing
Shewhart, CUSUM, EWMA, combined Shewhart-CUSUM and combine
Shewhart-EWMA control chart schemes”.

Vanbrackle and Reynolds [23] considers: “the EWMA and CUSUM
control charts for the process mean when the observations are from an AR(1)
process with additional random error”. Vasilopoulos and Stamboulis [24],
“modifies and extends the existing standard methodology by utilizing the time
series analysis approach showing the substantial effect of dependence on the
classical quality control factors”. Schmid [21] examined: “the run length of
the Shewhart chart for the correlated data”.
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The remaining article is planned in the following manner: In next section,
the modelling of autocorrelated process is discussed. Section 3 considers
the simple design scheme of the EWMA and CUSUM type control charts.
Suggested modified mixed EWMA-CUSUM scheme is discussed in Sec-
tion 4. We compared the suggested modified chart with other previously
defined control schemes and conclude the findings of the paper in the last
section.

2 Models for Autocorrelated Process Data

The standard assumptions in implementing control schemes: “the data gener-
ated by the process are normally and independently distributed with constant
mean and variance”. So, we can write the process observation at time t, Yt as:

Yt = µ+ εt; t = 1, 2, 3 . . . , (1)

where µ indicates the mean of the process which we assume fixed at some
target value during in-control process and it may shift to some different
value as soon as assignable cause occurs and the ε′s indicates the independent
random variables with constant mean and variance.

For modelling process data for an autocorrelated process, a relatively
simple model may be

Yt = µt + εt; t = 1, 2, 3 . . . , (2)

where µt denotes the mean of the process at time t. Here, assumption is made
that the mean is drifting continuously over time and is not a fixed constant. In
particular, when the state of process is in-control the mean µt drifts according
to a time series model. The model in (2) has been used previously in various
places to accommodate autocorrelated data. If Yt follows (2) then the variance
of Yt can be attributed to the variance of mean µt. The variance triggered
by εt can be regarded as short-term variability or measurement error. The
overall mean E(µt) will be represented by ξ to differentiate between µt and
the overall mean E(µt). Here µt follows the following form of the AR(1)
process:

µt = (1− φ)ξ + φµt−1 + αt; t = 1, 2, 3 . . . , (3)

φ indicates autoregressive parameter with |φ| < 1. αt is random shock
follows N(0, σ2α). Also, there is no impact of ε′ts on random shock. The
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preliminary value, µ0 is normally distributed having mean ξ and variance

σ2µ =
σ2α

1− φ2
(4)

which implies that Yt follows N(ξ, σ2y) where σ2Y = σ
2
µ + σ2ε for all t =

1, 2, 3 . . . .
In several instances while working with this model, it has been beneficial

to take into account the share of process variances caused by µt and εt. Thus,

ψ =
σ2µ
σ2Y

=
σ2µ

σ2µ + σ2ε
(5)

is considered to be the share of the process variance caused by mean µt. So,
the variance proportion caused by εt is 1 − ψ. The covariance between two
head-to-head observations, say Yt−1 and Yt, is φiσ2µ and this indicates that
the correlation between Yt−1 and Yt is

ρ = φψ (6)

According to Box, Jenkins and Reinsel [6], “The AR(1) process plus an
extra random error component is similar to ARMA.(1, 1) process” which can
be written as:

(1− φB)Yt = (1− φ)ξ + (1− θB)γk (7)

Here θ is moving average parameter, γ′ks are independently distributed
as N(µ, σ2γ), φ and ξ are same as mentioned above and B denotes backshift
operator such that BYt = Yt−1. In many situations, the AR. (1) model with
plus an extra random error component may be helpful in illustrating the pro-
cess observations but parameter estimation approach is generally articulated
with regard to ARMA (1, 1) model.

3 Traditional CUSUM and EWMA Charts

A drawback of applying Shewhart charting techniques is that it utilizes the
information from the current measurements only for drawing conclusions
regarding the process and neglect all other piece of information obtained
by the whole points. This make Shewhart control charts insensitive to detect
smaller process shift, in particular, shift of 1.5 standard deviation or less. This
section considers those control charts which is based on information from
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all the previous observations as well as the current observations. The control
chart procedures which mainly used in this category are EWMA and CUSUM
and here we discuss some details of their traditional design structures.

3.1 Traditional CUSUM Control Charts

Statistical Quality Control (SQC) is one of the most important means of
detecting assignable cause of variation and it measures and records the data
against specific rquirements and ensures that the product conforms to the
required standards. In SQC, the CUSUM technique was first introduced by E.
S. Page of the University of Cambridge. CUSUM chart improves the detec-
tion ability of small shifts (i.e., less than 1.5σ) in the process by a statistic that
combines information from both the current and previous observations from
the process. Specifically, the CUSUM control charts measure the cumulative
sums of the deviations of the sample values from target value. There are two
CUSUM technique by which we can check the state of any process:

i. The tabular CUSUM technique
ii. The V-mask procedure

Out of these two forms, the V-mask procedure is less preferable. The
tabular form of the CUSUM is practiced more which can be built for average
of rational subgroups as well as for individual information.

If the process is in statistical control, let us consider yi, the ith process
observation is distributed N(µ0, σ

2) (either σ is known or its estimate is
available). Oftenly µ0 is taken as a target value for Y.

The tabular form of CUSUM is executed by accruing deviations from
the target value µ0 with the help of two statistics C+ and C−. These statis-
tics C+ and C− termed as one-sided upper and one-sided lower CUSUM
respectively. These two statistics are given as:

C+
i = max[0, (yi − µ0)− k + C+

i−1]

C−i = max[0,−(yi − µ0)− k + C+
i−1] (8)

The k is generally known as reference value and we consider its value
equal to half of the shift in unit of standard deviation. The initial value of
the statistics C+ and C− is set to 0 i.e., C+

0 = C−0 = 0. We plot these one-
sided upper and lower statistics versus the control limit H where H = hσ.
If any one of the statistics surpasses the H , the process will be out of control
otherwise in statistical control. The appropriate selection of parameters k and
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h of the CUSUM scheme is very necessary as it has major impact on the ARL
values.

3.2 Traditional EWMA Control Charts

S.W. Roberts introduced the EWMA control scheme. The EWMA control
scheme is also helpful while dealing with the problem of shifts in the
process mean. This scheme incorporates not only past information but also
the current information and the mass involved with the process data decline
exponentially as the process observation become less recent. We define as:

Zi = λYi + (1− λ)Zi−1 (9)

here i symbolizes sample number and λ is an invariable quantity satisfying
0 < λ ≤ 1. The preliminary value Z0 is considered as the process target i.e.,
Z0 = µ0.

Occasionally the mean of the prior information is used as preliminary
value of the EWMA. The control limits for EWMA control chart is given by:

UCL = µ0 + σy

√
λ

2− λ
[1− (1− λ)2i]

CL = µ0

LCL = µ0 − σy
√

λ

2− λ
[1− (1− λ)2i] (10)

here σy denotes the standard deviation of quality characteristic under study
and L represents the width of control limit.

3.3 Adjustments in Traditional CUSUM and EWMA Control
Charts

In traditional EWMA and CUSUM charts, several alterations have been
proposed with an aim to improve the performance of both the charts. Lucas
and Crossier [14] illustrated: “the fast initial response (FIR) for CUSUM
quality control scheme in which the CUSUM is not reset to zero at start-up or
after an out-of-control signal given by CUSUM, and a head start is provided
to the CUSUM statistic by allocating starting value of the CUSUM statistic
to some non-zero positive value”. According to Yaschin [25]: “the weighted
CUSUM scheme in which he gives unlike weights to the preliminary data
used in CUSUM statistic”. Riaz et al. [20] compared, “the performance of
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CUSUM based on run rules scheme and classical CUSUM and they noted that
run rules-based CUSUM chart performs better than classical CUSUM chart
for small shifts”. Steiner [22] suggested: “FIR EWMA (like FIR CUSUM)
by giving a head start value to the EWMA statistic and hence upgrade
the performance of EWMA charts”. Lucas and Saccucci [15] suggested:
“the combined Shewhart-EWMA control chart procedure which gives the
better ARL performance for small shifts”. Abbas et al. [1] compared: “the
performance of EWMA control chart based on run rules scheme and standard
EWMA chart and they found that run rules-based EWMA chart performs
better for small shifts than classical EWMA chart”.

4 Proposed Modified Mixed EWMA-CUSUM (MMEC)
Control Chart Scheme

This section suggested modifications in the conglomeration of the con-
ventional EWMA and CUSUM control scheme. Obviously, combining the
design structure of CUSUM and EWMA charts in a single composition
aimed to upsurge the detection ability of the charts, particularly for smaller
displacements in the process.

The suggested scheme is defined as:

First determine EWMA statistic Zi as

Zi = λ yi + (1− λ)Zi−1 (11)

from the observation of quality characteristic under study Y where yi are
autocorrelated observations for AR(1) process with an additional random
error as discussed in Section 3. Here λq is constant like λ used in classical
EWMA statistic in Equation (9) satisfying 0 < λq ≤ 1. The preliminary
value of the EWMA statistic Zi is taken equal to the value of target mean µ0.
The mean and variance of the statistic Zi is expressed as follows:

Mean(Zi) = µ0

Var(Zi) = σ2y

[
λ

2− λ
(1− (1− λ)2i

]
(12)

Then the CUSUM statistic is determined by

MEC+
i = max(0, (Zi − µ0)− ai +MEC+

i−1)

MEC−i = max(0,−(Zi − µ0)− ai +MEC−i−1) (13)
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where ai denotes reference value of proposed scheme which fluctuates with
the time due to the standard deviation of Zi. The quantities MEC+

i and
MEC−i are called one sided upper CUSUM and one sided lower CUSUM
statistics respectively. The starting value of these statistics are set to 0 that is

MEC+
i =MEC−i = 0

The parameters of our suggested scheme can be calculated with the help
of mean and variance of Zi. µ0 and σy denotes the mean and standard
deviation of the population respectively. If µ0 and σy are unknown, we can
estimate them using preliminary data.

Here we deal with the case of single observation that is n = 1. This
control scheme can also be used for the case of subgroups that is for n greater
than unity. We plot the upper (MEC+

i ) and lower (MEC−i ) statistic versus
control limit denoted as bi. Both parameters ai and bi varies with time due
to the impact of variance of the EWMA statistic Zi. The values of these two
parameters are defined as:

ai = a ∗ σy =
√

λ

2− λ

[
1− (1− λ)2i

]
bi = b ∗ σy =

√
λ

2− λ

[
1− (1− λ)2i

]
(14)

The constant a and b resembles with the constant k and h respectively of
classical CUSUM scheme. The process is defined to be in statistical control
if the MEC+

i and MEC−i are plotted within control limits otherwise the
process is defined to be out of control. It is also seen here, if the statistic
MEC+

i exceeds the control limit bi, it means the process has displaced above
the target value and if the statistic MEC−i exceeds the control limit bi, it
means that process has displaced below the target value.

By fixing value of the one constant a, we select the value of other constant
b in such a way that the ARL0 get fixed at our desired level. Generally, the
value of a is taken as one-half of the shift in terms of standard deviation. So
the constant a is choosen in such a way that it crafts the proposed scheme
more sensitive not for small shifts only but also for moderate shifts. The
following table gives the values of ARL at a = 0.5 along with different values
of the parameter and δ denotes the volume of shift (in standard units) in the
process mean. All ARL values are calculated using simulation method, the
programs for simulation and graphs have been developed in R-software.
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Table 1 ARL of the suggested Scheme at λ = 0.25 and a = 0.5

φ ψ b δ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

17 631.2 211.72 94.51 53.32 35.24 25.93 20.54 17.03 14.52 12.72 11.35

0 – 19 823.49 258.68 107.01 59.25 38.93 28.48 22.34 18.49 15.82 13.82 12.34

21 1150.27 314.48 124.49 65.41 42.56 30.89 24.33 19.98 17.06 14.92 13.31

23 1467.92 384.06 139.77 72.27 45.89 33.34 26.06 21.51 18.32 16.01 14.28

17 544.29 197.31 91.98 52.87 35.12 26.02 20.54 17.02 14.55 12.76 11.37

0.2 0.1 19 721.98 245.21 105.38 59.11 38.61 28.52 22.43 18.56 15.84 13.85 12.36

21 1003.02 293.42 120.18 64.88 42.14 30.93 24.30 20.06 17.12 14.95 13.32

23 1288.86 354.24 136.77 71.44 45.97 33.52 26.12 21.51 18.35 16.06 14.29

17 379.44 163.91 83.76 50.34 34.92 26.13 20.78 17.2 14.72 12.91 11.50

0.2 0.5 19 506.16 194.74 97.33 56.94 38.38 28.47 22.68 18.69 16.01 13.99 12.46

21 627.55 233.94 108.36 62.68 42.03 30.93 24.46 20.23 17.27 15.09 13.44

23 840.66 277.60 122.86 68.57 45.51 33.41 26.27 21.74 18.53 16.21 14.42

17 293.06 137.31 77.45 48.99 34.48 26.08 20.83 17.34 14.86 13.01 11.61

0.2 0.9 19 367.45 164.82 88.73 55.03 37.91 28.57 22.71 18.85 16.13 14.10 12.57

21 478.51 196.54 99.85 60.82 41.49 31.04 24.54 20.39 17.40 15.21 13.55

23 583.34 229.53 112.16 66.20 44.91 33.34 26.42 21.89 18.64 16.33 14.51

17 465.89 182.58 88.46 51.76 35.18 26.07 20.73 17.07 14.64 12.81 11.44

0.4 0.1 19 609.64 219.68 101.38 58.61 38.66 28.62 22.52 18.65 15.91 13.92 12.42

21 816.74 263.78 114.34 64.38 42.32 31.03 24.37 20.12 17.19 15.02 13.38

23 1045.69 314.54 133.54 70.58 45.71 33.46 26.26 21.63 18.42 16.11 14.36

17 236.7 123.52 72.82 47.92 34.3 26.24 21.03 17.53 15.02 13.17 11.73

0.4 0.5 19 293.38 146.72 82.99 53.32 37.79 28.71 22.9 19.07 16.33 14.28 12.71

21 361.86 170.95 93.31 58.45 41.36 31.04 24.71 20.52 17.58 15.39 13.69

23 440.48 195.24 104.36 64.75 44.73 33.6 26.67 22.05 18.85 16.5 14.66

17 160.93 96.98 63.16 44.74 33.31 26.14 21.29 17.83 15.35 13.47 11.98

19 193.28 113.69 72.01 49.84 36.79 28.51 23.15 19.36 16.61 14.57 12.97

0.4 0.9 21 233.93 128.56 80.97 54.97 40.23 30.95 24.95 20.92 17.93 15.68 13.97

23 279.08 148.98 89.66 59.88 43.34 33.33 26.82 22.46 19.15 16.79 14.89

17 371.28 159.26 83.42 50.95 35.35 26.28 20.87 17.27 14.80 12.95 11.54

0.6 0.1 19 475.15 190.80 95.44 56.79 38.61 28.71 22.81 18.80 16.12 14.05 12.50

21 616.82 223.06 108.02 63.32 42.19 31.15 24.63 20.31 17.36 15.12 13.49

23 772.98 272.37 123.21 69.05 45.64 33.55 26.46 21.87 18.58 16.25 14.44

17 148.04 93.11 62.46 44.4 33.56 26.52 21.71 18.18 15.63 13.72 12.17

0.6 0.5 19 178.39 105.92 70.12 49.68 37.12 29.01 23.50 19.7 16.96 14.78 13.18

21 207.79 121.75 78.99 54.32 40.17 31.37 25.36 21.31 18.22 15.95 14.11

23 243.9 137.04 87.23 59.57 43.81 33.87 27.29 22.76 19.50 17.01 15.14

(Continued)
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Table 1 Continued
φ ψ b δ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

17 100.42 71.19 53.01 40.44 32.14 26.18 21.89 18.67 16.21 14.21 12.68

0.6 0.9 19 115.13 80.86 58.98 44.91 35.14 28.61 23.79 20.22 17.47 15.37 13.68

21 132.88 91.24 64.94 48.98 38.16 30.99 25.61 21.82 18.75 16.51 14.67

23 151.64 100.01 72.41 53.31 41.71 33.28 27.42 23.27 20.04 17.57 15.66

17 247.41 130.86 77.09 50.41 35.83 27.12 21.65 17.91 15.24 13.26 11.76

0.8 0.1 19 309.97 152.61 87.49 55.72 39.10 29.63 23.49 19.45 16.52 14.39 12.76

21 374.10 176.07 98.01 61.51 42.71 32.08 25.41 20.98 17.85 15.51 13.77

23 457.65 203.47 108.7 66.98 46.39 34.41 27.32 22.45 19.08 16.61 14.73

17 97.50 72.53 55.06 42.91 34.39 28.10 23.52 19.91 17.06 14.94 13.25

0.8 0.5 19 109.75 80.28 60.89 46.86 37.51 30.23 25.34 21.47 18.47 16.15 14.28

21 124.41 88.85 66.62 51.11 40.34 32.81 27.15 23.05 19.82 17.29 15.27

23 139.17 98.54 72.09 55.11 43.13 35.09 29.09 24.55 21.08 18.47 16.31

17 72.25 58.24 47.28 39.17 32.93 27.87 23.81 20.72 18.09 15.94 14.21

0.8 0.9 19 79.27 63.87 51.44 42.56 35.41 29.95 25.62 22.16 19.47 17.18 15.28

21 87.45 68.46 55.68 45.81 38.32 32.19 27.46 23.85 20.84 18.42 16.29

23 95.51 75.16 60.07 49.25 40.91 34.47 29.39 25.32 22.23 19.59 17.41

5 Comparison and Conclusion

In this section, our suggested scheme has been compared with some pre-
viously defined control schemes. The model given in (2) and (3) may fit a
number of observations produced by autocorrelated processes. With the help
of ARL, we see how well a control chart performs. The ARL values of our
suggested scheme has been arranged in Table 1 which is compared with the
results given by Vanbrackle and Reynolds [23]. According to them :“ARL
of the EWMA is greatly affected by the autocorrelation as it reduced the
detection time for small to moderate shifts away from the target and increased
the detection time for large shifts.”

Results shown by our proposed scheme indicates the lesser detection
points for small to moderate shifts, which is better in comparison to the
scheme given by Vanbrackle and Reynolds [23] for detecting the process
shifts, particularly smaller shifts (δ = 1).

Lu and Reynolds[10] concluded that : “when the level of autocorrelation
is reasonably high the time required to detect a shift which is given fraction
of the process standard deviation is much longer than the time ”. Table 2
represents the only ARL values of the EWMA chart of observation only given
by Lu and Reynolds [10] at different levels of autocorrelation. Table 3 gives
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Table 2 ARL of the EWMA control scheme of observation for autocorrelated process of Lu,
C.W. and Reynolds, Jr, M.R. [10]
c φ ψ λ δ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3.085 0.4 0.5 0.05 368.52 262.2 138.68 80.73 52.85 37.81 28.92 23.22 19.34 16.52 14.37

3.289 0.1 375.28 281.28 165.05 97.69 61.74 42.41 31.11 23.98 19.23 15.96 13.55

3.375 0.15 378.52 306.59 191.82 115.96 73.46 49.32 35.31 26.53 20.74 16.71 13.90

3.391 0.2 370.19 304.11 207.42 127.78 82.24 55.65 39.23 29.07 22.33 17.67 14.48

3.394 0.25 367.24 317.25 216.44 143.28 91.15 62.12 43.72 32.01 24.42 19.13 15.41

3.387 0.3 373.57 315.56 229.17 152.31 100.81 68.99 48.66 35.55 26.91 20.75 16.61

3.375 0.35 376.01 322.24 243.16 164.77 111.03 76.25 53.72 39.08 29.39 22.68 17.97

3.355 0.4 382.18 338.57 250.57 173.95 120.16 83.29 59.23 42.85 32.02 24.62 19.41

3.299 0.5 379.64 339.11 264.59 191.41 134.79 94.32 68.05 49.51 37.47 28.74 22.48

4.591 0.8 0.5 0.05 373.54 322.53 231.05 158.51 111.26 81.51 62.38 48.85 39.50 33.01 28.01

4.625 0.1 372.37 334.83 250.38 182.03 129.68 93.69 69.63 54.20 42.94 34.87 28.93

4.536 0.15 381.18 347.12 271.49 200.71 144.77 105.66 79.34 60.79 47.79 38.17 31.03

4.375 0.2 369.97 334.85 269.46 203.71 150.07 109.92 82.76 64.26 50.27 39.72 32.42

4.272 0.25 376.75 350.72 283.99 217.59 164.01 119.12 90.73 69.59 54.18 43.01 34.61

4.143 0.3 377.64 359.51 291.94 223.13 169.66 124.53 95.68 74.04 56.84 45.13 36.38

4.015 0.35 371.42 350.64 290.91 226.22 171.09 131.02 98.21 75.44 58.91 46.52 37.69

3.906 0.4 381.79 351.87 292.44 240.79 178.70 132.91 100.96 79.74 61.91 48.82 39.15

3.707 0.5 384.14 355.76 300.64 244.93 188.61 142.65 109.42 84.42 66.48 52.55 42.04

3.479 0.4 0.9 0.05 375.52 281.14 162.61 98.43 64.94 46.37 35.22 28.12 23.23 19.73 17.06

3.684 0.1 372.69 301.96 190.49 119.14 77.18 54.05 39.19 29.88 23.99 19.63 16.62

3.748 0.15 371.98 311.15 208.72 138.55 90.69 61.96 44.78 33.71 26.17 21.01 17.34

3.75 0.2 375.42 321.47 228.23 155.21 101.56 70.34 50.28 37.27 28.71 22.81 18.49

3.732 0.25 370.35 329.65 235.76 164.27 111.74 77.33 55.13 40.90 31.26 24.77 20.02

3.703 0.3 378.08 321.15 246.62 173.27 121.76 84.72 60.99 45.61 34.38 27.12 21.47

3.656 0.35 367.74 326.33 256.18 184.69 128.24 89.63 66.71 48.51 37.24 29.03 22.94

3.622 0.4 369.95 344.26 257.62 193.21 139.77 98.96 71.55 53.96 40.54 31.41 24.94

3.513 0.5 373.62 347.62 267.78 202.32 149.28 109.37 80.98 59.81 46.34 35.60 28.07

5.654 0.8 0.9 0.05 370.62 331.28 267.74 202.41 148.31 113.39 88.82 69.98 57.02 47.56 40.31

5.641 0.1 370.67 343.10 291.26 224.72 175.78 131.27 101.79 80.77 65.21 52.94 44.51

5.43 0.15 371.73 340.52 292.83 235.88 183.95 142.13 112.66 89.10 71.61 57.94 47.85

5.203 0.2 371.15 350.56 311.19 248.15 193.68 152.59 117.19 95.85 75.15 62.21 50.21

4.981 0.25 373.12 336.08 308.69 247.16 198.42 154.53 125.11 100.83 80.06 63.81 53.65

4.781 0.3 373.41 355.62 311.36 262.72 204.24 162.92 131.82 102.25 82.59 68.16 55.69

4.57 0.35 372.27 348.46 312.19 256.92 201.46 164.66 132.37 105.39 84.52 70.10 56.84

4.394 0.4 374.18 350.24 311.41 259.49 209.63 169.67 135.65 109.17 88.24 72.68 59.43

4.074 0.5 368.97 357.06 316.28 265.25 219.51 173.87 140.71 112.85 90.61 74.52 61.64
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Table 3 ARL of the suggested Modified Mixed‘ EWMA-CUSUM Scheme for autocorre-
lated process at a = 0.5

c φ ψ λ δ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

41.67 0.4 0.5 0.05 371.97 156.91 87.58 58.05 44.09 35.51 30.29 26.35 23.52 21.36 19.57

33.89 0.1 369.23 157.80 88.79 58.31 42.36 33.25 27.55 23.70 20.91 18.78 17.09

28.5 0.15 369.14 166.27 91.32 58.81 41.51 32.14 26.33 22.27 19.41 17.25 15.61

24.31 0.2 370.53 170.44 92.74 58.55 41.67 31.57 25.44 21.32 18.36 16.19 14.49

21.29 0.25 373.75 174.78 94.41 59.78 41.70 31.62 25.04 20.77 17.78 15.53 13.84

18.7 0.3 374.23 174.74 95.22 60.27 41.65 31.01 24.79 20.26 17.19 14.95 13.22

16.9 0.35 373.86 178.61 99.71 62.27 42.87 31.51 25.02 20.11 16.94 14.66 12.90

15.11 0.4 376.61 182.62 100.25 63.98 44.33 32.11 25.34 19.72 16.53 14.21 12.45

12.5 0.5 373.62 184.83 105.55 64.34 43.28 31.54 24.28 19.49 16.15 13.74 11.95

93.6 0.8 0.5 0.05 373.26 213.67 142.37 101.71 77.97 63.70 53.31 46.61 41.27 37.25 33.86

74.8 0.1 375.55 218.63 145.62 102.83 77.88 62.10 51.42 44.09 38.52 34.26 30.81

61.6 0.15 377.76 221.97 148.55 103.62 78.53 61.98 50.57 42.85 36.98 32.60 29.19

52.18 0.2 369.75 224.32 145.68 103.16 77.54 61.58 49.59 41.73 35.79 31.38 27.85

45.1 0.25 377.11 230.17 149.61 105.63 78.57 60.81 49.15 41.31 35.06 30.48 26.96

39.1 0.3 376.62 229.44 149.73 105.06 77.45 60.81 48.82 40.54 34.29 29.79 26.07

35.6 0.35 374.08 225.74 151.07 106.18 77.91 60.21 48.50 40.08 33.83 29.18 25.56

30.7 0.4 371.14 225.84 149.26 105.92 77.17 59.95 48.03 39.46 33.27 28.51 24.93

24.83 0.5 371.57 228.91 149.11 105.56 77.40 59.6 47.48 38.68 32.26 27.50 23.88

54.2 0.4 0.9 0.05 378.04 175.97 102.67 69.37 52.44 42.37 35.74 31.26 27.91 25.30 23.19

42.8 0.1 372.33 175.50 102.77 68.23 49.95 39.67 32.74 28.04 24.65 22.11 20.12

36.2 0.15 372.37 182.04 104.28 69.12 49.93 39.07 31.72 26.82 23.39 20.73 18.68

30.8 0.2 370.45 184.51 106.83 70.16 49.72 38.27 30.79 25.87 22.22 19.62 17.50

26.8 0.25 372.70 188.13 108.45 69.92 49.97 37.92 30.46 25.31 21.53 18.81 16.76

23.6 0.3 374.55 189.11 110.31 71.64 50.09 37.78 30.08 24.68 21.02 18.28 16.14

21.1 0.35 374.49 195.56 111.04 71.71 49.87 37.71 29.84 24.44 20.68 17.81 15.68

18.75 0.4 371.8 193.66 110.57 71.51 49.95 37.42 29.42 23.93 20.11 17.32 15.15

15.55 0.5 373.86 198.32 115.28 73.59 51.31 37.88 29.46 23.76 19.75 16.89 14.66

132.2 0.8 0.9 0.05 371.44 243.69 173.62 127.88 100.35 81.46 69.43 60.13 53.16 47.87 43.65

106.1 0.1 372.43 247.10 173.05 128.24 99.43 81.14 68.01 58.21 50.91 45.26 40.75

86.8 0.15 373.10 245.91 172.71 128.99 100.02 80.67 66.73 57.08 49.15 43.82 38.82

73.75 0.2 371.37 244.45 176.35 129.72 99.40 80.36 66.05 55.94 48.46 42.58 37.96

63.66 0.25 369.49 249.13 174.68 128.81 99.49 79.55 65.62 55.48 47.8 41.56 36.79

56.17 0.3 370.31 247.91 177.75 129.81 99.92 80.49 65.23 55.06 47.52 41.19 36.53

49.82 0.35 373.62 252.37 181.93 130.28 99.94 80.08 65.32 55.13 46.89 40.59 35.69

44.36 0.4 370.39 250.90 177.92 130.98 100.05 79.46 64.82 54.04 46.15 39.98 35.15

36.46 0.5 371.64 255.26 183.91 133.59 102.12 79.48 65.27 53.68 45.91 39.39 34.61



484 D. Tyagi and V. Yadav

Table 4 ARL of the CUSUM Scheme for autocorrelated process at a = 0.5
φ ψ b δ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4 0.5 5.60 369.40 209.58 124.54 78.35 52.04 37.08 27.31 21.25 16.99 14.11 11.93

0.4 0.9 6.78 370.41 214.23 133.21 87.51 59.44 43.22 32.34 25.40 20.51 16.98 14.44

0.8 0.5 9.95 371.80 237.84 163.80 116.59 84.55 64.23 49.57 40.18 32.61 27.17 22.98

0.8 0.9 14.65 372.10 258.01 186.58 138.40 105.65 83.50 66.77 54.31 45.32 38.30 32.84

the ARL values of the proposed modified mixed EWMA-CUSUM scheme,
the parameter b0 is tuned so as to give in-control ARL approximately 370.
Table 4 gives the values of the CUSUM chart for AR(1) plus random error
model at a = 0.5. If we compare the values of the Table 2 with Tables 3 and 4,
we found the lesser detection time for smaller shifts (δ = 1) which indicates
that our proposed modified mixed EWMA-CUSUM scheme is far better than
the scheme given by Lu and Reynolds [10].

From Table 3, we also observed that when the parameter λ increases, the
out-of-control ARL for small shifts (δ = 0.4) increases. On the other hand,
for moderate shifts (0.4 < δ = 1) the out-of-control ARL decreases as the
value of λ increases. So, if we wish to spot smaller shifts the lower value
of λ is preferable and vice-versa. That means when we are designing our
proposed chart for small shifts, it responses better for small shifts and when

Figure 1 ARL of the suggested scheme, the EWMA chart of the autocorrelated Observations
from Lu, C.W. and Reynolds, Jr, M.R. [10] at λ = 0.15 and CUSUM chart at a = 0.5 and
b = 5.6 for autocorrelated process at φ = 0.4 and ψ = 0.5.
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Figure 2 ARL of the suggested scheme, the EWMA chart of the autocorrelated Observations
from Lu, C.W. and Reynolds, Jr, M.R. [10] at λ = 0.2 and CUSUM chart at a = 0.5 and
b = 9.95 for autocorrelated process at φ = 0.8 and ψ = 0.5.

Figure 3 ARL values of the suggested scheme, the EWMA chart of the autocorrelated
Observations from Lu, C.W. and Reynolds, Jr, M.R. [10] at λ = 0.35 and CUSUM chart
at a = 0.5 and b = 6.78 for autocorrelated process at φ = 0.4 and ψ = 0.9.
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Figure 4 ARL of the suggested scheme, the EWMA chart of the autocorrelated Observations
from Lu, C.W. and Reynolds, Jr, M.R. [10] at λ = 0.15 and CUSUM chart at a = 0.5 and
b = 14.65 for autocorrelated process at φ = 0.8 and ψ = 0.9.

we are designing our proposed chart for large shifts, it responses better for
large shifts which is not the property of existing chart.

The performance of our suggested scheme can also be assessed by the
graphs shown in Figures 1 to 4 in which we can see that the ARL of our
suggestd schemes for AR(1) process plus random error performs much better
for particularly for early shifts (δ < 1) in comparison to the other mentioned
schemes.
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